
TD The Journal for Transdisciplinary Research in Southern Africa, 10(1) July 2014, pp. 187-200.

Increasing self-efficacy in learning to program: exploring the benefits
of explicit instruction for problem solving

I GOVENDER,1 DW GOVENDER,2 M HAVENGA,3 E MENTZ,4 B BREED,5 F DIGNUM6

AND V DIGNUM7

Abstract

The difficulty of learning to program has long been identified amongst novices. This
study explored the benefits of teaching a problem solving strategy by comparing students’
perceptions and attitudes towards problem solving before and after the strategy was
implemented in secondary schools. Based on self-efficacy theory, students’ problem
solving self-efficacy as well as teachers’ self-efficacy were investigated, showing that both
students’ and teachers’ self-efficacy may have benefited from the explicit instruction. This
would imply that teaching problem solving explicitly should be encouraged to increase
self-efficacy to program.
Keywords: Programming, problem solving, teaching and learning, self-efficacy

1. Introduction
Common problems with introductory programming courses at universities and secondary
schools include inadequate learning outcomes and consequently low pass rates (Kinnunen &
Simon, 2012). Several studies (for example, Kinnunen & Simon, 2012; Govender &
Govender, 2012) have pointed out the successes and difficulties experienced by students in
introductory programming courses. Problem solving has been shown to be one of the key
concerns, as it carries a high cognitive load. While a number of instructional methods and
strategies have been proposed (see Lau & Yuen, 2009), to date, learning to program still
poses difficulties, which in turn contributes to the low pass rates. For instance, a study that
analysed the first year attrition rate in computer programming courses revealed that the main

1 . Corresponding author: Dr Irene Govender, Discipline of Information Systems and

Technology, University of KwaZulu-Natal, Govenderi4@ukzn.ac.za
2 . Dr Desmond W Govender, Discipline of Computer Science Education, University of

KwaZulu-Natal, Govenderd50@ukzn.ac.za
3 . Dr Marietjie Havenga is attached to the Faculty of Education Sciences, North-West

University, Potchefstroom. Email: Marietjie.Havenga@nwu.ac.za
4 . Prof Elsa Mentz is attached to the Faculty of Education Sciences, North-West University,

Potchefstroom. Email: Elsa.Mentz@nwu.ac.za
5 . Dr Betty Breed is attached to the Faculty of Education Sciences, North-West University,

Potchefstroom. Email: Betty.Breed@nwu.ac.za
6 . Prof Frank Dignum, Utrecht University, Utrecht, The Netherlands, dignum@cs.uu.nl
7 . Prof Virginia Dignum, Delft University, Delft, The Netherland, M.V.Dignum@tudelft.nl

Govender, Govender, Havenga, Mentz, Breed, Dignum & Dignum

 188

challenge faced by students is a lack of problem-solving skills (Ford & Venema, 2010).
According to Ismail, Ngah, and Umar (2010) a number of aspects of programming are not
being taught explicitly. Hasni & Lodhi’s (2011) study affirms this belief that teaching
problem solving requires more than giving practice exercises to be solved; rather, the actual
processes of problem solving must be taught.
In the context of changing computer languages and technologies, professional development
becomes critical for teacher growth (Govender et al., 2013). Mentz et al’s (2012)
investigation of information technology (IT) teachers in economically deprived schools in
South Africa revealed that many teachers lack the technical skill and pedagogical content
knowledge. To address these challenges, a team of researchers implemented a support
programme for a small group of IT teachers. The overall goal of the programme was to
improve the quality of learning and teaching programming across six secondary schools across
two provinces in South Africa. This article reports on one aspect of the implementation of
the support programme, which is the teaching of problem solving and the resulting benefits
thereof. Specifically, the paper seeks to answer the following question:
How does the explicit instruction of problem-solving affect students’ self-efficacy to
program?
This paper begins with a brief discussion of some of the literature relevant to the study of
problem solving and self-efficacy, as this enables us to locate our approach to the problem of
learning computer programming. Transdisciplinary perspectives from psychology, teacher-
education and computer programming are integrated to address the issue of problem solving
as it relates to programming. Self-efficacy and its related concepts, which have their
foundations in social psychology, were used to suggest a conceptual framework for this study.
In the next section the conceptual framework explaining the link between teaching explicit
problem solving strategy and improved self-efficacy in programming is provided. The
transdisciplinary approach integrates the process of self-efficacy analysis with insights
borrowed from teacher education and programming in order to solve the practical problem
referred to above. A description of the methodology is provided, followed by the analysis and
a discussion of the key findings. The article concludes by suggesting that explicit problem
solving instruction should be encouraged as it improves learners’ as well as teachers’ self-
efficacy in programming.

