
TD The Journal for Transdisciplinary Research in Southern Africa, 11(1) July 2015, pp. 133-147.

The role of metacognitive skills in solving object-oriented
programming problems: a case study

M HAVENGA1

Abstract
This article reports on the role of metacognitive skills when solving object-oriented
programming problems as part of a case study. The research was constructivist-based
within an interpretivist approach to explore how four students constructed their own
thinking when solving programming problems. A qualitative methodology was
employed. Both concept-driven coding and data-driven coding were applied. Two main
issues emerged from the findings. Participating students had fragmented knowledge of
the object-oriented approach and shortcomings regarding the implementation thereof,
and they experienced problems with metacognitive control during all the steps of
program development. Based on the findings the use of metacognitive critical control
points (MCCPs) is proposed to be used as a mechanism to facilitate students in their
programming efforts and to prevent loss of control during program development.
Keywords: Metacognition, problem solving, programming, thinking processes
Disciplines Computer Science, Education, Psychology

1. Introduction
This article reports on the transdisciplinary field of research by transcending the disciplinary
borders of Computer Science, Education and Psychology. It shares the idea of integrating
concepts and approaches from several disciplines to solve problems that cannot be dealt with
in a singular discipline (Kroeze & Van Zyl, 2014, p. 3). The objective was to explore the role
of metacognitive skills when students were solving object-oriented programming problems in
a Computer Science course.
Metacognition refers to knowledge about our own thinking and cognitive phenomena (Flavell,
1979, p. 906), and has the ability to achieve deep and significant learning (Garrison & Akyol,
2015, p. 66). Metacognition involves the ability to think about our own mental activities,
tasks and strategies, implement processes to direct and support cognitive thinking, and reflect
on all actions performed, with the aim to enhance deep and significant learning (Flavell,
1979, p. 909; Sternberg & Sternberg, 2012, p. 234). Metacognitive thinking occurs as a
cascade of related mental activities. It involves explicit planning, active control and critical
evaluation of one’s own cognitive processes, such as our own thoughts that engage in learning
(Bergin, Reilly & Traynor, 2005, p. 82; Sternberg & Sternberg, 2012, p. 234; Titus &
Annaraja, 2011, p. 14). Metacognition has two distinctive foci, namely metacognitive
knowledge and metacognitive control of learning experiences (Flavell, 1979, p. 907-909;
Miller & Geraci, 2011, p. 303). According to Titus and Annaraja (2011, p.15),
metacognitive ability has a critical role in students’ successful learning, especially in mental
activities such as reasoning, comprehension and problem solving.

1 . Dr. Marietjie Havenga, School for Natural Science and Technology Education, Faculty of

Education Sciences, North-West University (Potchefstroom campus). Email:
marietjie.havenga@nwu.ac.za

Havenga

 134

In addition, the use of metacognitive skills plays an important role in solving computer
programming problems (Parham, Gugerty & Stevenson, 2010, p. 416); however, not much
research has been done in this regard. Shaft (1995, p. 25-26) studied the use of
metacognitive skills in program comprehension where professionals used the programming
language COBOL. His research indicated that the use of metacognitive skills influences how
well programmers understand a program. Shaft (1995, p. 25) asserts that programmers
require the development of specific metacognitive heuristics to support them in
comprehending programming tasks. Bergin et al. (2005, p. 82, 85) support Shaft’s findings
that students who performed well in introductory object-oriented programming, used more
metacognitive strategies, such as planning, monitoring and regulation, than lower-performing
students. Since the nature of object-oriented programming involves high-order thinking
skills, such as reasoning, problem solving and abstract thinking, the use of metacognitive
skills may support students in this regard. Consequently, the aim of the research reported
here was to explore the role of metacognitive skills when students are solving object-oriented
programming problems with reference to various steps involved in program development.
The main research question was: What is the role of metacognitive skills when solving
object-oriented programming problems in a Computer Science course?
The rest of the article is structured as follows: in Section 2, an overview is given of the
conceptual-theoretical framework on which the empirical investigation was based. Section 3
is devoted to the empirical investigation and Section 4 to the results obtained. Section 5
discusses the findings.

2. Conceptual-theoretical framework
2.1 Metacognitive skills
Metacognition involves numerous skills that are fundamental in assisting students to manage
their own understanding, thinking and learning (Falkner, Vivian & Falkner, 2014, p. 291;
Garrison & Akyol, 2015, p. 66). The aim of metacognition is to direct students’ thinking in
such a way that they effectively control their mental activities especially when addressing real-
life problems and complex tasks. A distinction is made between metacognitive knowledge
and metacognitive control of experiences (Flavell, 1979, p. 907-909; Miller & Geraci, 2011,
p. 303). Metacognitive knowledge involves knowledge of a person, knowledge of a task and
knowledge of distinctive strategies to complete a task successfully (Flavell, 1979, p. 907),
while metacognitive control refers to managerial processes to plan, monitor, reflect on and
evaluate activities such as problem solving and critical thinking (Sternberg & Sternberg,
2012, p. 21; Titus & Annaraja, 2011, p. 14). Since the focus of the current study was mainly
on metacognitive control, each of the managerial processes is outlined in more detail below.
Planning is associated with goal setting, reading of text and analysing of tasks to support
understanding (Bergin et al., 2005, p. 82). Monitoring involves an individual’s awareness of
his/her state of cognitive activity, the skill to consider all detailed activities involved (e.g.
problem solving), and the ability to assess his/her progress (Bergin et al., 2005, p. 85; Fletcher
& Carruthers, 2012, p. 1366). Reflection as part of metacognition concerns that learners
should reflect in action (while doing a task) and on action (after completing a task) (Schön,
1983). Lastly, evaluation is a metacognitive skill that determines the efficiency at which the
task was performed, what students had to learn from the task, and whether the main goals
had been achieved (Breed, Mentz & Van der Westhuizen, 2014, p. 53; Garrison & Akyol,
2015, p. 67).

