
The Distant Reader - Tool for Reading
Eric Lease Morgan

University of Notre Dame
Notre Dame, Indiana
emorgan@nd.edu

Eroma Abeysinghe
Science Gateways Research Center
Pervasive Technology Institute

Indiana University
Bloomington, Indiana
eabeysin@iu.edu

Sudhkar Pamidighantam
Science Gateways Research Center
Pervasive Technology Institute

Indiana University
Bloomington, Indiana
pamidigs@iu.edu

Eric Coulter
Science Gateways Research Center
Pervasive Technology Institute

Indiana University
Bloomington, Indiana

jecoulte@iu.edu

Suresh Marru
Science Gateways Research Center
Pervasive Technology Institute

Indiana University
Bloomington, Indiana

smarru@iu.edu

Marlon Pierce
Science Gateways Research Center
Pervasive Technology Institute

Indiana University
Bloomington, Indiana
marpierc@iu.edu

ABSTRACT
The Distant Reader science gateway can be used to automatically
create and analyze text corpora at a scale of thousands of user-
supplied documents. These processing steps are deployed on a
dynamic virtual cluster deployed on XSEDE’s Jetstream academic
cloud computing resource and are accessed through aWeb interface.
The science gateway uses Apache Airavata middleware to manage
the interactions between the Web interface and the virtual clusters.
The gateway leverages the Science Gateway Platform as a service
(SciGaP) infrastructure at Indiana University, which provides user
authentication, authorization, and identity management as well as
access to the Distant Reader tools. The Distant Reader is designed
to assist in the process of using & understanding corpora – reading.

CCS CONCEPTS
• Information systems → Content analysis and feature se-
lection; Search interfaces; •Computer systems organization→
Client-server architectures.

KEYWORDS
Text Analysis, Apache Airavata, SciGaP, Distant Reader, URL, Study
Carrels, Library, Science Gateways, Education, XSEDE, Cloud Com-
puting, Virtual Clusters

ACM Reference Format:
Eric Lease Morgan, Eroma Abeysinghe, Sudhkar Pamidighantam, Eric Coul-
ter, Suresh Marru, and Marlon Pierce. 2019. The Distant Reader - Tool for
Reading. In Practice and Experience in Advanced Research Computing (PEARC
’19), July 28-August 1, 2019, Chicago, IL, USA. ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/3332186.3333260

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7227-5/19/07. . . $15.00
https://doi.org/10.1145/3332186.3333260

1 INTRODUCTION
Close reading is the traditional practice of carefully analyzing a
passage of text. The Distant Reader is a tool for reading a large
body of literature, providing "close reading" at scale. Given a URL, a
file of URLs, or a set of files, the Distant Reader harvests/caches the
given content, transforms it into plain text, applies sets of natural
language and text mining processes, reduces the whole to machine-
readable formats and a relational database, summarizes what it
learned, reduces the whole into a "study carrel", and returns a link to
the resulting zip file. The "study carrel" can then be downloaded and
used to supplement a student’s/scholar’s or a reader’s traditional
reading process. In order to share the tool with a broader audience
of researchers and scholars, the Principal Investigator (PI) reached
out to XSEDE’s Extended Collaborative Support Services (ECSS)
[8] for gateway services. After the initial interviews with ECSS
managers, the PI met with SciGaP gateway platform with Apache
Airavata middleware for gateway requirements.

2 NEED FOR DISTANT READER
From a librarian’s perspective, the problem to solve nowadays is
not about search nor discovery. Instead, the problem is one of use
and understanding: “How do I make sense of all the good stuff I
find?” Such is the problem the Distant Reader is intended to solve.
Given dozens of scholarly journal articles, a long scientific report
complete with links to cited documents, one or more books (such
as the complete works of Charles Dickens), a blog, or simply a few
hundred URLs of personal interest, the Distant Reader attempts
to organize content into a coherent whole, analyze it, package up
the analysis, and deliver the results for a more systematic reading
experience.