2. Review of related literature
It is a commonly held view that programming is a complex and difficult task for secondary
students; it requires skills such as problem-solving, abstraction, mathematical logic and
testing, debugging and troubleshooting (Saeli, Perrent, Jochens & Zwaneveld, 2011).
Problem-solving lies at the heart of programming and many recent studies focus on this
high-level skill as the key issue in programming (Govender, 2010; Lau & Yuen, 2009). The
process of developing an algorithm – a step-by-step list of instructions for solving an instance
of a problem is referred to as problem-solving. Programming is an integral part of computer
science and its related fields. It has been shown that the number of students participating in
computer courses in secondary schools has been declining, internationally (Downes &
Looker, 2011). Anecdotal evidence suggests the same locally. More specifically, there is some
speculation that the difficulty experienced by students in programming may contribute to the
low number of students choosing to study computer science (Maddrey, 2011) or information
technology (IT), as it is referred to in secondary schools in South Africa. Programming is a

Self-efficacy in learning to program: benefits of explicit instruction

 TD, 10(1), July 2014, pp. 187- 200. 189

major component of IT and if we understand what leads to success in programming, it might
be possible to attract more students to study IT. The importance of the need to engage
students in explicit problem-solving strategies to improve self-efficacy in the field is reflected
in the paper. This study is driven by the commitment to engage in the explicit instruction of
problem-solving strategies, and by the low number of students choosing to study computer
science or IT. Not much has been written about IT secondary students’ problem-solving
ability and IT teachers in the provinces under investigation.
In this study, we explore another aspect that could have an effect on students’ performance:
self-efficacy to program. Seturaman and Medley (2009) indicated that students’ beliefs about
their self-efficacy in programming could be used to determine how well the students are
doing in their programming courses. Furthermore, it has long been known that self-efficacy
is an important motivation for learning (Zimmerman, 2000). In a related study, Askar and
Davenport (2009) identified factors such as gender, computer experience and family usage of
computers as variables that are related to self-efficacy in general. Jegede (2009) established
that prior programming experience of the novice learner did predict Java programming self-
efficacy.
Although previous studies have addressed approaches to teaching programming (Hasni &
Lodhi, 2011) and factors that affect students’ self-efficacy in relation to programming success
(Seturaman & Medley, 2009), few, if any, have addressed the relationship between problem-
solving efficacy and success in programming. Bandura (1994: 71) defines self-efficacy as
“people’s beliefs about their capabilities to produce designated levels of performance that
exercise influence over events that affect their lives,” and states that these beliefs “determine
how people feel, think, motivate themselves and behave”.
Maddrey (2011) determined that problem solving is one of the main factors that make
programming difficult. In this study, it was surmised that with appropriate introduction to
problem-solving, a student would become adept at thinking through the processes for
different programming problems. At the same time, as students work with the problem, they
may increase their self-efficacy in programming. We sought to explore the effects of teaching
a problem-solving strategy explicitly.

3. Conceptual framework
Some research in self-efficacy advocates that teachers would gain more insight by considering
not only students’ actual competence, but also their perceptions of their competence.
According to Hackett and Betz (1989), students’ motivation and future academic preferences
may be based on these perceptions. As noted earlier, researchers have shown that self-
efficacy beliefs strongly influence the choice of majors and career decisions of students.
However, it was made known that in some cases a lack of competence or ability was not
necessarily to be blamed for avoiding computer courses, but that unreasonably low
perceptions of self-efficacy were the cause (Hackett & Betz, 1989). School and teaching
practices that foster both competence and the necessary accompanying confidence should be
identified, as well as practices that “convert instructional experiences into education in
efficacy” (Bandura, 1997: 5-12).
Bandura (2006) further argues that studies of teacher efficacy and the effect that teachers’
self-beliefs have on their practices and student outcomes, will help explain how teachers’
beliefs influence students’ beliefs and achievement. According to the European Commission
(2010), when teachers have a strong sense of self-efficacy they become more resourceful in

