An in-silico Approach for Recognition of Long non-coding RNA-Associated Competing

Endogenous RNA Axes in Prostate Cancer
Mohammad Taheri, Arash Safarzadeh?, Soudeh Ghafouri-Fard®*, Aria Baniahmad®”

1. Institute of Human Genetics, Jena University Hospital, Jena, Germany.
2. Department of Medical Genetics, School of Medicine, Shahid Beheshti University of
Medical Sciences, Tehran, Iran.
Corresponding authors: Soudeh Ghafouri-Fard and Aria Baniahmad

s.ghafourifard@sbmu.ac.ir and aria.baniahmad@med.uni-jena.de

Abstract

Prostate cancer is among the most central sources of cancer-related mortalities. In order to find
novel candidates for therapeutic strategies in-this kind of cancer, we developed an in-silico method
for identification of competing endogenous' RNA network. According to the microarray data
analyses between prostate tumor and normal specimens, we attained 1312 differentially expressed
(DE)mMRNASs, including 778 down-regulated DEmMRNAS (such as CXCL13 and BMP5) and 584
up-regulated DEmMRNASs (such as OR51E2 and LUZP2), 39 DEIncRNAs, including 10 down-
regulated DEINCRNASs (such as UBXN10-AS1 and FENDRR) and 29 up-regulated DEIncRNAs
(such as PCA3 and LINC00992) and 10 DEmiIRNASs, including 2 down-regulated DEmiRNAS
(such as MIR675 and MIR1908) and 8 up-regulated DEmiRNAs (such as MIR6773 and
MIR4683). We‘constructed the ceRNA network between these transcripts. We also evaluated the
related signaling pathways and the significance of these RNAs in prediction of survival of patients
with prostate cancer. This study provides novel candidates for construction of specific treatment

routes for prostate cancer.
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Introduction

Long non-coding RNAs (IncRNAs) are a group of transcripts with sizes more than 200 nt. They
have diverse regulatory roles on expression of genes. This kind of epigenetic regulators influence
epigenetic marks mainly in the nucleus, thus affecting gene transcription (1). In addition, they can
serve as molecular sponges for microRNAs (miRNAS) (2), thus regulating expression of miRNA
targets. This mode of action leads to establishment of INcRNA/MiRNA/mRNA axes that contribute
in the several physiological processes. Dysregulation of InCRNAs can lead to several disorders
through induction of imbalances in these molecular axes. LncRNAs that act as molecular sponges
are called competitive endogenous RNAs (ceRNAS). Evaluation of the activity of ceRNA
networks has practical significance, particularly in unraveling the mechanism of carcinogenesis.
Prostate cancer as one of the most important sources of cancer-related mortalities (3), is one of the
hot topics in the field of cancer-related ceRNA networks. Forinstance, Li et al. have constructed
a prostate cancer-specific ceRNA network by incorporating INCRNA/miRNA/MRNA interactions
based on experimental and in silico methods. Their method has led to identification of 42
significant prostate cancer-survival-associated triplets which make a condensed subnetwork
consisted of only 25 nodes. The latter finding shows the involvement of some nodes in many
triplets. MIR22HG/hsa-mir-21/TGFBR2 and MIR22HG/hsa-mir-21/BCL2 triplets have been
recognized as two significantly survival associated triplets with the greatest average degree in the
detected subnetwork (4). Similarly, Guo et al. have constructed a prostate cancer-specific core
ceRNA network with the capability to be applied as diagnostic and prognostic marker in this type

of cancer (5).



The current study aimed at identification of the ceRNA network in prostate cancer using an in-
silico approach. The related signaling pathways and the significance of these RNAs in prediction

of survival of prostate cancer patients have also been evaluated.

Methods

Microarray Data Assessment

The human expression profile of GSE69223, GSE46602, and GSE55945, all with [HG-U133 Plus
2] Affymetrix Human Genome U133 Plus 2.0 Array, which contained 30, 50, and 21 specimens,
respectively, were obtained using the Gene Expression Omnibus (GEO;
http://www.ncbi.nIm.nih.gov/geo/). We chose 15 prostate tumor and 15 normal tissue specimens
from GSE69223, 36 prostate tumor samples from GSE46602 and 13 prostate tumor samples from
GSEbL5945 for additional analyses. This data contained IncRNAs, miRNAs and mRNAs

expression profile.