Metacognitive skills in solving object-oriented programming problems

 Td 11(1), July 2015, pp. 133-147.

135

The use of metacognitive skills is thus an endeavour undertaken to challenge one’s own
thinking, to monitor one’s progress accurately, and to determine whether the aims had been
accomplished. Metacognition is therefore a catalyst for change in cognitive thinking and
behaviour to enhance meaningful and deep learning.
2.2 Application of metacognition in real-life problems
The importance of applying metacognitive skills as part of problem solving is emphasised by
referring to two real-life examples. In industry, the application of metacognitive skills plays a
significant role in food production, for example. Food safety requires strict specifications to
manage possible hazards. To ensure food safety and trust of consumers, the hazard analysis
critical control point system (HACCP) was developed with the aim to provide rigorous
actions in identifying and preventing hazards that may occur in food production (Psomas &
Kafetzopoulos, 2015, p.134). HACCP involves seven principles namely 1) conduct of hazard
analysis, 2) identify critical control points, 3) establish critical limits for each critical control
point, 4) establish critical control point monitoring requirements, 5) establish corrective
actions, 6) establish procedures for ensuring the HACCP system is working as intended, and
7) establish record keeping procedures (Psomas & Kafetzopoulos, 2015, p. 134-135).
Another real-life problem is found where an air traffic controller needs to respond
simultaneously to various inputs regarding aircraft to direct the controlling thereof. Solving
real-life problems, such as those occurring during air traffic control, requires metacognitive
factors (planning, monitoring, reflection, evaluation) to direct the reorganisation, priorities
and management of air space as well as future aircraft movement and positions (Loft,
Sanderson, Neal & Mooij, 2007, p. 390).
2.3 Metacognitive scaffolding of programming problems
Since the teaching of programming does not involve teaching a programming language only
(Caruso, Hill, VanDeGrift & Simon, 2011, p. 498), additional skills are required to address
misconceptions, increase students’ understanding, address gaps in their knowledge, and to
enable students in managing their own cognitive processes (Holliday, 2011, p. 2; Nussbaum,
2012, p. 116, 117; Parham et al., 2010, p. 416). Metacognitive scaffolding is therefore
required during all steps of program development, such as understanding, planning and
design, coding and testing. Each of these steps is outlined below.
Understanding results from rereading text, monitoring the reading activity and integrating
knowledge structures into human memory to enable the processing and storage of
information (Coiro, 2011, p. 108, 109; Gobet, Chassy & Bilalic, 2011,
p. 187; Holliday, 2011, p. 2). Underlining of text, asking questions and addressing
misconceptions may further support understanding of problems (Lee, Lim & Grabowski,
2010, p. 630; Nussbaum, 2012, p. 116).
Planning of solutions includes setting of goals, activating prior knowledge, breaking down a
complex problem into manageable sections and consulting a strategy for problem solving
(Bergin et al., 2005, p. 82; Sternberg & Sternberg, 2012, p. 448). In addition, the creation of
hierarchies and concept mapping (Lee et al., 2010, p. 630) may support the design of object-
oriented programs.
Program comprehension is part of program development, and is related to the understanding
of programming code (Schulte, Clear, Taherkhani, Busjahn & Paterson, 2010, p. 65, 66).
The purpose of program comprehension is to explore programmers’ thinking processes when
developing a computer program (Détienne, 1995, p. 164-166; Pennington, Lee & Rehder,