Govender, Govender, Havenga, Mentz, Breed, Dignum & Dignum

 190

their work, by persevering in and strengthening their efforts in order to meet their goals.
Hence teachers’ sense of self-efficacy can influence the learning and motivation of students.
In an earlier study, Bandura (1986) emphasised that being involved with the specific task
experience—in this case problem-solving in programming—is the most effective source of
self-efficacy information, in that it has critical implications for education. This implies that
educational efforts should therefore focus on improving students’ self-beliefs in order to
improve achievement, even if success is not immediately obtainable, but achievable in the
long term.
Stated differently, self-efficacy beliefs influence human behaviour through cognitive,
motivational, affective, and decisional processes. They affect whether individuals think in
self-enhancing or self-weakening ways, and how well they motivate themselves and persevere
in the face of difficulties (Bandura & Locke, 2003).
In order to provide a theoretical lens to study the degree of confidence and motivation that
students have in performing the problem-solving activities, we formulated a framework. This
framework was based on the concepts of self-efficacy for the specific task of problem solving
in programming. Bandura (2006: 307) states that “the efficacy belief system is not a global
trait but a differentiated set of self-beliefs linked to distinct realms of functioning.” There is
no “one measure fits all” perceived self-efficacy. We identified concepts within the domain of
problem solving with regard to specific tasks, using efficacy theory on the interpretive concept
“I can” (Bandura, 2006). By the process of concept-driven and axial coding – explained
further in the analysis section – the following seven dimensions of the learning experience
were identified: Enjoyable and supportive, solving simple problems, solving complex problems,
perseverance, self-regulation, confidence boosting, overcoming difficulties. These dimensions
corresponded with the efficacy scale for computer programming as presented by Ramalingam
and Wiedenbeck (1998), which has been validated in a number of studies (for example,
Jegede, 2009, Askar & Davenport, 2009).

4. Methods and Materials

4.1 Procedure

This qualitative study followed an interpretive, descriptive and exploratory approach. The
study focuses on the participants’ perceptions and experiences of using the problem solving
strategy taught which is characteristic of the qualitative approach. Creswell (2003) indicates
that exploratory studies are most advantageous when little has been written about the
phenomenon or the population being studied.
The study is located within a larger project that aimed at supporting and developing IT
teachers’ practice particularly in rural schools. The project included professional development
for IT teachers, specifically with regard to teaching strategies in programming in order to
improve students’ programming skills. One such strategy was for problem solving and was
labelled ‘explicit instruction for problem solving’. The strategy was first work-shopped with
the teachers before they implemented it in their Grade 10 classes. A comprehensive
handbook was developed that indicated the problem-solving activities to be followed as well
as a number of relevant exercises with the corresponding activities required. Table 1 presents
a snapshot of the problem-solving activities involved in the strategy.

Self-efficacy in learning to program: benefits of explicit instruction

 TD, 10(1), July 2014, pp. 187- 200. 191

Table 1: The problem-solving activities framework (Adapted from Problem
solving Activities: SANPAD Project, M. Havenga, 2011)

Main problem-solving activities
1. Write down the main ideas and requirements of the problem.

-Read the problem and underline the key concepts to understand and interpret the
question clearly.
-Determine what you do not understand.

2. Represent the problem by using a diagram, table, flow chart, description or any other
method to indicate how you understand the problem.

3. Plan the detailed steps
-Determine the purpose of each method.
-Plan the input, processing and output.
-Go back to Step 1 and check whether you are on the right track.

4. Code your planning in a programming language.
-Determine which code/constructs you will use to input the data.
-Which statements will you use to process or calculate the data?
-Which statements will you use to display the output?
-Compile the program and correct the programming errors.

5. Reflect on how well you have solved the problem.
-Use test data and ensure that the extreme cases of test data are included.
-How did you choose the test data and extreme values?
-Explain if you could correct any programming errors.
-Did you use resources to support your programming process?
-Are you satisfied with your solution? Explain.

4.2 Participants

Students from six classes from six secondary schools from two provinces in South Africa
participated in the project “Empowering IT Teachers in Economically Deprived Rural
Schools”. A total of 96 students and six teachers participated in the project.

4.3 Data Collection

Data was obtained using three instruments, namely, questionnaires, interviews and journals.
During the data collection process, the concept of self-efficacy emerged as an important
aspect in the project as is characteristic of grounded theory. For the purposes of this report,
self-efficacy was then used as the conceptual framework for one aspect of the project. While
it is common practice to assess students’ self-efficacy by asking them to rate their confidence
according to some scale, it is considered just as valid to engage students in self-regulatory
strategies in writing specifically about the problem at hand in response to probing questions
(Shell, Colvin & Bruning, 1995). There are various ways to measure self-efficacy (Pajares,
1997). In general, when assessing self-efficacy, a rating scale may be used with particular
emphasis on the subject area needed (Pajares, 1997). In this study, students’ thinking
processes were elicited from the questionnaires in order to determine students’ self-efficacy

Govender, Govender, Havenga, Mentz, Breed, Dignum & Dignum

 192

with regard to problem-solving as it relates to programming. Similarly, the interviews and
journal entries served the purpose in determining the teachers’ self-efficacy.