Data processing, meta-analysis and evaluation of data quality

The statistical programming language R was used to analyse and combine all of the microarray
data. Data from Affymetrix and Agilent was initially normalized individually for pre-processing
using the preprocessCore package's normalizeQuantiles function (version 1.58.0).
(https://bioconductor.org/packages/release/bioc/html/preprocessCore.html). With the purpose of
exclusion of batch effects (non-biological differences), we used the ComBat function from the R
Package Surrogate Variable Analysis (SVA) (version 3.44.0) (6). Batch effect removal was then

evaluated. We showed the result of the meta-analysis in a unit expression matrix.

Assessment of differentially expressed transcripts



We used the Limma package (version 3.52.3) (7) in R language to find differentially expressed
MRNAs (DEmRNAS), IncRNAs (DEIncRNAs) and miRNAs (DEmiRNAS) between prostate
tumor and normal specimens. DEmRNASs, DEINcRNAs and DEmiRNAs were appraised with the
cut-off criteria of false discovery rate (FDR; adjusted p value) < 0.05 and |log2 fold Change (FC)|

> 0.5. Subsequently, we identified DEIncRNAs and DEmiRNAs using HUGO gene nomenclature.

Two-Way Clustering of DEGs

Expression levels of significant DEmRNAS, DEIncRNAs, and DEmiRNAs were obtained and
used in the pheatmap package (version 1.0.12) (8) in R language to conduct the two-way clustering

based on the Euclidean distance.

Gene Ontology (GO) Enrichment

ClusterProfiler R package (version 4.4.4) (9) was applied to conduct gene ontology (GO)
enrichment and investigation of the functions of the significantly up-regulated and down-regulated

DEGs. The functional category criteria were established at an adjusted p-value<0.05.

KEGG Pathway Analysis

KEGG pathway analysis of considerably DEGs was performed using the KEGG database (10).

PPI Network Construction

PPI network for DEGs was identified using the STRING database (11). Highest level of confidence
was utilized to create the interactions parameter (confidence score >0.9). Protein interactions were
visualized using the Cytoscape software v3.9 (12). The top 20 DEGs related to hub genes were

lastly detected using the Cytohubba plugin (13) of Cytoscape using the betweenness method.

ceRNA Network and Hub Genes



A ceRNA network was constructed through these steps: 1) Searching the miR2Disease database
(http://watson.compbio.iupui.edu:8080/miR2Disease/index.jsp) (14) utilizing the term "prostate
cancer" for the prostate cancer (PC)-related miRNAs. 2) measuring the interactions between
IncRNAs and miRNAs based on the PC-related miRNAs using miRcode (http://www.mircode.
org/); 2) Application of miRDB (http://www.mirdb. org/) (15), miRTarBase

(https://mirtarbase.cuhk.edu.cn/) (16), TargetScan (http://www.targetscan.org/) (17) and

miRWalk (http://129.206.7.150/) (18) for predicting miRNAs-targeted mRNAs; 3) Discovery of
the intersections of the DEIncRNAs and DEmRNAs, and formation of INCRNA/MRNA/mMiRNA
ceRNA network using Cytoscape v3.9 and 4) predicting hub genes using cytohubba plugin based

on degree approach.

Confirmation of hub genes via expression values

Expression value of hub genes was evaluated using the ualcan database (19).
Survival analysis

Survival package (version 3.5.0) (https://CRAN.R-project.org/package=survival) in R was utilized

to find survival curves. The clinical data for patients with prostate cancer was obtained from TCGA
(PRAD-TCGA). Univariate survival analysis was performed using Kaplan-Meier curves. Statistics
were considered significant for P-value<0.05. The start time to the end time in this analysis is from

0 to 5000 days.

