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II-induced renal vasoconstriction in normal Wistar-Kyoto rats

MOHAMMED H. ABDULLA1, MUNAVVAR A. SATTAR1, NOR A. ABDULLAH2, ABDUL
HYE KHAN3, KOLLA R. L. ANAND SWARUP1, HASSAAN A. RATHORE1, RAISA N. KAZI1,
FATHIHAH BASRI1 & EDWARD J. JOHNS4

1School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia, 2Department of
Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia, 3Cardiovascular Research Center,
Medical College of Wisconsin, Milwaukee, USA, and 4Department of Physiology, Aras Windle, University College Cork,
College Road, Cork, Ireland

Abstract
Background. This study examined the effect of renal sympathetic innervation on adrenergically and angiotensin II (Ang II)-
induced renal vasoconstriction in Wistar-Kyoto (WKY) rats.
Methods. Forty-eight WKY rats were treated with either losartan (10 mg/kg/day p.o.) or carvedilol (5 mg/kg/day p.o.) or a
combination of them (10 mg/kg/day + 5 mg/kg/day p.o.) for 7 days. On day 8, the rats were anaesthetized, and renal
vasoconstrictor experiments were carried out. A group of rats was subjected to acute unilateral renal denervation during the
acute study. Changes in the renal vasoconstrictor responses were determined in terms of reductions in renal blood flow caused
by Ang II, noradrenaline (NA), and methoxamine (ME).
Results. In normal animals, losartan decreased (P < 0.05) the renal vasoconstrictor response to Ang II but not to NA or ME.
Carvedilol treatment, however, blunted (P < 0.05) the renal vasoconstrictor responses to Ang II and adrenergic agonists.
Combination of losartan and carvedilol blunted (P < 0.05) the renal vasoconstrictor response to Ang II but augmented the
responses to NA andME (all P < 0.05). Interestingly, when denervated rats were treated with the same combination, there was
a reduction (P < 0.05) in the renal vasoconstrictor responses to Ang II and adrenergic agonists.
Conclusions. Data suggest that the renal sympathetic nerve contributes to adrenergic agonist-mediated renal vasoconstrictions
in normal rats. The data further indicate an interactive relationship between renin-angiotensin and sympathetic nervous
systems in modulating adrenergically and Ang II-induced renal vasoconstriction in WKY rats.
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Introduction

Angiotensin II (Ang II) has been shown to increase
vascular sensitivity to noradrenaline in rats as well as
in isolated vessels (1), hence suggesting that Ang II
and noradrenaline exert synergistic actions on vascu-
lature. It has also been reported that the blockade of
endogenous Ang II by angiotensin II receptor type 1

(AT1) blockers could alter vascular reactivity to exog-
enous noradrenaline (2).
One of the most important sites of physiological

action of Ang II is the renal vasculature, on which it
has a direct and potent vasoconstrictor action (3). It
has been reported that a certain degree of renin-
angiotensin system (RAS) activity is necessary to
optimize the release of noradrenaline from renal
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sympathetic nerve terminals (4). It has also been men-
tioned that noradrenaline released from renal sympa-
thetic nerves initiates renin release by stimulation of b1-
adrenoceptors on renin-containing juxtaglomerular
granular cells (5). The renin released subsequently
forms Ang II that exerts pre- and postsynaptic action
on Ang II receptors (4). As reported in dog, depen-
dence of the renal vasoconstrictor response to Ang II
on an intact renal innervation, indeed, suggested a role
of this peptide in catecholamine release, and it is
believed that the renal vasculature is particularly sen-
sitive to the release of catecholamine through an action
of Ang II (3). Moreover, there is evidence that the
elevated vascular noradrenaline sensitivity by Ang II
may be attributed to a decline in catecholamine clear-
ance because it has been reported that Ang II
diminishes neuronal catecholamine uptake (6).
In the present study, an effort has been made to gain

insight into the role of renal nerves on the renal
vascular responsiveness to Ang II and adrenergic ago-
nists in normotensive Wistar-Kyoto (WKY) rats. The
renal vascular tone and responsiveness were assessed
under basal conditions and in the presence of acute
stimulation with noradrenaline (NA), methoxamine
(ME), and Ang II that were infused directly into the
renal artery. Series of experiments were carried out in
rats treated with or without RAS and sympathetic
nervous system (SNS) blockers. The blockade was
caused either by pharmacological or surgical proce-
dures, and the influence of these blockades was
assessed in terms of their role in modulating adrener-
gically and Ang II-induced renal vasoconstriction.
Therefore, the hypothesis tested in this study was
that the renal haemodynamic effects of Ang II and
adrenergic agonists are influenced by the presence of
an intact renal innervation.