4.3.1 Questionnaires
Two sets of questionnaires, in the form of a comprehensive worksheet (eliciting respondents’
thinking processes) were used in the study. The first questionnaire was administered before
the problem solving strategy was taught. It included a problem to be solved – students were
asked to show their calculations, and explain their thinking process and any difficulties they
may have experienced as well as how they overcame them. After the teachers had taught the
problem solving strategy over a month-long period, a second questionnaire was then
administered, which included another problem of comparable level to what was done in the
first questionnaire. Participants answered questions regarding the given tasks with respect to
whether they thought they had solved them, their experience in using the problem-solving
activities (strategy), whether the problem-solving activities supported them in their
programming, their difficulties encountered and how they overcame these difficulties. The
questionnaires were administered to the students with the assistance of their teachers during
their normal class time.

4.3.2 Interviews and journal entries
In order to obtain an overall understanding of the process and experiences of both students
and teachers, and the teachers’ views of the students’ experiences, semi-structured interviews
were conducted with teachers. These semi-structured interviews were meant to determine
their views of problem-solving before and after they implemented the problem-solving
strategy. They also kept a journal of entries – indicating their challenges, problems and
achievements – as each lesson was taught for the duration of the intervention. Using the
students’ responses from the questionnaire, we were able to triangulate the data for validity
and reliability.

4.4 Analysis

The data in the questionnaires were arranged and coded according to a list of a priori themes
— a process known as concept-driven coding (Gibbs, 2010) – based on the theory of self-
efficacy to determine their perceptions of solving the given problems before and after the
strategy was taught. The two coding procedures that are characteristic of grounded theory —
open and axial coding — were used to further analyse the text data; moving backwards and
forwards between both approaches to coding (Gibbs, 2010). Both concept-driven, and open
and axial coding can be used concurrently to arrive at a set of appropriate categories. In the
open coding process, themes were identified and named. Axial coding was then used to find
relationships between the different themes to form more abstract categories. A brief
description of data captured before and after the strategy was taught is presented. Both sets of
results were compared and analysis conducted. The data was collected and analysed by a team
of researchers in the project thus ensuring researcher triangulation and validity of the study.

5. Ethical measures
In this study, ethical measures included assurance of anonymity and obtaining the informed
consent of teachers and students, as well as permission from the Department of Education
and the university to conduct the research. The aims of the study and methodologies were
communicated to all of the participants in the project. It was made clear to all participants
that they could withdraw from the process at any stage and that their decision to participate

Self-efficacy in learning to program: benefits of explicit instruction

 TD, 10(1), July 2014, pp. 187- 200. 193

or not would in no way be viewed negatively by the project facilitators and researchers.
However, while students’ consent was obtained for their participation and use of their work
for analysis, their participation was directly related to the teachers’ consent as well. This
meant that if teachers withdrew, then the respective students would not be able to participate.
We believe these measures allowed us to meet the standards that can be considered
appropriate when conducting research in an ethically acceptable manner.

6. Findings and Discussion
This section reports on the main findings and suggests possible implications of the use of the
teaching strategy for affecting student self-efficacy towards programming. Specifically it
reports on students’ experiences with the strategy, teachers’ responses regarding their
experiences with the teaching strategy, and the problems encountered. Supporting quotations
from students and teachers with regard to the framework for self-efficacy are presented. In
addition, a brief description of the statistics regarding the responses in the questionnaires
before and after the strategy was taught is given.

6.1 Students’ experiences of solving a problem before the introduction of the strategy

From 95 pre-questionnaires received, only four students obtained the correct answer to the
problem given as part of the questionnaire (see Appendix A for the problem). However, 26
students believed that they had obtained the correct answer, 34 were not certain that they had
solved the problem and 35 students believed that they had not solved the problem. The
majority (73%) of the students were not able to overcome the difficulties that they
experienced. It is clear from the data obtained in the questionnaire that most students showed
no planning in their solutions to the problem. The written responses to the question “Explain
how you solved the problem”, showed very little planning or no planning at all and a
misguided approach to their thinking. Because of the large dataset, it would not be feasible to
quote all the explanations; however, some typical explanations of their workings are given
below:

I multiplied the amount with copies and then I added it amounts that were the
answer then added them all together then come out with final answer.
I calculated all the money and multiplied it all and then at the end I come out
with a total.