3 THE DISTANT READER APPLICATION
3.1 Distant Reader Architecture
The Distant Reader tools’s execution environment is made up of
a single, relatively small head node and a dozen compute nodes.
We dynamically provide a cluster on XSEDE’s Jetstream [7], using
SLURM as a scheduler and resource manager. After the head node
receives a request from the scheduler, it uses OpenStack to provision

https://doi.org/10.1145/3332186.3333260
https://doi.org/10.1145/3332186.3333260

PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA Morgan and Abeysinghe, et al.

one ormore compute nodes for executing the request. Each compute
node is comprised of 10 cores, a shared file system, and 10 GB of
RAM. Everything is run on top of (Centos) Linux.

The processing can be divided into three stages: 1) corpus cre-
ation, 2) content analysis, and 3) results reduction. Corpus creation
is the most complicated task. The Reader (Distant Reader Software)
takes the input and locally caches the associated content in its orig-
inal form. Given a single URL, the Reader will cache the content
at the other end of the URL, loop through the content to find ad-
ditional URLs, and cache that content as well. Given a file where
each line in the file is a URL, the Reader will retrieve the associated
content and cache it locally. In this case, the Reader will not crawl
the content for additional URLs. Given one or more files from the
student’s/researcher’s file system, the Reader will then use that as
the cache.

In the case of the single URL, the student/researcher may point
to something like the root of an open access journal article or issue.
The student might point the Reader to a Wikipedia article. They
might point it to a blog, an aggregation of blog postings, or a mailing
list archives. The single URL is the simplest type of input, but it is
also the most messy in that it will indiscriminately cache anything
linked from the original document.

The file of URLs is intended to cache something like sets of
individual journal articles, sets of electronic books, maybe Google
search results, or multiple aggregations of blog postings. The file
of URLs is very scalable since the Reader can easily accommodate
hundreds (if not thousands) of URLs in a single request. Processing
of such a request does require hours of processing but is much faster
and more thorough than the work of any individual person. On the
other hand, the creation of a file of URLs is (ironically) difficult for
many people to accomplish.

Files shared from a student’s/researcher’s file system is the most
targeted type of input, but the Reader is designed for and most
useful when at least a few documents are analyzed. Individually
selecting more than a few documents from one’s file system can
get tedious. A solution to this problem has yet to be articulated.

The second processing stage – content analysis – is embarrass-
ingly parallel. It is during this phase of processing that each item in
the cache is transformed into plain text and indexed in a number
of ways. Next, a number of different computer technologies and
languages are employed. Tika is used for the transformation to
plain text. Bash is used to loop through files on the file system,
call either Perl or Python scripts, and distribute the calls across the
CPUs. Output is usually in the form of plain text (tab delimited
files or SQL statements). Some scripts are implemented as servers
listening on local ports for input. Other scripts take entire files as
input and use various natural language modules (Spacy, Gensim,
etc.) to do analysis. Since very little of this processing relies on
the output of other processing, the content analysis stage is highly
parallelizable. During this stage of the process the load on CPUs
on the compute nodes is all but maximized.

The final processing stage – reduction – is simplistic. In this stage
all of the previously created index files and SQL statements are first
distilled into the normalized tables of a relational (SQLite) database.
The reduction stage also creates a semantic (word2vec) index, and
applies sets of SQL queries to the database thus outputting a sort
of summary of the database’s content. Finally, the whole collection

(original data, transformed text files, tab delimited files, database,
semantic index, and summary file) are compressed into a single zip
file – a "study carrel", described below. A link to the study carrel is
then provided as output to the student/researcher.

3.2 Study Carrel
The tangible output of the Distant Reader process is called a "study
carrel". In reality, it a set of files, each being a different type of
index against each harvested/cached file. There are indices for part-
of-speech, named-entities, readability scores, document lengths,
summary statements, email addresses, URLs, internet domains, key-
words, etc. All of these indices are amalgamated into a single SQLite
database. The indexes (in the form of tab delimited files), the data-
base, the originally harvested files, and the harvested files trans-
formed into plain text are all zipped into a single compressed file.