Results

Microarray Data Processing
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Figure 1 depicts the boxplots of raw data, normalized data after batch effect removal and quantile
normalization. These plots show the reliability of the quality of the expression data. Moreover, the
boxplot of the preprocessed data had good normalization. Figure 2 shows the Euclidean distances
between the samples after batch effect removal. In the PCA plot (Figure 3), 101 specimens are
shown in the 2D plane traversed by their first two principal components (PC1 and PC2) According

to this plot, the samples had a good dispersion following removal of batch effect.
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Figure 1. Boxplots after combining datasets. A) First box plot shows the combination of datasets

B) The second boxplot shows the merged datasets after removing the batch effect removal.
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Figure 3. PCA plot. The Batch implies that the data includes three platforms. Also, healthy benign and

tumor samples were divided into three groups.
DEGs Analysis

Based on the microarray data analysis between prostate tumor and normal samples by Limma, we
analyzed differentially expressed mRNA, IncRNA and miRNAs and obtained 1312 DEmMRNAs,
including 778 downregulated DEmMRNAs (such as CXCL13 and BMP5) and 584 upregulated
DEmMRNAs (such as OR51E2 and LUZP2), 39 DEIncRNAs, including 10 downregulated
DEIncRNAs (such as UBXN10-AS1 and FENDRR) and 29 upregulated DEIncRNAs (such as
PCA3 and LINC00992) and 10 DEmiRNAs, including 2 downregulated DEmiRNAs (such as
MIR675 and MIR1908) and 8 upregulated DEmiRNAS (such as MIR6773 and MIR4683). The
most significantly upregulated and downregulated DEmRNAs, DEIncRNAs, and DEmiRNAs are

shown in Tables 1-3, respectively.



Table 1. The top 10 up- and downregulated DEmMRNASs between prostate tumor and normal

samples.
Down-regulated Up-regulated
DEmMRNA Log FC Adjusted P value DEmRNA Log FC Adjusted P value
CXCL13 -2.914284 0.0001 ORS1E2 2.410149 0.002
BMPS -2.549856 0.0002 LUZP2 2.205251 0.0005
WIF1 -2.453527 0.0001 HOXC6 2.178773 0.0001
NELL2 -2.383551 0.00003 HPN 2.004699 0:000000002
SLC14A1 -2.214827 0.00004 C150rf48 1.984213 0.01
DAPL1 -2.038041 0.002 TRPM4 1.971099 0.0000005
KRT23 -2.011459 0.00004 B3GAT1 1.834909 0.0002
LGR6 -1.843800 0.00001 PRCATA47 1.807160 0.01
CFD -1.792887 0.00002 THBS4 1.804980 0.0001
PTGS1 -1.750086 0.00001 DLX1 1.804387 0.0001

Table 2. The up-

and downregulated DEINCRNAS between prostate tumor and normal samples.

Down-regulated

Up-regulated

DEINncRNA Log FC Adjusted P value | DEIncRNA Log FC Adjusted P value
UBXN10-AS1 -1.085041069 | 0.0002 PCA3 2.194085974 0.001
FENDRR -1.001246896 | 0.0002 LINC00992 2.131068688 0.00008
MAGI2-AS3 -0.951283196 | 0.00003 C1QTNF3-AMACR  |2.129359564 0.0001
MAGI2-1T1 -0.877464251 | 0.0002 PCAT18 1.444563038 0.03
BOLAS3-AS1 -0.818242331 | 0.00004 ERVH48-1 1.384998066 0.02
ADAMTS9-AS2 | -0.79674974 0.00003 DRAIC 1.351053821 0.006
HCG11 -0.765278673 | 0.0001 FOXP4-AS1 1.343377023 0.0009
TBX5-AS1 -0.74698408 0.00001 LINC00842 1.213140476 0.004
RBMS3-AS3 -0.714422829 | 0.0001 LINC00920 1.030649901 0.04
MEG3 -0.707122105 | 0.0002 DANCR 1.026630806 0.0005
PRRT3-AS1 0.916404009 0.03
SNHG19 0.900564908 0.0001
PCAT7 0.827071849 0.02
C8orf34-AS1 0.824415749 0.01
CRNDE 0.733537617 0.01
SNHG9 0.711240397 0.04
LINCO01351 0.708756468 0.03
ENO1-AS1 0.689974397 0.01
ZNF793-AS1 0.68123815 0.009
MCF2L-AS1 0.645850215 0.007
PRKAG2-AS1 0.640111087 0.02
PCAT6 0.622871409 0.02
POU6F2-AS2 0.618162182 0.03
LINC00862 0.596493068 0.02
RPARP-AS1 0.595574259 0.004
LEF1-AS1 0.592353189 0.02
LINC00665 0.538956003 0.002
LINC00973 0.520799038 0.02