Havenga

 136

1995, p. 198-199). In this regard, the use of visualisation techniques, tools and debugging
skills (Storey, 2006, p.187, 202) can be seen as metacognitive initiatives to support the
understanding of computer programs. The interpretation of various solutions may further
support program comprehension (Lee et al., 2010, p. 630). Metacognitive support is also
required when developing test cases, determining program efficiency and assessing whether
the goals had been achieved (Breed et al., 2014, p. 53; Caruso et al., 2011, p. 495).
In addition to the mentioned skills, the use of heuristics (mental shortcuts that lighten the
cognitive load of making decisions) (Sternberg & Sternberg, 2012, p. 445) may further
support students when solving problems, for example applying means-ends analysis (the
problem solver analyses the problem with the final result in mind), working forward (to solve
a problem from start to finish), and working backward (Sternberg & Sternberg, 2012, p. 493)
(starting at the end and working backward, e.g. to determine whether the solution addressed
all the programming requirements).
2.4 Object-oriented programming
When writing programs, students need to understand the programming approach (e.g. the
object-oriented approach) they are using as this approach affects the way in which a program
is written. The main building blocks of the object-oriented approach are ‘objects’ and ‘classes’.
An object comprises encapsulated data (e.g. balance = 1000) and methods (e.g. getBalance()),
that determine program behaviour (Farrell, 2008, p. 6; Satzinger, Jackson & Burd, 2004, p.
175). An object is based on a class for example a client is an object of the Bank class. Since
novices experience limited understanding of the object-oriented (OO) approach (Ginat &
Shmallo, 2013, p. 345; Sajaniemi, Kuittinen & Tikansalo, 2007, p. 2), students should be
supported in this regard by applying, among others, metacognitive thinking. Havenga (2011,
p. 96) is of the opinion that the more complex a programming problem is, the greater the
need for metacognitive control, purposeful reflection and positive feedback.
To summarise this section, an overview was given regarding metacognitive thinking skills, the
application thereof in real-life problems as well as metacognition’s specific role in supporting
object-oriented programming tasks. Consequently, the empirical research as described in the
next section explored the role of metacognitive skills when students were solving object-
oriented programming problems in a Computer Science course.

3. Empirical investigation
This section discusses the empirical research. The investigation was constructivist-based
within an interpretivist approach (Hadjerrouit, 2005, p. 168,169; Kroeze, 2012, p. 9; Üredi,
2014, p. 228) to gain a deep understanding of the participants’ metacognitive activities and
programming experiences where they were actively involved in developing their own object-
oriented programs. The aim was firstly to teach students metacognitive and problem-solving
guidelines (Section 3.3.2) to support their thinking processes during programming and
secondly to evaluate and gain an understanding how participants have implemented these
mentioned guidelines as part of OOP.
3.1 Research design
A case study design (Gill, 2011, p. 10, 11) was employed to explore the role of metacognitive
skills when students solve object-oriented programming. Merriam (1998, p. 27) emphasises
that delimitation of the case being studied is “the defining characteristic” of a case study. In
this research the case was bounded by the subject specification of students enrolling for

Metacognitive skills in solving object-oriented programming problems

 Td 11(1), July 2015, pp. 133-147.

137

Computer Science with the aim of focusing on object-oriented programming (OOP) in this
course. The purpose of this case design (Table 1) was to look at the succession of two
programming tasks regarding students’ detailed experiences during programming. This
research was designed in such a way that there was a period of two weeks between the first
and second programming assignment, in order to prevent other factors from having an
influence over time. Table 1 displays the research design.

Table 1: Case study design
Introduction
Week 1 and 2

Assignment 1
Week 3

Intervention
 Week 4 and 5

Assignment 2
Week 6

Introduction
into OOP

Explain OOP
examples.

First
programming
assignment
(individual
work, see
Section 3.3.1).

1) Explain the guidelines to
support program
development (see Section
3.3.2).

2) Discuss and apply the
guidelines when developing
an object-oriented program
for the AB Bank (see
Section 3.3.2) (group work,
two students).

Second programming
assignment
(individual work, see
Section 3.3.3).

Conduct semi-structured
interviews regarding
students’ experiences
with the second
assignment (see Section
3.4)

3.2 Participants
The participants were third-year students at a large South-African university taking
Computer Science as one of their major subjects as part of their BEd degree. From the
population of five students, four participated in this case study. No case study selection
criteria were used as this was a small population of students. Participation was voluntary and
all students completed informed consent forms. Ethical clearance was obtained from the
university to conduct the study. Although the participants had previous experience regarding
programming basics (e.g. iteration, selection), procedural programming, database skills and
the use of arrays, they were novice OO programmers.
3.3 Programming assignments and the intervention
Two programming assignments as well as the intervention are discussed.
3.3.1 Programming Assignment 1
The students were required to plan, design and implement an object-oriented program that
involved determining a total mark from a number of class tests. These marks were randomly
generated. Although this problem can be solved in many ways, the rationale was to give the
participants an easy object-oriented program where they were required to implement various
methods as part of their introduction to OOP. Before starting to program, the students were
required to write down their planning and design the solution. This assignment was done
individually.
3.3.2 Intervention
The intervention was done in two separate parts (see Table 1). The first part comprised the
teaching of metacognitive and problem-solving guidelines to support students’ thinking
activities and to direct their mental processes. The guidelines are summarised as follows:

• Read the programming problem and underline the main ideas and requirements.
Write down the problem in your own words.

Havenga

 138

• Plan detailed steps and design a possible solution. Identify classes and draw a class
diagram (additional diagrams may also be used).

• Code your planning in a programming language.
• Test the output. Indicate how well you have solved the problem.
• Continuously reflect and monitor all your activities. After completing the final

solution (3.3.3), give yourself a mark out of 5, where 1=poor; 2=below average;
3=average; 4=good; and 5=excellent. Justify why you have given yourself this mark.