From their explanations, we identified the students’ perceptions of problem solving in
programming. The main themes identified in the students’ responses to the question, “If you
experienced any difficulties, did you overcome them? If so, how?” were frustration and not
being able to overcome their difficulties. Some quoted examples of student responses to the
question are given in Table 2 below.

Govender, Govender, Havenga, Mentz, Breed, Dignum & Dignum

 194

Table 2: Examples of student responses prior to learning the problem
solving steps explicitly

Yes I did experience some difficulties but the worse thing is that I did not overcome them
because I did know how to calculate

Difficulties that I have faced is that I have not manage[d] where to start and finish.

I didn’t overcome the difficulties because I don’t understand

Yes, I got some difficulties but not that difficult and I overcame them by reading to
understand, that is the important rule for reading. After I understand the problem and then
I made the calculations

No, because the difficulties that were there are worrying me especially when comes to
calculations of that were there.

I get frustrated and try to work through the problem, but it depends on what kind of
problem it is.

It was hard for me to start but if you are a IT learner you have to open minded so that you
can able to overcome any programming problems. I tried by all means to solve it by myself.

I didn’t overcome the difficulties that I have faced, I’m not even sure of my answer

I did not overcome them it was hard to solve and I was solving it alone no formula no
understanding

I tried in any way to solve it by counting in any other way I heard to but the problem was
too hard to solve and it was complicated.

Given that these students had chosen to study IT, one would have expected a certain level of
interest from them and to some extent the motivation to learn IT. These two aspects are part
of self-efficacy. It would appear that their sense of self-efficacy in relation to problem solving
was relatively low. The self-efficacy perceptions identified in section 3, (namely, enjoyable and
supportive, solving simple problems, solving complex problems, perseverance, self-regulation,
confidence boosting, and overcoming difficulties) were not discernible in the dataset obtained
before the problem –solving strategy was implemented.

6.2 Students’ experiences of solving a problem after the implementation of the strategy

After the students were explicitly taught problem solving using a specific framework, they
used the strategy to solve all problems they were given as new constructs in programming
were taught. This framework was then used throughout the teaching and learning process.
After a period of approximately five weeks, the second questionnaire on problem solving was
administered. The response from students regarding the problem-solving strategy was
overwhelmingly positive, and their confidence level in problem solving had increased
significantly.
Using concept-driven and open coding, seven categories or concepts were identified in the
responses given in the post-questionnaire, three of which relate to their views of the problem-
solving strategy (activities) used. The next four categories were based on self-efficacy theory
with emphasis on the interpretive meaning “I can” in their explanations. Table 3 lists these
concepts together with extracts from the data that contributed to their identification.

Self-efficacy in learning to program: benefits of explicit instruction

 TD, 10(1), July 2014, pp. 187- 200. 195

Table 3: The identified concepts with examples of evidence from the data
Concepts/category Excerpts from questionnaires in support of the

concepts/categories identified
Supportive and enjoyable
using the problem solving
activities [framework] to
solve problems

They were challenging and enjoyable. They make you think
and make you use the skills you have acquired in
programming […..] were very interesting because some of
them it was for the first time we met with them and they
became very educational and not only at a programming
level.

It helps me because it has an easy way to explain about steps
you can follow to solve a programming problem. Without the
problem-solving activities it will be like trying to cut a plank
with your hand.

Solving simple problems Problem solving activities helped in making me aware of how
to step by step approach programming problems. So I
enjoyed them very much because they made programming
understandable with their algorithm solutions and also made
programming seem easy and interesting. Problem solving
activities were a fun topic to deal with and I hope to meet
with them again because they bring out the inner thinking
abilities of a programmer.

It help me to understand and it give me some instruction to
know how can I start a simple program or a class and it give
me some point to plan to develop a program.

Handle complex
programming tasks

I find the problems easier to solve because they [teach] learn
you how to solve it step by step, how to separate the problem
into 2 or more parts so that it becomes easier to solve.

Yes it helps you clearly identify your input, process and
output especially with the long programs

Perseverance The experience you get is that you can do [this] problems
and you will attempt other problems knowing that you can or
you are able to solve the problems on your own without any
help from the teacher or other students.

Expectation of difficulties on the problem lead me to hard
concentration and communicating with a partner how we are
going to break it and then we came up with solutions.