Methods

Animals

Experiments were conducted on age-matched male
WKY rats (n = 48) collected from Animal Care Facil-
ity, Universiti Sains Malaysia, Penang, Malaysia. Ani-
mal handling and all procedures on animals were
carried out in accordance with the guidelines of the
Animal Ethics Committee, Universiti Sains Malaysia,
Penang, Malaysia and had their approval. The animals
were fed standard rat chowwith free access to tap water
and kept on a 12-h light:12-h dark cycle. Following a
week of acclimatization, animals were randomly
assigned into eight groups, namely control (CT),
denervated (DNX), losartan (L), denervated los-
artan (DNX-L), carvedilol (CV), denervated
carvedilol (DNX-CV), losartan+carvedilol (LCV),

and denervated (losartan+carvedilol) treated (DNX-
LCV)WKY rats (all n = 6). Rats treated with carvedilol
(Dilatrend�, Roche, Basel, Switzerland) received the
drug at a dose of 5 mg/kg/day (p.o.) for 7 days (7–9).
Losartan (Cozaar�, MSD, NJ, USA) was given at an
oral dose of 10 mg/kg/day as previously mentioned
(10–13). A group of rats received losartan (10 mg/kg/
day, p.o.) along with carvedilol (5 mg/kg/day, p.o.)
(7,11). Following the 7-day treatment period, the
overnight fasted animals were subjected to renal vaso-
constrictor study.

Haemodynamic studies

Surgical procedures on rats were similar to those
described previously (14–16) with some modifica-
tions. The overnight (10–12 h) fasted rats were anaes-
thetized with 60 mg/kg (i.p.) sodium pentobarbitone
(Nembutal�, CEVA, Libourne, France). The trachea
was cannulated to facilitate respiration. The right
carotid artery was catheterized (PP50, Portex,
Kent, UK) and connected to a fluid-filled pressure
transducer (P23 ID Gould, Statham Instruments,
Nottingham, UK) linked to a computerized data
acquisition system (PowerLab�, ADInstruments,
Sydney, Australia) for continuous monitoring of
mean arterial blood pressure (MAP) and heart rate
(HR) throughout the experiment. The left jugular
vein was cannulated to infuse maintenance dose of
anaesthetic whenever needed. Subsequently, via a
ventral mid-line incision, the left kidney was exposed
followed by cannulation of the left iliac artery (PP50,
Portex, UK) for continuous infusion of normal saline
at 6 mL/h throughout the experiment. The iliac artery
cannula was advanced through the abdominal aorta
until its tapered tip faced the origin of the left renal
artery to allow optimum administration of drugs into
the renal artery (11,15–17). The renal artery was
cleared to allow placing of an electromagnetic flow
probe (EP 100 series, Carolina Medical Instruments,
King, NC, USA). The probe was connected to a
square-wave electromagnetic flow-meter (Carolina
Medical Instruments, King, NC, USA) which was
further linked to a computerized data acquisition
system (PowerLab�, ADInstruments, Sydney, Aus-
tralia). Upon completion of the surgery, the animal
was stabilized for an hour before starting the acute
renal vasoconstrictor experiment.

Acute renal denervation

Acute unilateral renal denervation of the left kidney
was performed according to previous studies (7,12,13).
The renal artery was carefully stripped off from the
surrounding covering tissues followed by cutting of the
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renal nerve and coating the remaining tissue with 10%
phenol in absolute alcohol (7,18,19). The denervation
was tested by placing a silver wire electrode to the
coeliac ganglia at which electrical stimulation (15 V, 1–
4 Hz, 0.2 ms) was applied from a stimulator for 10 s. If
there was a significant fall in renal blood flow (RBF),
more dissection and cutting of renal nerves were done
until no change in the RBF was observed during
stimulation (18,19).