During the second part of the intervention (Table 1), the lecturer discussed a programming
example and facilitated students in applying the above-mentioned problem-solving and
reflective guidelines. This programming problem involved the following: write an object-
oriented program for the AB Bank to create a new account for a client, enable the transfer
and deposit of funds and close the account. The program is activated as soon as the PIN’s
correctness has been established. Participants worked together in groups of two during this
assignment.
3.3.3 Programming Assignment 2
After the intervention, participants were given the following programming task: design an
object-oriented program to display the amount due at a specific fuel pump after each vehicle
had been filled-up. Click Stop to display the total amount after the morning shift. The
pump number and amount were randomly generated. Participants had to plan and develop
the program by using the metacognitive and problem-solving guidelines (see 3.3.2). Students
had to complete this programming task individually during a practical lab session.
3.4 Data-collection activities
Data collection involved three aspects. Firstly, participants’ planning, design, computer
program and output (if output was obtained) of the first and second assignments were
obtained. Secondly, their written problem-solving and reflective activities using the
guidelines were collected (see 3.3.2). Thirdly, semi-structured interviews were held based on
their experiences of the second assignment. The purpose of the semi-structured interviews
was to clarify and elaborate on participants’ thinking, metacognition and programming
experiences. The interview questions were the following: Explain the thinking processes you
followed before starting to program; explain the processes used during programming and what
difficulty you experienced; and reflect on your thoughts and activities regarding object-oriented
programming.
3.5 Analysis of qualitative data
Following the interviews, the students’ reflections on their experiences were examined. Their
programs were explored to check their understanding, approach, programming code, the
solution and final program output (where applicable). Results from the interviews and
written reflections were transcribed and manually analysed using both concept-driven (codes
based on the literature) and data-driven coding (open coding) (Gibbs, 2010, p. 44-45). The
main focus was on two matters, namely students’ programming experiences and their use of
metacognitive skills.

4. Results
Results are integrated and presented in this section. Participants’ results from both
assignments and the interviews are shown in Tables 2 to 5. The criteria indicated in these

Metacognitive skills in solving object-oriented programming problems

 Td 11(1), July 2015, pp. 133-147.

139

tables were based on how participants understood, planned, designed and solved
programming problems as well as on their reflections.

Table 2: Participant 1’s (P1) results

Criteria

Assignment 1 Assignment 2

Problem comprehension No in-depth analysis of the
programming problem was made.

P1 wrote some requirements and
identified some nouns and verbs.

Planning and program design No planning was included.
Presented three ‘screen’ buttons of
the Graphical User Interface
(GUI).

Planning was incomplete. Fragmented
and incomplete design of the solution
was indicated.

Program development P1 programmed the solution
without using the OO approach.

Programming of the class was
incomplete.

Problems and errors P1 was unsure how to program
the solution when using OOP.

P1 made some programming errors.
The class was not associated with
the main application program.

Testing and self-assessment Some output was obtained. No output was obtained. Own mark
allocation: none.

OOP experiences The participant did not know
how to create a new class and was
unsure about the coding.

P1 did not use the new class as part of
the application program.

Reflections and feedback I am not sure where to start and what to do. I have identified verbs and nouns.
I find it difficult to plan. I never know what to use where and what to assign to
the class. You can do it without using a new class ... it [OOP] is stupid.

Table 3: Participant 2’s (P2) results

Criteria

Assignment 1 Assignment 2

Problem comprehension P2 understood the problem. P2 understood the problem and
identified all nouns and verbs as part of
problem analysis.

Planning and program design Some ideas were written down. He planned and designed the solution
in detail and identified the required
class.

Program development P2 applied OOP. He could not
solve the problem correctly.

P2 applied OOP and solved the
problem correctly.

Problems and errors Programming of the methods was
incorrect.

The program worked after addressing
some access violation problems.

Testing and self-assessment Incorrect output was obtained. Correct program output was obtained.
His own mark allocation was 4 out of
5.

OOP experiences He could not solve the problem
correctly.

Successfully applied the object-oriented
approach.

Reflections and feedback I read the problem and get a basic idea … thereafter I am planning the solution. I
got some [execution] problems and did not know what the reason was for this …
at the end the program worked in some manner, I think that I have solved the
problem. I enjoy OOP … one advantage is better security.

Havenga

 140

Table 4: Participant 3’s (P3) results

Criteria

Assignment 1 Assignment 2

Problem comprehension P3 indicated understanding of the
problem to some extent.

P3 comprehended the programming
problem and identified some nouns
and verbs.

Planning and program design Although some ideas were
written down, his planning was
incomplete. He could not design
the solution.

He did some planning how to solve the
problem and designed the new class
and application program.

Program development P3 could not create an object. P3’s programming was incomplete.
Problems and errors He experienced problems with

program syntax as well as the
programming of methods.

He used incomplete statements in the
class.

Testing and self-assessment No output was obtained. No output was obtained. His own
mark allocation was none.

OOP experiences P3 did not know which methods
to use and experienced an
incomplete understanding of the
OO approach.

He experienced problems with the
programming syntax and semantics.

Reflections and feedback

I understand the problem but do not know how to program this. I could not
convert the planning into a program … I do not know how to do the
programming. If you understand OOP you can use it effectively … I do not know
what OOP is all about.

Table 5: Participant 4’s (P4) results

Criteria

Assignment 1 Assignment 2

Problem comprehension P4 indicated understanding of the
programming problem.