LINCO01128

0.507755709

0.005

Table 3. The significantly up- and downregulated DEmiRNAS between prostate tumor and normal

samples.

Down-regulated Up-regulated

DEmMiRNA Log FC Adjusted P value DEmiRNA Log FC Adjusted P value

MIR675 -1.461212788 | 0.003 MIR6773 1.110887917 0.0000363

MIR1908 -0.809060479 | 0.005 MIR4683 0.903634366 0.0003
MIR7110 0.875949754 0.001
MIR3658 0.746514424 0.0001
MIR3185 0.670389146 0.01
MIR6824 0.617549387 0.02
MIR4647 0.599044810 0.004
MIR4784 0.549181183 0.01

Volcano plot was depicted with the EnhancedVolcano package (version 1.14.0) (20) in R to

compare the variation in miRNA, IncRNA, and mRNA expression between prostate tumor and

normal samples (Figure 4). Moreover, the two-way clustering showed 20 clearly distinct

DEmMRNA expression patterns between prostate tumor and normal samples (Figure 5a). The

expression of DEINcCRNAs and DEmiRNAs is demonstrated in two heatmaps (Figure 5b).
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Figure 4. The volcano plot of differentially expressed genes (DEGS); horizontal axis, log2(FC);

vertical axis, -logio(adjusted P value).
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The significantly up- and downregulated DEIncRNAs
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Figure 5. A. The two-way clustering of DEmMRNASs between prostate tumor samples and normal
samples; horizontal axis, the samples; vertical axis, DEmRNAs. B. Two heatmaps depicting

expression of DEINCRNAs and DEmiRNAs.
GO Enrichment Analysis of DEGs

The substantially DEGs were enriched in 497 GO terms. Clusterprofiler package was used for
analysis. For performing this analysis, the all genes listed in the database in clusterProfiler pack-
age have been used as background. In GO functional enrichment analysis, 497 GO entries fulfil
Adjusted P value<0.05, the majority of which are biological processes, followed by cellular

component and molecular function. The first 30 entries are collagen-containing extracellular



matrix (CC), extracellular matrix structural constituent (MF), extracellular matrix organization
(BP), extracellular structure organization (BP), cell-cell junction (CC), basement membrane (CC),
cell junction assembly (BP), cell-substrate adhesion (BP), collagen trimer (CC), sarcolemma (CC),
muscle contraction (BP), muscle system process (BP), urogenital system development (BP),
morphogenesis of a branching structure (BP), | band (CC), endoplasmic reticulum lumen (CC),
extracellular matrix structural constituent conferring tensile strength (MF), contractile fiber (CC),
regulation of cell-substrate adhesion (BP), Z disc (CC), mesenchyme development (BP),
mesenchymal cell differentiation (BP), respiratory tube development (BP), myofibril (CC),
membrane raft (CC), membrane microdomain (CC), gland morphogenesis (BP), renal system
development (BP), glycosaminoglycan binding (MF) and sarcomere (CC). Figure 6 shows the

barplots of top 10 enriched functions.
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Figures 7 and 8 (supplementary file) show the dotplots of top 10 enriched functions and enriched

GO induced graph, respectively.
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Figure 9 indicates the gene-concept network of top 5 GO terms (Cell-substrate adhesion, cell
junction assembly, extracellular matrix organization, extracellular structure organization and

muscle contraction).

Gene-Concept Network for GO Enrichment Analysis
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Figure 9. Network plot of top 5 GO terms.

GO terms are linked with genes. There are more genes

for a specific GO term if the dot relating to it is bigger.