The student/researcher is expected to download the study carrel,
unzip it, and uses the files found there for further investigation.
For example, the tab delimited files can be imported in something
like OpenRefine, faceted, and queried to answer questions such
as “What are the things under discussion in the corpus?”, “What
actions take place in the corpus?”, or “Who and what places are
mentioned in the corpus?”. It is then possible to illustrate the an-
swers with word clouds. Topic modeling can be done against the
plain text versions of the corpus, and themes can be drawn out and
enumerated. If the Reader classifies sets of documents with one or
more keywords, themes, etc., then the topic models can pivoted to
literally illustrate themes within the classifications. Short, simple
grammars can then be articulated by the Reader, such as noun-verb-
noun, and these grammars can be transformed into SQL queries,
and finally sentences matching the queries can be pulled from the
corpus.

All of the activities above are akin to "distant reading", but more
traditional reading or "close reading" has just as much benefit,
albeit not as scalable. To accommodate close reading, the student
can query the study carrel, identify things of interest, open the
plain text versions of the corpus in a concordance, and then do
intelligent and targeted searching of the corpus, and if that is not
enough, the cached documents in their original form can be read
online or printed for even more analysis.

4 BUILDING A DISTANT READER GATEWAY
The gateway starts with assigning a domain and a SciGaP basic
theme and is deployed in the multi-tenanted SciGaP gateway host-
ing system at Indiana University [6]. This includes integration
with the basic services Apache Airavata [4] provides such as stu-
dent/researcher authentication and authorization technology [2],
data and applications APIs, experiment orchestration and applica-
tion and compute resource configuration.

Once the gateway is deployed, it is configured with specific
compute and storage resources (in this case the Jetstream elastic
virtual cluster described previously) and a local storage device.
Apache Airavata communicates with these resources via SSH keys
generated specifically through the gateway Credential Store [3].
The compute resource specification is inherited from the SciGaP
compute resource profiles.

The Distant Reader - Tool for Reading PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA

Gateway specific applications are registered using a three com-
ponent system that consists of a ’module’ that identifies the applica-
tion, a ’deployment’ that defines the access to the application on the
compute resource and an ’interface’ that provides user facing inter-
action enabler to define input parameters and other data that drives
the experiment and its execution. The gateway provides experiment
launching and monitoring panels (pages) and provides links for
outputs generated at the end of the successful execution or error
information in the case of execution failures. The gateway provides
administration API interfaces through which the management and
configurations can be achieved.

As with all SciGaP-hosted gateways, Distant Reader uses the
Apache Airavata’s identity management system, which is based
on the open source Keycloak software. Students/Researchers can
authenticate to the gateway with their existing institute logins
through CILogon [1]. Once the students/researchers create their
accounts, the gateway PI can grant access to use the Distant Reader
tool.

Gateway users (Students/Researchers) can create "experiments"
in the gateway in order to launch Distant Reader executions on Jet-
stream and view and download results from the gateway interface.
Apart from downloading data, they can also share their data with
other gateway users through Apache Airavata sharing services [5].
Figure 1 displays the basic layout of Distant Reader gateway.

5 OUTREACH
Focus group interviews were held at the University of Notre Dame
regarding the process of "distant reading", and it was through these
interviews that the Distant Reader was conceived. In May of 2019
the PI will attend SGCI’s Science Gateway Bootcamp, and during
that week long event ideas and plans regarding outreach activi-
ties will be articulated and outlined. Other outreach activities will
include hands-on workshops facilitated in libraries, mailing list an-
nouncements, and hopefully the integration of the Distant Reader
into teaching/learning activities across the Notre Dame campus.

6 FUTUREWORK
There are a number of ways the Distant Reader could be improved.
For example, the Reader’s input could be expanded to include single,
zip files of archived documents. Such would make it easier for a
student/researcher to have a greater amount of their content ana-
lyzed. Since a student’s/researcher’s scholarly interests are rather
focused, the study carrels created by each student/researcher are
probably similar in subject matter. And since each study carrel is
similarly laid out, it would be possible and meaningful to combine
multiple study carrels into single, larger study carrels. Similarly,
study carrels could be made public or shared between different stu-
dent/researcher. More importantly, interfaces ought to be created
making the process of using study carrels more efficient. Pre-staging
data from the URLs would be another options to reduce the overall
time to results and additional analysis visualization would also be
useful.