He comprehended the problem and
identified nouns and verbs.

Planning and program design Some planning was included however
he presented the ‘screen’, instead of
designing the solution to the
problem.

Some planning of the problem was
included. The program design was
incomplete.

Program development He was unsure about the
programming of methods.

P4 completed the class and
application program.

Problems and errors P4 was not sure when to use the
specific methods.

He could not display the total
amount after the morning shift.

Testing and self-assessment No output was obtained. Output was obtained but was
incorrect. His own mark allocation
was 4.

OOP experiences He experienced difficulty in
comprehending the OO approach.

He still experienced difficulty in
comprehending OOP.

Reflections and feedback

I never plan in detail … I am thinking in a programming language when I plan.
When starting with the programming, I have made changes [changed the initial
planning]. I am not sure what precisely should happen. It is sometimes still
difficult to comprehend the OOP concept.

Metacognitive skills in solving object-oriented programming problems

 Td 11(1), July 2015, pp. 133-147.

141

5. Discussion of the findings
This section addresses the research question: What is the role of metacognitive skills when
solving object-oriented programming problems in a Computer Science course?
The approach followed in this section is to discuss participants’ individual experiences
regarding the first and second assignments. This is followed by a discussion of all students’
experiences and the overall findings. The discussion is elaborated by integrating results from
the interviews.
5.1 Findings of individual participants
Findings of Participant 1: P1 experienced the following problems: an inability to understand
and apply the object-oriented approach and incompetence regarding the use of metacognitive
control in terms of planning, monitoring and evaluation (see 2.1, 2.3, Table 2). P1 preferred
to program without using the OO approach. He made some syntax and semantic errors and
experienced problems in programming the methods. P1 realised that he did not clearly
understand the problem requirements and made no in-depth analysis of both programming
problems (Table 2). His attempts were fragmented and did not proceed towards solving both
programming problems. With reference to metacognition, P1 reflected: I am not sure where to
start and what to do, however his reflection was not followed by active monitoring to address
the problems he experienced. Participant 1’s planning was incomplete, he did not monitor
his actions and did not evaluate and self-assess his efforts. As a result he was not able to plan,
design and code the programs and solve the two problems. Bergin et al. (2005, p. 82)
emphasise explicit planning and active control to direct one’s own cognitive processes during
program development.
Findings of Participant 2: Results from Table 3 indicate that Participant 2 understood both
problems and the requirements. He made an analysis of the second programming assignment
and was able to plan and design the solution after applying the problem-solving and reflective
guidelines (see Section 3.3.2). Although he encountered minor challenges in solving the first
assignment, it was evident that P2 experienced a higher level of overall understanding in the
second assignment than the first. He monitored the programming process, reflected on his
programming efforts and made the required corrections: I got some access violations … at the
end the program worked. P2 obtained incorrect output from the first programming task;
however he solved the second problem correctly and his own mark allocation was 4 out of 5.
Findings of Participant 3: Participant 3 understood both programming assignments to some
extent; however the planning and design of both solutions were incomplete. The main
obstacles were an incomplete understanding of the object-oriented approach as well as
problems with program comprehension (see Section 2.3). I understand the problem but do not
know how to program this (Table 4). This student struggled with the coding, the programming
syntax, semantics and OO constructs. Ginat and Shmallo (2013, p. 345) concur that novices
in their study experienced limited understanding of the OO paradigm. In addition, P3
experienced problems with various programming statements and methods. He was not able
to complete both programming tasks and could not obtain output. Participant 3 did some
planning, however he did not monitor his progress, follow up or correct the errors. Results
from Table 4 indicate that there was nearly no progress towards developing the second
assignment.
Findings of Participant 4: P4 was able to understand both assignments although he had
problems in identifying classes in the first programming task (Table 5). He outlined the GUI