In figure 10, the UpSet plot visualized the intersection between top 10 GO terms. It highlights the

gene overlap between several gene sets.



Upsetplot for GO Enrichment
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Pathway Analysis

Using Pathview (version 1.36.1) (21) and gage (version 2.46.1) (22) packages in R, KEGG

pathway analyses of 177 down-regulated and 177 up-regulated DEGs were performed to identify

the potential functional genes (Table 4 and Figure 11). Figure 10 shows the schematic visualization

of 3 pathways (1 up-regulated and 2 down-regulated pathways).

Table 4. Down-regulated and Up-regulated Pathways

Down-regulated

Up-regulated

Pathway P value Pathway P value
Focal adhesion 0.007574712 Purine metabolism 0.04602828
Protein digestion and absorption 0.014154194

Vascular smooth muscle contraction 0.023808509

ECM-receptor interaction 0.031880880
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Figure 11. Visualization of pathways. Green boxes are downregulated genes and red boxes are

upregulated genes.
PPI network construction and selection of hub genes

In order to find the hub genes, a PPI network of DEGs (supplementary file) with 411 nodes and
555 edges that was acquired from STRING was loaded into the Cytohubba plugin of Cytoscape
3.9. The 20 hub genes with the highest betweenness of connectivity were EGF, PRKCA, FLNA,
CAV1, RGS9, RGS2, CD3EAP, RRM2, ITGA1L, PPP1R12B, SDC2; MLC1, PRKG1, BIRCS5,

P4HB, FGFR2, POLR2H, VCL, PIK3R1 and RGS17.

Figure 12. 20 hub genes with the highest betweenness of connectivity.

ceRNA network construction in prostate cancer



LncRNAs can act as an endogenous "'sponge” to regulate the expression of mMRNA by adsorbing
miRNA, according to the ceRNA theory (23). The INcRNA-miIRNA-mRNA ceRNA network was
built using upregulated or down-regulated miRNAs, as well as IncRNAs or mRNAs (24).
DEIncRNAs and DEmiRNAs networks did not interact in our research. We utilized the
miR2Disease database as a result. In miR2disease, we chose miRNAs that changed in prostate
tumor tissues compared to adjacent normal tissue samples, both up- and down-regulating. We
discovered 14 PC-related miRNAs using the miR2Disease database. The relationship between
IncRNAs and miRNAs was then evaluated using miRcode. This step showed that 13 of 14 PC-
specific mMiRNAs may target to the 13 of 39 DEIncRNAs (Table 5). Then we used miRDB,
miRTarBase, TargetScan and miRWalk to predict targeted mRNAs by these 13 miRNAs to
discover the relationship between miRNAs and mRNAs. We found that 10 miRNAs might target
24 out of the 1312 mRNAs (Table 6). If miRNA-targeted mRNAs were not found in DEmRNAs,
they were eliminated. Using this information (Table 5 and 6), we used Cytoscape 3.9 to construct
the INcCRNA-miRNA-mRNA ceRNA network. Once the targeted DEmMRNASs and DEIncCRNAS'
expression patterns were reversed, DEINCRNAS, targeted DEmMRNAS, and the interacting miRNAs
were all eliminated from the ceRNA network. A total of 8 InCRNAs, 4 mRNAs, and 3 miRNAS
were in-cluded in the ceRNA network (Figure 13). At last, we computed nodes degrees and
displayed the top 7 nodes with the highest degree in the network using cytohubba app (Figure 14).
We found ENO1-AS1, hsa-miR-182, hsa-miR-125b-5p, hsa-miR-145, MEG3, FOXF2 and MYO6

as 7 hub genes in ceRNA network.

Table 5. The MiRcode database demonstrated interactions between 13 DEIncRNAs and 13

DEmiRNAs.