The problem that I experienced is that I forgot how the
range in calculated. I overcame my difficulty by going to a
search engine called google that’s where I found all the
methods of data handling and I chose the formula for Range.

Self-regulation It is the key to knowing or understanding Information
Technology. Problem-solving activities define almost
everything we need to know and with the help of the
professor you adapt easily to problem solving activities.
Reason: It has boost my understanding of IT or the
computer itself. I now know the uses and functioning of the
computer.

Yes I think it supports me because it gives me a chance to
solve a programming problem by following steps and asking
me questions that will help me in order to correctly solve the
problem that I was given.

Govender, Govender, Havenga, Mentz, Breed, Dignum & Dignum

 196

Confidence boosting The problem solving activities was more enjoyable I really felt
proud after completing it. I realize the difficulties in examples
5 and 6 because it was little bit challenging for me, but I tried
my level best to overcome, it is that which brings frustration
in my problem solving activities but at least I manage to
[learn] design.

The problem-solving activities were challenging but they
were also enjoyable and I managed to see how problem-
solving activities could boost you to solve the problem and
your skills in programming.

Yes because they help me to write the questions in my own
words so that I can understand them better

Overcoming difficulties I experienced some difficulties during solving the problem
and I overcame them by researching information, discussing
the problem with other learners who are doing IT and then
explained to each other and now we solved the problem.

….

I experienced problems in determining which value is the
largest between average and range midpoint so I referred
back to the textbook and I chose (from several options) the
if-then else statements to approach the problem.

The activities that formed part of the problem-solving strategy came forward as particularly
significant in increasing their confidence. More importantly, the challenge of following the
strategy in trying to solve the problems gave the students immense satisfaction (problem-
solving activities were challenging but they were also enjoyable and I managed to see how problem-
solving activities could boost you to solve the problem and your skills in programming…). The
enjoyment of completing the task contributed to their satisfaction as well. The activities of
the strategy and the questionnaire forced students to think about what they were doing and to
reflect on their actions. This self-regulatory process enhanced their motivation. Hence
planning and perseverance became apparent because of their enjoyment and boosted
confidence. In following the activities of the problem-solving strategy, students were able to
handle simple problems as well as complex problems. Even though it was not always feasible to
use all the activities for very simple problems (as indicated by a learner: “I don’t think it
supports me that much because sometimes when you program the program doesn’t run. I find this
frustrating and nerve-racking”), they were able to use it for the complex problems. Overcoming
their difficulties emerged as an important factor, in terms of firstly not giving up easily, then
researching information by reading further on aspects that were not clear (e.g. understanding
the meaning of the range midpoint), and finally discussing the problem with their peers.
Of the 96 responses received in the second questionnaire, only 10 students obtained the
correct answer to the given problem (see Appendix: post-problem). However, 44 students
believed that they had obtained the correct answer or solved it partially, 36 were not certain
that they had solved the problem and 16 students believed that they had not solved the
problem. The majority (89%) of the students were able to overcome the difficulties that they
experienced and were willing to use the strategy. Only 10 students were uncertain about the
success and confidence attained in using the strategy. Even though they were not sure, there
is still an element of potential use for the improvement of problem solving in programming.

Self-efficacy in learning to program: benefits of explicit instruction

 TD, 10(1), July 2014, pp. 187- 200. 197

Some quotations from students who were unsure of how these activities helped them are
reproduced below.

I don’t think these problem-solving activities help, I just prefer solving the
problem directly by typing the program. But they do help sometimes when trying
to create a program that performs multiple functions but it is time consuming.
No because sometimes the problem will be too demanding from you and it would
sometimes require you to think very hard. Sometimes problem-solving activities
are confusing and require your full concentration and cooperation.

While a small percentage (10%) of students obtained the correct answer in the post-
questionnaire, the improved self-belief in problem solving was achieved. This improved self-
efficacy is evident from the responses ascertained in the pre- and post-questionnaires.
Although only a few more (6%) students managed to solve the problems after, their perceived
self-efficacy in programming has increased considerably – a step towards improving ability.
The small number of correct solutions may be attributed to the problem given in that many
students did not understand the meaning of range midpoint. Improved performance outcome
may not be immediately evident, but according to literature (e.g. Zimmerman, 2000),
improved self-efficacy is one of the many factors that can help improve efforts and in turn
improve performance outcome in the longer term.