Experimental protocol

Acute renal vasoconstrictor experimental protocol
involved the administration of vasoactive agents
that led to constriction of the renal artery, hence
reduction in the RBF. Bolus doses of noradrenaline
(NA) (SanofiWinthrop, Surry, UK) (25, 50, 100, and
200 ng), methoxamine (ME) (Wellcome, London,
UK) (0.5, 1, 2, and 4 mg), and angiotensin II (Ang II)
(CIBA-GEIGY, Basel, Switzerland) (2.5, 5, 10, and
20 ng) were injected in ascending and descending
orders into the intra-renal infusion line in order to
ensure their delivery into the renal artery. A series of
time control experiments were carried out to examine
any time-dependent changes in the experimental pro-
tocol. In this series of experiments, MAP and RBF
were measured in a way that matched exactly the
protocol which is used with drug administration.
The intra-renal administration of agonists was car-

ried out very carefully with a goal of producing renal
effect without causing any significant change in the
systemic blood pressure. A 10-min interval was
allowed for recovery after each agonist treatment
phase. MAP and RBF were monitored continuously
throughout the experiment; however, only the values
that were measured at the beginning of the renal
vasoconstrictor experiment with each of the agonists
(NA, ME, and Ang II) were considered as the basal

MAP and RBF values for each of the corresponding
agonists.

Statistical analysis and presentation of data

The vasoconstrictor responses caused by Ang II and
adrenergic agonists were taken as the average values
caused by each dose of the agonist administered and
applied in ascending and descending orders. The
overall mean response for each agonist was taken as
the average value of the vasoconstrictor responses
(drop in RBF) obtained at each dose. The data on
the drop of RBF were expressed as the percentage.
Drop in relation to the baseline value. All data
were expressed as mean % reduction ± SEM of
renal vasoconstrictor responses elicited by all the
doses of Ang II, NA, and ME, and compared
between CT, DNX, L, DNX-L, CV, DNX-CV,
LCV, and DNX-LCV-treated WKY rats. Data
were analysed by either two- or one-way ANOVA
followed by Bonferroni post-hoc test. The differences
between the means were considered significant at
5% level.

Results

The base-lineMAP and RBF as well as renal vascular
resistance (RVR) or HR in DNX, L, DNX-L, CV,
DNX-CV, LCV, and DNX-LCV-treated rats were
not different from CT (Table I). The MAP recorded
before and after administration of the agonists was
similar, and this trend was observed throughout the
experiment. As an example, Figure 1 illustrates
this phenomenon and shows the MAP and RBF
responses to the injection of the highest dose of
Ang II (20 ng) in rats either treated or untreated
with carvedilol.

Table I. Base-line values of body weight, mean arterial blood pressure (MAP), renal blood flow (RBF), renal vascular resistance (RVR), and
heart rate (HR) in CT, DNX, L, DNX-L, CV, DNX-CV, LCV, and DNX-LCV. All data are expressed as mean ± SEM.

Treatment n Body weight (g) MAP (mmHg) RBF (mL min-1 kg-1) RVR (mmHg min kg mL-1) HR (bpm)

CT 6 277 ± 8 110 ± 3 9.0 ± 1.0 13.4 ± 2.1 285 ± 12

DNX 6 281 ± 10 109 ± 7 10.1 ± 2.6 11.4 ± 2.2 312 ± 17

L 6 270 ± 7 110 ± 10 8.6 ± 3.1 8.9 ± 0.1 301 ± 13

DNX-L 6 278 ± 8 109 ± 9 11.8 ± 1.5 14.3 ± 4.1 299 ± 14

CV 6 288 ± 9 111 ± 4 11.6 ± 4.9 11.6 ± 4.6 258 ± 19

DNX-CV 6 290 ± 9 108 ± 8 9.8 ± 3.2 10.9 ± 3.1 300 ± 20

LCV 6 272 ± 5 115 ± 6 10.6 ± 2.5 11.4 ± 2.1 258 ± 19

DNX-LCV 6 284 ± 8 118 ± 12 11.2 ± 1.2 11.2 ± 0.7 237 ± 11

bpm = beats per minute.
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Renal vasoconstrictor responses

Noradrenaline (NA). Noradrenaline caused a dose-
dependent reduction in the RBF. The renal vas-
cular response to NA was smaller (P < 0.05) in
CV-treated rats as compared to CT (CV
14.2% ± 3.0% versus CT 32.2% ± 3.0%). Quite
in contrast, there was no change in the renal vaso-
constrictor response to NA in L or DNX-L-treated
rats compared to CT (L 34.4% ± 3.5% and DNX-
L 32.7% ± 2.4% versus CT 32.2% ± 3.0%). In rats
treated with a combination of losartan and carvedilol