Havenga

 142

instead of giving a detailed plan regarding how to solve the problem. P4 mentioned I never
plan in detail and this was an obstacle in the process of solving the problem correctly.
Although he obtained some output, P4 did not monitor and correct the output errors.
Furthermore, he was unsure how to interpret the object-oriented approach. Regarding his
own assessment, he indicated a mark of 4 out of 5.
5.2 Participants’ overall experiences
Results from both assignments as well as the interviews and reflections (Tables 2 to 5)
indicate that the participating students experienced the following problems:
1) fragmented knowledge and misconceptions of the object-oriented approach, shortcomings
regarding the implementation of OOP, and 2) inefficient and inadequate metacognitive
control during all steps of program development.
Firstly, participants (P1, P3 and P4 to some extent) had fragmented knowledge and
shortcomings in understanding and applying the object-oriented approach. They did not
understand the problem requirements clearly, could not analyse the problems in depth and
made various syntax and semantic errors (P1 and P3). Except for P2, analyses of the
remaining students’ programs revealed that they struggled to combine code and relevant
constructs to produce an object-oriented program that executed correctly. Since Participant 4
was not used to planning in detail, his design of the solution in the second assignment was
incomplete, and as a result, his program output was not correct. Previous research (Sajaniemi
et al., 2007, p. 2) also indicated students’ challenges in applying OOP with specific reference
to a change from procedural to object-oriented programming, and a limited understanding of
the OO paradigm and concepts (Ginat & Shmallo, 2013, p. 345; Govender, 2010, p. 14, 15).
Secondly, participating students experienced difficulty in applying metacognitive skills.
Distinctive skills, such as detailed planning, the ability to monitor their own progress (Bergin
et al., 2005, p. 85; Fletcher & Carruthers, 2012, p. 1366) and accurate judgement to
determine whether the goals had been achieved (Garrison & Akyol, 2015, p. 67), were clearly
absent in most participants. Participant 2 mentioned the use of reflective skills when his
program worked after addressing some execution problems (Table 3).
Regardless of the fact that P1, P3 and P4 (to some extent) had knowledge about the
problem-solving and reflective guidelines (Section 3.3.2), they did not implement these
adequately and were not able to proceed towards solving the OOP problems. These students
did not control their own learning processes as referenced by Flavell (1979, p. 907-909) and
Miller and Geraci (2011, p. 303). Negative reflection, e.g. I am not sure where to start and
what to do (P1, Table 2) without positive feedback and corrective activities will be an
obstacle in solving programming problems successfully (Havenga, 2011, p. 95, 96). It seems
that when participants struggled and got stuck, they experienced an accumulation of
problems in subsequent steps as indicated by P1’s reflections: I am not sure where to start and
what to do. I never know what to use where and what to assign to the class. Falkner et al. (2014,
p. 291) assert that, without a fundamental level of metacognition, students cannot direct their
knowledge in a constructive manner. Deliberate integration of metacognitive skills during
program development is therefore crucial and students need to be directed in this regard, as
mentioned by Titus and Annaraja (2011, p.15) (Section 1).
5.3 Application of metacognitive critical control points
Although participating students applied the metacognitive and problem-solving guidelines
(Section 3.3.2) to some extent, the results were unsatisfactory (Sections 4, 5.1 and 5.2).

Metacognitive skills in solving object-oriented programming problems

 Td 11(1), July 2015, pp. 133-147.

143

Further interventions are therefore proposed, though not tested, to support programming
students in this regard.
In Section 2.2 the application of metacognition in real life is outlined with reference to its use
as part of a HACCP system to provide rigorous actions in identifying and preventing food
hazards (Psomas & Kafetzopoulos, 2015, p.134). Accordingly, the author of this paper
applies these principles and postulates the use of metacognitive critical control points
(MCCPs) as a metacognitive mechanism to enable students in supporting and managing
their own thinking processes during all steps of program development. The aim is to teach
programming students how to direct their own thinking processes, to enable them in
proceeding towards successful completion of a task, to improve their overall metacognitive
managerial skills, and to prevent loss of control (where a student is no longer being able to
manage his or her thinking when trying to solve a problem). The detailed activities using
MCCPs are the following:

1. Each student should conduct his/her own reflective analysis regarding previous
programming experience(s) since he/she should think about his/her own cognition the
application of MCCPs will therefore differ among students.

2. A student should identify metacognitive critical control points for each step of
program development to address challenges, gaps and problems he/she had
experienced previously (as mentioned in the above activity).

3. The next step is to establish specific requirement(s) for each critical control point
as mentioned in point 2.

4. The student should apply monitoring and reflective procedures that allow one
to address the requirements for each critical control point.

5. Repeat steps 2 to 4 (shaded in Table 6) to ensure that all the critical points
(mentioned in point 2), were addressed.

6. Lastly the student should evaluate whether all metacognitive critical control points
have been met to support the successful completion of the programming task. A
record should be kept of these reflective evaluations for future reference.

The application of MCCPs and relevant literature (Section 2) in each step of program
development are used with reference to the problems that P1 experienced. Note that the
analysis following here is mainly focused on this participant’s first problem: I am not sure
where to start and what to do (number 1, Table 6) since it is not possible to outline each of the
problems in the same way due to problems with space.
Table 6 shows the integration of MCCPs during program development with specific
reference to the problems and challenges that Participant 1 experienced (Table 2). Regarding
the first step of MCCPs, analysis indicates that P1 was not sure where to start and what to
do. In the next step MCCPs were identified to address this problem, namely understanding
the problem and determining what to do to direct the problem-solving process. Step 3
establishes requirements to address the first control point. The fourth step involves detailed
monitoring and reflective actions to address the requirements for a specific control point as
mentioned in the previous step.
Steps 2 to 4 are repeated to ensure that all critical points have been met. When evaluating
the programming solution in the final step, a student is required to understand, test and
reflect on all previous steps and processes to ensure that the required MCCPs had been
addressed and the problem had been solved.

Havenga

 144

Table 6: An example of how to apply MCCPs in supporting P1

MCCP activities

The application of MCCPs in program development

1. Conduct your own
 reflective analysis
 regarding a
 previous
 programming
 experience

Conduct your own reflective analysis:
-I am not sure where to start and what to do (first challenge of this participant)
-I find it difficult to plan (2)
-I never know what to use where and what to assign to the
 class (3)
-You can do it without using a new class [OOP] (4) (Table 2)

2. Identify
 metacognitive
 critical control
 points for each
 step of program
 development (see
 Section 2.3)

Identify critical control points to:
 -understand the problem and determine what to do (no 1)
 -plan and design the solution (2)
 -enhance program comprehension, direct coding of the program (3)
 -evaluate the solution and your understanding of OOP(4)

3. Establish specific
 requirements for
 each critical control
 point

 Establish requirements for no 1 to:
 -understand the problem description
 -specify detailed actions, heuristics and strategies on what to do.