6.3 Teachers’ experiences of using the strategy to teach problem solving in programming

The interview transcripts suggest that teachers were also pleased with the framework used to
teach problem-solving. Some excerpts from teachers’ interviews and journals follow:

…I see the difference in using the PS strategy…[T1]
‘Yes, I think IT teachers would benefit from the support [we received]. It goes
back to problem solving skills’. [T2]
‘It was two-way, I was learning with my learners while I was implementing this
[PS strategy]’. [T3]
‘I think this is the strategy that I will use when I introduce problem solving’. [T4]
‘I find it very interesting.’[T5]
‘The method I was using before was difficult, now it is much easier and they are
happy’. [T6]

Teachers found the framework to be helpful. It forced the students to plan before typing on
the computer. The fourth quotation above indicates willingness on the part of the teacher to
use this approach not only during the course of the project but to continue doing so. The
excerpts above further suggest that teachers are motivated to use this strategy, implying that
teachers’ self-efficacy in teaching problem solving also increased. As indicated earlier, if
teachers’ self-efficacy increases in teaching programming then it will have an influence on
students’ behaviour. The transcripts of teacher interviews and the journal entries helped to
triangulate the results.

7. Conclusion
This study explored the influence of teaching problem solving explicitly to Grade 10s in a
programming course within the subject IT on students’ self-efficacy to program. The

Govender, Govender, Havenga, Mentz, Breed, Dignum & Dignum

 198

teaching of problem solving explicitly was shown to have benefits for self-efficacy in
programming as perceived by the study participants. Bandura (1986) affirms that people’s
beliefs about their capabilities shape the ways in which they will work. Stated differently,
these self-perceptions of capability help determine what individuals do with the knowledge
and skills they have gained. In short, a high sense of self-efficacy in problem solving tends to
motivate individuals to persevere and increase their efforts in achieving success in
programming. Certainly these beliefs or self-perceptions do not necessarily determine
whether success will be achieved or not, but they do have an influence. More specifically, the
teachers who have undergone the training and who have implemented the strategy also
showed a remarkable interest in the use of the strategy. The effect of this intervention
programme was two-fold. First, these teachers have gained more insight into their problem-
solving strategy and thereby increased their self-efficacy to teach. As noted earlier, teachers’
self-efficacy will influence the way they teach and persevere in the face of difficulties.
Secondly, students showed improved self-efficacy towards problem solving after the strategy
was used for a period.
Problem solving in programming is a major part of the curriculum of the subject IT. It would
serve the subject well to foster students’ self-efficacy in programming by targeting their
problem-solving skills. Teaching problem solving explicitly should be encouraged. It may
benefit students’ self-efficacy, potentially improving programming ability given more time.

8. Limitations
IT in schools is an elective course. Students taking the selected IT classes likely did so
because of an interest in the subject matter or parents or peers influence. The problem-
solving strategy was employed for a short duration given the time constraints of the project,
which might affect the full impact of improved self-efficacy in problem solving. Given a
longer timeframe and the use of experimental methods, it would be possible to assess the
impacts of the strategy on achievements of the students in programming.

References
Askar, P. & Davenport, D. (2009). An investigation of factors related to self-efficacy for Java

Programming Among Engineering Students. Turkish Online Journal of Education
Technology 8(1): 7.

Bandura, A. (1986). Social foundations of thought and action: A social-cognitive view. NJ:
Englewoods Cliffs: Prentice-Hall.

Bandura. A. (1994). Self-efficacy. In V. Ramachaudran (ed) Encyclopedia of human behavior 4:
71-81. New York: Academic Press.

Bandura, A. (1997). Self-efficacy: The exercise of control. New York: Freeman.
Bandura, A. (2006). Self-Efficacy Beliefs of Adolescents. Information Age Publishing.
Bandura, A. & Locke, E. (2003). Negative Self-Efficacy and Goal Effects Revisited. Journal

of Applied Psychology 88(1): 87-99.
Creswell, J. (2003). Research Design: qualitative, quantitative and mixed methods approaches.

2nd ed. Beverley Hills, CA: Sage Publications.

Self-efficacy in learning to program: benefits of explicit instruction

 TD, 10(1), July 2014, pp. 187- 200. 199

Downes, T. & Looker, D. (2011). Factors that influence students’ plans to take computing
and information technology subjects in senior secondary school. Computer Science
Education 21(2): 175-199.

European Commission,(2010). Teachers’ Professional Development — Europe in international
comparison: An analysis of teachers’ professional development based on the OECD’s
Teaching and Learning International Survey (TALIS). Luxembourg: Office for Official
Publications of the European Union.