(LCV), the reduction in RBF in response to NA
was greater than CT (LCV 37.3% ± 3.7% versus
CT 32.2% ± 3.0%; P < 0.05). DNX-LCV rats
had a markedly lower (P < 0.05) renal response to
NA compared to CT (DNX-LCV 16.2% ± 1.5%
versus CT 32.2% ± 3.0%) (Figure 2). Finally, CT,
DNX-L, and DNX-LCV rats had lower over-
all mean renal vasoconstrictor responses to NA
compared to DNX (CT 32.2% ± 3.0%,
DNX-L 32.7% ± 2.4%, and DNX-LCV
16.2% ± 1.5% versus DNX 39.0% ± 4.0%; all
P < 0.05) (Figure 2).
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Figure 1. Time course of the renal vasoconstrictor response to Ang II. MAP changes (top) and RBF response (bottom) following the
administration of a bolus injection (20 ng) into the renal artery. The delay of about 30 s at the beginning of the response is due to the travel time
in the cannula before reaching the renal vasculature. Stippled lines denote ± SEM, n = 5 rats.
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Methoxamine (ME). Intra-renal arterial bolus doses
of this agonist resulted in dose-dependent reduc-
tions in RBF (Figure 3). The magnitude of RBF
reduction in CV was lower than CT (CV
9.6% ± 2.4% versus CT 15.7% ± 4.1%; P < 0.05).
There was, however, no difference in the renal
response to ME between L or DNX-L, and CT
(L versus CT: 19.5% ± 3.4% versus
15.7% ± 4.1%, and DNX-L versus CT: 17.5% ±
3.1% versus 15.7% ± 4.1%). The vasoconstrictor
responses toME in LCV were greater than CT (LCV

versus CT: 22.0% ± 2.2% versus 15.7% ± 4.1%;
P < 0.05). The renal responses to ME in DNX-LCV,
however, were significantly lower than CT (DNX-
LCV versus CT: 8.7% ± 1.0% versus 15.7% ± 4.1%;
P < 0.05) (Figure 3). Further, the vasoconstrictor
response to ME in CT, DNX-L, and DNX-LCV
were lower than DNX (CT versus DNX:
15.7% ± 4.1% versus 24.7% ± 3.5%, DNX-L versus
CT: 17.5% ± 3.1% versus 24.7% ± 3.5%, and
DNX-LCV versus DNX: 8.7% ± 1.0% versus
24.7% ± 3%; all P < 0.05) (Figure 3).
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Figure 3. Renal vasoconstrictor responses to graded doses of ME in CT, DNX, L, DNX-L, CV, DNX-CV, LCV, and DNX-LCV. *P < 0.05
compared to CT. #P < 0.05 compared to DNX. Data were analysed by two-way ANOVA followed by Bonferroni post-hoc test, n = 6 rats.
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Figure 2. Renal vasoconstrictor responses to graded doses of NA in CT, DNX, L, DNX-L, CV, DNX-CV, LCV, and DNX-LCV. *P < 0.05
compared to CT. #P < 0.05 compared to DNX. Data were analysed by two-way ANOVA followed by Bonferroni post-hoc test, n = 6 rats.
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Angiotensin II (Ang II). Ang II also caused a dose-
related reduction in RBF (Figure 4). It was found that
the level of renal vasoconstriction as assessed from the
reduction of RBF was lower in L, DNX-L, and CV
compared to CT (L versus CT: 8.1% ± 0.7% versus
28.5% ± 2.3%, DNX-L versus CT: 6.7% ± 0.7%
versus 28.5% ± 2.3%, CV versus CT: 12.4% ± 1.6%
versus 28.5% ± 2.3%; all P < 0.05). A similar trend
was also observed in the LCV and DNX-LCV groups
compared to CT (LCV versus CT: 21.3% ± 2.1%
versus 28.5% ± 2.3%, and DNX-LCV versus CT:
6.1% ± 2.1% versus 28.5% ± 2.3%; all P < 0.05)
(Figure 4). Finally, DNX-L and DNX-LCV rats had
lower (P < 0.05) responses to Ang II compared to
DNX (DNX-L versus DNX: 6.7% ± 0.7% versus
31% ± 2.9%, and DNX-LCV versus DNX:
6.1% ± 2.1% versus 31% ± 2.9%; all P < 0.05)
(Figure 4).