4. Apply monitoring
 and reflective
 procedures that
 allow you to
 address the
 requirements for
 each critical control
 point

Establish and apply monitoring and reflective procedures to enhance understanding
of no 1:
-pay focused attention, reread the problem, comprehend what is
 required (Bergin et al., 2005, p. 82; Coiro, 2011, p. 108)
-determine the intended meaning of the problem and reflect towards
 the clarity thereof
-interpret and write the programming problem in your own words
-make connections and recall previous knowledge
-address any misconceptions (Lee et al., 2010, p. 630; Nussbaum,
 2012, p. 116)
-ensure deep understanding of the problem, what exactly is required
 in terms of program development and reflect on your thinking
-comprehend additional OOP problems and solutions
-make decisions regarding actions, heuristics and strategies
 (Sternberg & Sternberg, 2012, p. 448), e.g. underline all nouns
 and verbs as an indication of ‘things’ (objects) and ‘events’ (methods)
-reflect in action (Schön, 1983), when solving a programming problem

5. Repeat steps 2 - 4

6. Evaluate whether
 all metacognitive
 critical control
 points have been
 met to support the
 successful
 completion of a
 programming task.

Evaluate whether all metacognitive critical control points have been met:
-determine whether the requirements of each critical control point were
 addressed and reflect on action (Schön, 1983)
-determine whether the main goals were achieved and if you solved the
 problem effectively (Garrison & Akyol, 2015, p. 67)
-ask yourself questions about the correctness and efficiency of your
 programming solution
-discuss your solution with peers and compare various solutions
-keep record of your reflective evaluations for future reference

Metacognitive skills in solving object-oriented programming problems

 Td 11(1), July 2015, pp. 133-147.

145

6. Conclusion
This investigation was aimed at determining whether students apply metacognitive skills
when solving object-oriented programming problems. Results indicate that the participating
students had difficulty in understanding object-oriented problems and they displayed
shortcomings regarding the implementation thereof. In addition, most participants
experienced problems with metacognitive control during all steps of program development.
The author postulates the use of metacognitive critical control points (MCCPs) as a
mechanism to manage and facilitate all thinking involved in object-oriented program
development. The aim is to teach students how to manage their own thinking processes, to
enable them in proceeding towards successful completion of a task, and to prevent loss of
control.
It is essential that lecturers support students in the application of MCCPs during
programming to direct their own thinking processes and activities. Some limitations of the
current study involved a small population, and participants had only two formal programming
assignments to complete. Initial findings should therefore be tested and verified using a
larger cohort of students. Future research could focus on the effectiveness of applying
MCCPs in problem-solving tasks.
Acknowledgement
The author would like to acknowledge the Dean of our Faculty for providing funds, as well as
the students who participated in this research.

Bibliography
Bergin, S., Reilly, R., & Traynor, D. (2005). Examining the role of self-regulated learning on
introductory programming performance. International Computing Education Research. Seattle,
WA (October 1-2).
Breed, B., Mentz, E., & Van der Westhuizen, G. (2014). A metacognitive approach to pair
programming: Influence on metacognitive awareness. Retrieved on 4 March 2015 from
http://www.investigacion-psicopedagogica.org/revista/articulos/32/english/Art_32_886.pdf
Caruso, T., Hill, N., VanDeGrift, T., & Simon, B. (2011). Experience report: Getting
novice programmers to THINK about improving their software development process.
Retrieved on 9 March 2015 from
http://dl.acm.org/citation.cfm?id=1953307&dl=ACM&coll=DL&CFID=487923427&CFT
OKEN=59087041
Coiro, J. (2011). Talking about reading as thinking: Modeling the hidden complexities of
online reading comprehension. Theory into Practice, 50, 107-115.
Détienne, F. (1995). Design strategies and knowledge in object-oriented programming:
Effects of experience. Human-Computer Interaction, 10, 129-169.
Falkner, K., Vivian, R., & Falkner, N.J.G. (2014). Identifying computer science self-
regulated learning strategies. Retrieved on 23 February 2015 from
http://dl.acm.org/citation.cfm?id=2591715
Farrell, J. (2008). An object-oriented approach to programming logic and design. (2nd ed). Boston,
MA: Thomson Course Technology.