7 CONCLUSIONS
The Distant Reader science gateway functions. It successfully cre-
ates large corpora, analyzes the corpora, and saves the results in

Figure 1: The Distant Reader Gatewaywith Apache Airavata

both human-readable and computer-readable formats, and it does
all of this work at scale. In order to make the Distant Reader truly
successful, a number of things needs to be developed. First of all,
scripts need to be written which interact with the Distant Reader’s
output, thus making the output more accessible. Second, Web inter-
faces against study carrels need to be implemented to make things
even more accessible. Third, the user base needs to be increased.
We sincerely believe the Distant Reader can be used to increase the
use & understanding of large corpora. These improvements will
take the Distant Reader gateway from its current basic state to one
that can be effectively used by a larger community.

ACKNOWLEDGMENTS
This work used the Extreme Science and Engineering Discovery
Environment (XSEDE), which is supported by National Science
Foundation grant number ACI-1548562. Development of the Apache
Airavata used to develop the science gateway is supported by NSF
award #1339774.

PEARC ’19, July 28-August 1, 2019, Chicago, IL, USA Morgan and Abeysinghe, et al.

REFERENCES
[1] Jim Basney, Terry Fleury, and Jeff Gaynor. 2014. CILogon: A federated X. 509 cer-

tification authority for cyberinfrastructure logon. Concurrency and Computation:
Practice and Experience 26, 13 (2014), 2225–2239.

[2] Marcus A Christie, Anuj Bhandar, Supun Nakandala, Suresh Marru, Eroma
Abeysinghe, Sudhakar Pamidighantam, and Marlon E Pierce. 2017. Using Keycloak
for Gateway Authentication and Authorization. (2017).

[3] Thejaka Amila Kanewala, Suresh Marru, Jim Basney, and Marlon Pierce. 2014.
A credential store for multi-tenant science gateways. In Cluster, Cloud and Grid
Computing (CCGrid), 2014 14th IEEE/ACM International Symposium on. IEEE, 445–
454.

[4] SureshMarru, Lahiru Gunathilake, Chathura Herath, Patanachai Tangchaisin, Mar-
lon Pierce, Chris Mattmann, Raminder Singh, Thilina Gunarathne, Eran Chinthaka,
Ross Gardler, et al. 2011. Apache airavata: a framework for distributed applica-
tions and computational workflows. In Proceedings of the 2011 ACM workshop on
Gateway computing environments. ACM, 21–28.

[5] Supun Nakandala, Suresh Marru, Marlon Piece, Sudhakar Pamidighantam, Ken-
neth Yoshimoto, Terri Schwartz, Subhashini Sivagnanam, Amit Majumdar, and

Mark A Miller. 2017. Apache Airavata Sharing Service: A Tool for Enabling User
Collaboration in Science Gateways. In Proceedings of the Practice and Experience
in Advanced Research Computing 2017 on Sustainability, Success and Impact. ACM,
20.

[6] Marlon Pierce, Suresh Marru, Eroma Abeysinghe, Sudhakar Pamidighantam, Mar-
cus Christie, and Dimuthu Wannipurage. 2018. Supporting Science Gateways
Using Apache Airavata and SciGaP Services. In Proceedings of the Practice and
Experience on Advanced Research Computing. ACM, 99.

[7] Craig A Stewart, Timothy M Cockerill, Ian Foster, David Hancock, Nirav Merchant,
Edwin Skidmore, Daniel Stanzione, James Taylor, Steven Tuecke, George Turner,
et al. 2015. Jetstream: a self-provisioned, scalable science and engineering cloud
environment. In Proceedings of the 2015 XSEDE Conference: Scientific Advancements
Enabled by Enhanced Cyberinfrastructure. ACM, 29.

[8] Nancy Wilkins-Diehr, Sergiu Sanielevici, Jay Alameda, John Cazes, Lonnie Crosby,
Marlon Pierce, and Ralph Roskies. 2015. An overview of the XSEDE extended
collaborative support program. In International Conference on Supercomputing in
Mexico. Springer, 3–13.

	Abstract
	1 Introduction
	2 Need for Distant Reader
	3 THE DISTANT READER APPLICATION
	3.1 Distant Reader Architecture
	3.2 Study Carrel

	4 BUILDING A DISTANT READER GATEWAY
	5 Outreach
	6 Future Work
	7 Conclusions
	Acknowledgments
	References