Ford, M. & Venema, S. (2010). Assessing the Success of an Introductory Programming
Course. Journal of Information Technology Education 9: 133-147.

Gibbs, G. (2010). Analyzing Qualitative Data. Los Angeles: Sage.
Govender, I. (2010). From Procedural to Object-Oriented Programming (OOP) —

Performance in OOP: An empirical study. South African Computer Journal 46: 12.
Govender, I. & Govender, D.W. (2012). A constructivist approach to teaching a

programming course: Students' responses to the use of an LMS. African Journal of
Research in Mathematics, Science and Technology Education 16(2): 12.

Govender, D.W., Govender, I., Breed, B., Havenga, M., Mentz, E., Dignum, F. & Dignum,
V. (2013). Supporting Information Technology Teachers through Programming
Professional Development: A South African Case Study. Journal of Communication
4(2): 153-160.

Hackett, G.&Betz, N.E. (1989). An exploration of the mathematics self-
efficacy/mathematics performance correspondence. Journal for Research in Mathematics
Education 20: 261-273.

Hasni, T.& Lodhi, F. (2011). Teaching Problem Solving more Effectively. SIGCSE Bulletin
Inroads 2(3): 58-62.

Ismail, M. Ngah, N. & Umar, I. (2010). Instructional strategy in the teaching of computer
programming: A need assessment analysis. Turkish Online Journal of Educational
Technology 9(20): 125-131.

Jegede, P.O. (2009). Predictors of Java Programming Self-Efficacy among Engineering
Students in a Nigerian University. International Journal of Computer Science and
Information Security 4(1 & 2): 7.

Kinnunen, P. & Simon, B. (2012). My program is ok — am I? Computing freshmen’s
experiences of doing programming assignments. Computer Science Education 22(1): 1-
28.

Lau, W.W. & Yuen, A.H. (2009). Toward a Framework of Programming Pedagogy. IGI
Gobal 3772-3777.

Maddrey, E. (2011). The Effect of Problem-Solving Instruction on the Programming Self-
efficacy and Achievement. Proquest Dissertations and Theses. Nova Southeastern
University, Florida, USA.

Mentz, E., Bailey, R., Havenga, M., Breed, B., Govender, D.W., Govender, I., Dignum, F.
& Dignum, V. (2012). The diverse educational needs and challenges of Information
Technology teachers in two black rural schools. Perspectives in Education 30(1):71-79.

Govender, Govender, Havenga, Mentz, Breed, Dignum & Dignum

 200

Pajares, F. (1997). Current Directions in Self-Efficacy Research. In M Maehr & P Printrich
(eds)Advances in Motivations and Achievements (10: 1- 49). Greewich: CT: JAI Press.

Ramalingam, V. & Wiedenbeck, S. (1998). Development and Validation of Scores on a
Computer Programming Self-Efficacy Scale and Group Analysis of Novice
Programmer Self-Efficacy. Journal of Educational Computing Research. 19(4): 367-386.

Saeli, M., Perrent, J., Jochens, W.M. & Zwaneveld, B. (2011). Teaching Programming in
Secondary School: A Pedagogical Content Knowledge Perspective. Informatics in
Education 10(1): 73-88.

Seturaman, S. & Medley, M.D. (2009). Age and Self-efficacy in Programming. Journal of
Computer Sciences in Colleges 25(2): 122-128.

Shell, D.F., Colvin, C. & Bruning, R.H. (1995). Self-efficacy, attributions, and outcome
expectancy mechanisms in reading and writing achievement: Grade-level and
achievement-level differences. Journal of Educational Psychology 87: 386-398.

Zimmerman, B.J. (2000). Self-Efficacy: An Essential Motive to Learn. Contemporary
Educational Psychology 25: 82-91.

Appendix A
Pre Problem

You are requested to calculate the total cost of 321 photocopies. 13 pages consist of one
picture per page. Seven of the pictures must be printed in colour. For 100 or less copies, a
page costs 15 cents, and for more than 100 but fewer than 200 copies, the first 100 copies
cost 15 cents per page and thereafter 12 cents per page. If you want to duplicate 200 or more
copies, the first 100 copies cost 15 cents per page, the next 100 copies 12 cents per page and
the remainder 8 cents per page. The cost of photocopying pictures is R1.50 per page and
coloured pictures cost R2.50 for each page.

Post Problem

Design an algorithm to compare the average of a list of numbers with its range midpoint. The
range midpoint is calculated by determining the largest and smallest number in the list and
averaging them. Both the average and the range midpoint must be displayed with a message
indicating which is larger.