Havenga

 146

Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive-
developmental inquiry. American Psychologist, 34(10), 906-911.
Fletcher, L., & Carruthers, P. (2012). Metacognition and reasoning. Philosophical
Transactions of the Royal Society Biological Sciences, 367, 1366-1378.
Garrison, D.R., & Akyol, Z. (2015). Toward the development of a metacognition construct
for communities of inquiry. Internet and Higher Education, 24, 66-71.
Gibbs, G. (2010). Analyzing qualitative data. Los Angeles, CA: SAGE.
Gill, T.G. (2011). Informing with the case method: A guide to case method research, writing, and
facilitation. Santa Rosa, CA: Informing Science Press.
Ginat, D., & Shmallo, R. (2013). Constructive use of errors in teaching CS1. SIGCSE,
Denver, CO (March 6-9).
Gobet, F., Chassy, P., & Bilalic, M. (2011). Foundations of cognitive psychology. London:
McGraw-Hill.
Govender, I. (2010). From procedural to object-oriented programming (OOP): An
exploratory study of teachers’ performance. South African Computer Journal, 46, 14-23.
Hadjerrouit, S. (2005). Object-oriented software development education: A constructivist
framework. Informatics in Education, 4(2), 167-192.
Havenga, M. (2011). Problem-solving processes in computer programming: a case study.
SACLA, Ballito, KwaZulu-­‐Natal, SA (July 6-8).
Holliday, M.A. (2011). Reading strategies and student comprehension in an Internet ethics
course. ASEE/IEEE Frontiers in Education Conference, Rapid City, SD (October 12-15).
Kroeze, J.H. (2012). Interpretivism in IS – a postmodernist (or postpositivist?) knowledge
theory. Proceedings of the 18th Americas Conference on Information Systems (AMCIS
2012 Proceedings), Seattle, Washington, USA (August 9-11), 2012, Paper 7, ISBN 978-0-
615-66346-3. Available: http://aisel.aisnet.org/amcis2012/proceedings/PerspectivesIS/7 (July
29, 2012) or http://hdl.handle.net/10500/6983.
Kroeze, J.H., & Van Zyl, I. (2014). Transdisciplinarity in Information Systems: Extended
Reflections. Twentieth Americas Conference on Information Systems (AMCIS 2014
proceedings), pp. 1-10. Savannah, Georgia (August 7-9).
Lee, H.W., Lim, K.Y., & Grabowski, B.L. (2010). Improving self-regulation, learning
strategy use, and achievement with metacognitive feedback. Educational Technology Research
and Development, 58, 629-648.
Loft, S., Sanderson, P., Neal, A., & Mooij, M. (2007). Modeling and predicting mental
workload in En route air traffic control: Critical review and broader implications. Human
Factors, 49(3), 376-399.
Merriam, S.B. (1998). Qualitative research and case study applications in education. San
Francisco, CA: Jossey-Bass.
Miller, T.M., & Geraci, L. (2011). Training metacognition in the classroom: The influence
of incentives and feedback on exam predictions. Metacognition Learning, 6, 303-314.

Metacognitive skills in solving object-oriented programming problems

 Td 11(1), July 2015, pp. 133-147.

147

Nussbaum, E.M. (2012). Argumentation and student-centered learning environments. In D.
Jonassen & S. Land (Eds.), Theoretical Foundations of Learning Environments (2nd ed., pp.
114-141). New York, NY: Routledge.
Parham, J., Gugerty, L., & Stevenson, D.E. (2010). Empirical evidence for the existence and
uses of metacognition in computer science problem solving. Special Interest Group on
Computer Science Education Bulletin, 416-420.
Pennington, N., Lee, A.Y., & Rehder, B. (1995). Cognitive activities and levels of
abstraction in procedural and object-oriented design. Human-Computer Interaction, 10, 171-
226.
Psomas, E.L., & Kafetzopoulos, D.P. (2015). HACCP effectiveness between
ISO 22000 certified and non-certified dairy companies. Food Control, 53, 134-139.
Sajaniemi, J., Kuittinen, M., & Tikansalo, T. (2007). A study of the development of
students’ visualizations of program state during an elementary object-oriented programming
course. ICER, Atlanta, GA (September 15-16).
Satzinger, J.W., Jackson, R.B., & Burd, S.D. (2004). Systems analysis and design in a changing
world. (3rd ed.). Boston, MA: Thomson Course Technology.
Schön, D.A. (1983). The reflective practitioner: how professionals think in action London:
Temple Smith.
Schulte, C., Clear, T., Taherkhani, A., Busjahn, T., & Paterson, J.H. (2010). An
introduction to program comprehension for computer science educators. In Proceedings of the
2010 ITiCSE working group reports (ITiCSE-WGR '10), Alison Clear and Lori Russell Dag
(Eds.). ACM, New York, NY, USA, 65-86. DOI=10.1145/1971681.1971687
http://doi.acm.org/10.1145/1971681.1971687
Shaft, T.M. (1995). Helping programmers understand computer programs: The use of
metacognition. Data Base Advances, 26(4), 25-46.
Sternberg, R.J., & Sternberg, K. (2012). Cognition. (6th ed.). US: Wadsworth Cengage
Learning.
Storey, M.-A. (2006). Theories, tools and research methods in program comprehension:
Past, present and future. Software Quality Journal, 14, 187-208.
Titus, S.V., & Annaraja, P. (2011). Teaching competency of secondary teacher education
students in relation to their metacognition. International Journal on New Trends in Education
and their Implications, 2(3), 14-22.
Üredi, L. (2014). Analyzing the classroom teachers’ levels of creating a constructivist learning
environments in terms of various variables: A Mersin case. Educational Research and Reviews,
9(8), 227-236.