' INcRNA . miRNA |




PCAS3, ERVH48-1, ADAMTS9-AS2, RBMS3-AS3, MEG3 miR-96
PCAS3, ERVH48-1, ADAMTS9-AS2, BOLA3-AS1, RBMS3-AS3, MEG3 miR-182
PCA3, CRNDE, ADAMTS9-AS2, MEG3 miR-221
PCA3, CRNDE, ADAMTS9-AS2, MEG3 miR-222
MCF2L-AS1, CRNDE, ADAMTS9-AS2, HCG11, MEG3 miR-205
ENO1-AS1, CRNDE, ERVH48-1, MAGI2-AS3, ADAMTS9-AS2, MEG3 miR-145
CRNDE, SNHG9, MAGI2-AS3, ADAMTS9-AS2, HCG11, MEG3 miR-31
CRNDE, ERVH48-1, MAGI2-AS3, ADAMTS9-AS2, HCG11, MEG3 miR-181b
CRNDE, ADAMTS9-AS2 miR-183
ERVH48-1, SNHG9, ADAMTS9-AS2, BOLA3-AS1, MEG3 miR-184
POUGF2-AS2, ADAMTS9-AS2, miR-375
POUG6F2-AS2, MEG3 miR-125b-5p
MAGI2-AS3, MEG3 miR-16

Table 6. miRWalk, miRDB and TargetScan databases revealed interactions between 10

DEmMiRNAs and 24 DEmRNAs.

MiRNA MRNA

miR-96 TP53INP1, NIPA1
miR-182 FOXE2
miR-221 TRPS1, KIT
miR-222 STOX2, TRPS1
miR-205 LRRK2
miR-145 ADD3, TGFB2, MYO6
miR-31 SPRED1
miR-181b KLHL15, PLPP3, PLAG1
miR-16 RAB9B, GALNT7, PSAT1, TGFBR3, PDLIM5, SLC9A6
miR-125b-5p MFSD9, STOX2, HK2




Figure 13. CeRNA network in prostate cancer. Red nodes mean a strong expression level, while
blue nodes signify a low level of expression. Ellipses show protein-coding genes; rectangles show

miRNAs; Triangles show IncRNAs; gray edges designate INcRNA-miRNA-mRNA interaction.
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Figure 14. Top 7 genes with highest degree in ceRNA network.

We performed gene ontology enrichment analysis of the target genes in the PPI1 and ceRNA net-

works. The final result of this analysis is showasin, the form of bar plot and dot plot in Figure 15.
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Figure 15. Gene ontology enrichment analysis of the target genes in the networks. Barplot and

dotplot indicate top functional terms related to hub genes.



Confirmation of hub genes via expression value

The expression value of hub genes was evaluated using the ualcan database. As a result, all hub
genes in PPl network and MIR182 in ceRNA network indicated good statistical significance

(Figure 16 and Table 7).

Table 7. Statistical significance of hub genes based on sample types in prostate cancer.

Hub genes Statistical significance of expression value
POLR2H <1E-12
CAV1 2.23E-08
ITGAL1 4.22E-05
PIK3R1 3.79E-10
RGS9 5.79E-05
SDC2 1.25E-04
P4HB <1E-12
PPP1R12B 1.13E-06
RRM2 2.32E-07
PRKCA 2.07E-06
VCL 7.55E-07
BIRC5 7.23E-11
CD3EAP 4.68E-08
PRKG1 4.22E-06
FLNA 3.27E-07
MLC1 1.03E-04
RGS2 3.40E-04
EGF 4.02E-13
RGS17 9.88E-05
FGFR2 <1E-12
MIR182 <1E-12
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Figure 16. Box plots of gene expression of hub genes in prostate tumor and healthy samples based
on TCGA. Red and green boxes show gene expression of hub genes in prostate tumor and healthy

samples, respectively.
Survival analysis

For survival analysis, we downloaded and analyzed transcriptome profiling of prostate cancer
samples (TCGA-PRAD) using TCGADbiolinks (version 2.24.3) (25) and edgeR (version 3.38.4)
(26) packages. Survival was analyzed based on Kaplan-Meier curves using survival package in R.
We performed survival analysis based on hub genes in PPl and ceRNA networks. The difference
was statistically significant with log-rank P <0.05. RRM2 and MY O6 showed a strong correlation

with a reduced overall survival time in individuals with prostate cancer (Figure 17).
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Figure 17. RRM2 and MYO6 Kaplan-Meier survival curves is related to patients with prostate

cancer's overall survival.