Discussion

This study investigated the role of the renal sympa-
thetic nervous system on Ang II and adrenergic
agonist-induced vasoconstrictor responses in the
renal vasculature of WKY rats. This was done by
studying the modulation of adrenergically and Ang II-
induced renal vasoconstrictions in the presence or
absence of a blockade of RAS, SNS, or both. The
AT1-receptor blocker losartan was used to block RAS,
while carvedilol treatment as well as surgical dener-
vation were used to block the SNS. As reported

earlier, the dose of losartan used in this study has
been shown to be sufficient to inhibit Ang II action on
AT1-receptors (11). The dose of carvedilol used in
this study was based on earlier reports from others
(8,9) and from our previous study, where carvedilol
markedly blunted phenylephrine-mediated vasocon-
strictor response (11).
In the present study, we found that in WKY rats

blocking of the sympathetic innervations to the kidney
augmented the renal responses toNA andME, possibly
due to enhancement of the receptors sensitivity to the
given agonists (7,12,20), but it did not cause any sig-
nificant change in the vasoconstrictor response to
Ang II. It is suggested that the released noradrenaline
in neurons interacts with a1-adrenoceptors, and their
chronic activation in turn results in the down-
regulation of AT1-receptors (21). With this finding, it
appears that in the absence of endogenous noradrena-
line the postsynaptic AT1-receptors in the renal vascu-
lature of theWKY rats were not affected and, therefore,
mediated the vasoconstrictor action of Ang II. The
unaffected Ang II-mediated renal vasoconstriction in
the absenceof renal nerve canbe further explainedbyan
earlier finding that Ang II per se facilitates sympa-
thetic neurotransmission via prejunctionally located
AT1-receptors (22). These presynaptic effects of Ang
II are found in renal vasculature (23,24). These obser-
vations led us to suggest that in the renal vasculature
there is, indeed, a relationship between AT1 and adre-
noceptors inmediating actions ofAng II and adrenergic
stimuli.
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In the present study it was also observed that the
blocking of adrenergic receptors by carvedilol blunted
the renal vasoconstrictor action of both Ang II and
adrenergic agonists. Ang II has been shown to influ-
ence the expression of a1-adrenoceptors in rat vascu-
lar smooth muscle (25) and, hence, suggests that
indirect effects of Ang II could be mediated in part
by increased expression of a1-adrenoceptors (25).
Although studying the expression of receptors in
the renal vasculature was beyond the scope of this
study, based on the changes observed in renal blood
flow we suggest that in WKY rats blocking of a1-
adrenoceptors perhaps resulted in the reduction of
AT1-receptors sensitivity to exogenous Ang II. This
observation further indicated a possible interdepen-
dency in the actions of adrenergic stimuli and Ang II
in vascular smooth muscle and strengthens our view
of an interactive relationship between AT1 and adre-
noceptors in the renal vasculature. Collectively, these
observations indicated an interactive relationship
between RAS and SNS in these rats, and we have
earlier reported such interactive relationship between
these two systems in a rat model of essential hyper-
tension, spontaneously hypertensive rat (SHR) (7).
There was a marked attenuation in the renal vaso-

constrictor responses to Ang II in normal rats treated
with losartan. However, there was no change in the
renal vasoconstrictor responses to NA and ME, and
this indicates a weak influence of the blockade of the
postsynaptic AT1-receptors on a1-adrenoceptor-
mediated renal vascular responses in normal WKY
rats. This finding was in accord with an earlier report
demonstrating that losartan dose-dependently decre-
ased the renal vasoconstriction response to renal
sympathetic nerve stimulation but not to exogenously
administered noradrenaline (4).
This study showed that carvedilol treatment attenu-

ated the renal vasoconstrictions induced by intra-
renally administered Ang II. Indeed, this observation
indicated an adrenergic influence to the renal response
toAng II inWKYratsand is inagreementwithanearlier
study in anaesthetized rabbits (3). In line with these
observations, we suggest an interactive relationship
between postsynaptic a1-adrenoceptors and AT1-
receptors in the renal vasculature ofWKY rat, as block-
ing of the former by carvedilol influenced the sensitivity
of the latter to Ang II. Our suggestion of a possible
interactive relationshipbetweenRASandSNSis further
supported by an earlier study in human that suggested a
cross-talk between AT1- and a1-adrenoceptors, and
also showed that in the presence of an increased sym-
pathetic tone carvedilol provides AT1-receptor block-
ade via its a1-adrenoceptor-blocking effects (26).
In conclusion, this study showed that there is

an interactive relationship between AT1 and

a1-adrenoceptors in modulating renal haemodynamic
responses to Ang II and adrenergic agonists in WKY
rats. Further, we found that in WKY rats this rela-
tionship between AT1 and a1-adrenoceptors is influ-
enced by the renal nerve.
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