Discussion

ceRNA networks have been found to participate in the pathoetiology of several cancers, including
prostate cancer: Unraveling the interactions between constituents of these networks can facilitate
identification of the most relevant cancer-specific pathogenic events. The current study aimed at

construction of ceRNA network in prostate cancer.



We obtained 1312 DEmRNAS, including 778 downregulated DEmRNAs (such as CXCL13 and
BMP5) and 584 upregulated DEmRNAs (such as OR51E2 and LUZP2). BMP5 has been
previously shown to be an important regulator of basal prostate stem cell homeostasis being
involved in the initiation of prostate cancer (27). In addition, CXCL13 is an androgen-responsive
gene participating in the androgen-regulated migration and invasion of prostate cancer cells (28).
On the other hand, OR51E2 has been shown to inhibit proliferation and induce prostate cancer cell
death (29). LUZP2 has been previously reported to be over-expressed in hormone-naive prostate
cancer but its expression has been decreased in the course of evolution of hormone-naive prostate

cancer to castration-resistant ones (30).

Moreover, we found 39 DEIncRNAs, including 10 down-regulated DEINCRNAs (such as
UBXN10-AS1 and FENDRR) and 29 up-regulated DEIncRNAs (such as PCA3 and LINC00992)
and 10 DEmiRNAs, including 2 down-regulated DEmiRNAS (such as MIR675 and MIR1908) and
8 up-regulated DEmMiRNAs (such as MIR6773 and MIR4683). PCA3 has been shown to regulate

important pathways and targets and contribute in the development of prostate cancer (31).

We constructed the ceRNA network between these transcripts. A total of 13 INCRNAs, 24 mRNA:s,
and 13 miRNAs were included in the ceRNA network. Dysregulated pathways included focal
adhesion, protein digestion and absorption, vascular smooth muscle contraction, ECM-receptor
interaction, complement-and coagulation cascades and purine metabolism. Dysregulation of focal
adhesion is an important step in tumorigenesis leading to metastasis. In line with this, the smooth
muscle contraction with myosin is known to regulate the redistribution of actin-controlled factors
during call migration. Also, extracellular matrix (ECM) and ECM-receptor plays an important role
in the cell-cell contact. Changes and plasticity of ECM is suggested to control progression and

invasion potential of prostate cancer cells (Luthold et al., 2022). Moreover, oncogenic activity of



the complement cascade has been suggested to play a role in facilitating cancer cell proliferation
and dysregulation of mitogenic pathways (Rutkowski et al., 2010). The biosynthesis of purines, as
a basic component of nucleic acids, is linked to prostate cancer progression by providing the
increased need accompanied with increased growth rate and proliferation of cancer cells
(Khalafalla et al., 2022, BBA review). The purine metabolism by purinosome is a multi-enzyme
complex located around mitochondria and microtubules. Purinosome has been emphasized for its
therapeutic potential in cancers (Yin et al., 2018; Frontiers Immunology). These analyses point

towards a novel identified ceRNA network of metastatic potential in/prostate cancer.

Thus, several important cancer-related pathways linked to each other are modulated by the

identified ceRNA networks in the current study.

We also evaluated the significance of these RNAsin the determination of survival of patients with
prostate cancer. Among the dysregulated genes, RRM2 showed a strong correlation with a reduced
overall survival time in individuals‘with prostate cancer. RRM2 codes one of two subunits of
ribonucleotide reductase. This enzyme facilitates conversion of ribonucleotides to
deoxyribonucleotides. Expression of the encoded protein by this gene is controlled during the
progression of cell-cycle. This protein is up-regulated in several cancers and is involved in the
gemcitabine metabolism. Thus, RRM2 has been suggested as a marker for chemotherapy response
and prognosis. It’s up-regulation can facilitate DNA damage repair and affect activity of signaling
cascades(32). Future studies are needed to find the underlying mechanism of participation of this

gene in the course of prostate cancer.

This study provides novel candidates for design of specific treatment modalities for prostate cancer
and broadens the current insight about the role of non-coding RNAs in the pathogenesis of prostate

cancer.
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