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 15 

Abstract 16 

Objectives: Design a machine learning-based prediction framework to predict the presence or 17 

absence of Systemic Lupus Erythematosus (SLE) in a cohort of Omani patients. Methods: Records 18 

of 219 patients from 2006 to 2019 were extracted from SQU Hospital electronic records, 138 19 

patients have SLE, and the remaining 81 have other rheumatologic diseases. Clinical and 20 

demographic features were analyzed to focus on the early stages of the disease. Our design 21 

implements Recursive Feature Selection (RFE) to select only the most informative features. In 22 

addition, the CatBoost classification algorithm is utilized to predict SLE and an explainer algorithm 23 

(SHAP) is applied on top of the CatBoost model to provide individual prediction reasoning which is 24 

then validated by rheumatologists. Results: CatBoost achieved an Area Under the ROC curve 25 

(AUC) score of 0.95 and a Sensitivity of 92%. Four clinical features (Alopecia, renal disorders, 26 

Acute Cutaneous Lupus, and hemolytic anemia) along with the patient’s age were shown to have 27 

the greatest contribution to the prediction by the SHAP algorithm. Conclusion: We have designed 28 

and validated an explainable framework to predict SLE patients and provide reasoning for its 29 

prediction. Our framework enables early intervention for clinicians which leads to positive 30 

healthcare outcomes.  31 
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 34 

Advances in Knowledge 35 

 The first self-explainable prediction framework for SLE disease specific to the Omani 36 

population is developed. 37 

 Achieved an AUC score of 0.956 and Sensitivity of 92%. 38 

 Identifies patterns in clinical manifestation which are unique to the Omani population. 39 

 The patient’s age and four clinical features (renal disorders, alopecia, cutaneous lupus, and 40 

hemolytic anemia) had the highest contribution to the model’s prediction. 41 

 Compared to other Arab ethnicities, renal disorders frequency in Oman was the highest 42 

while alopecia frequency was the lowest. 43 

  44 

Application to Patient Care 45 

 The model can potentially be used as a clinical decision support system that alerts clinicians 46 

to the presence of SLE which prompts further investigation until an official diagnosis is 47 

made. 48 

 Enabling clinicians to contrast the information reported by the model with their knowledge 49 

through an interpretation algorithm. Thereby increasing the probability of correct diagnosis 50 

and encouraging the adoption of Machine Learning (ML) in healthcare. 51 

 A practical introduction of machine learning and interpretation tools to the medical 52 

diagnosing process that improves early detection of SLE; a crucial factor in lowering flare 53 

rate and reducing mortality. 54 

 55 

Introduction 56 

Systemic lupus erythematosus (SLE) is a chronic multisystem autoimmune disease. SLE is 57 

caused by genetic and environmental factors that potentiate the creation of high-titer 58 

autoantibodies aimed at native DNA and other cellular elements.1 The creation of these 59 

autoantibodies leads to a pathological process that manifests into different medical conditions 60 

in different organ systems, from skin arthralgia to cardiovascular and renal morbidity.2 The 61 

clinical phenotype of SLE varies with race, gender, and age which makes the disease difficult 62 
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to diagnose.3 In Oman, it is estimated that the mortality rate is at 5% and the mean prevalence 63 

is 38 per 100,000 individuals,4 this is higher than in Saudi Arabia and lower than in UAE. 64 

Initial SLE symptoms are often nonspecific and mimic other medical conditions, increasing 65 

the risks of diagnostic delay. Additionally, the heterogeneity of manifestations makes early 66 

diagnosis even more difficult and subsequently delays the start of effective treatment before 67 

the occurrence of organ damage. 68 

 69 

In recent years, great improvements in treatment strategies for SLE have been made. However, 70 

despite the improved prognosis, various challenges remain for the diagnosis and therapeutic 71 

management of SLE.5 One of those challenges is early diagnosis. SLE onset is gradual and 72 

clinically-evident manifestation develops over the years. Moreover, a variety of conditions 73 

may mimic SLE conditions, including infectious and hematologic diseases.6 It has been proven 74 

from database analysis that patients with a diagnosis window below 6 months (between 75 

probable SLE onset and diagnosis) had low flare rates and hospitalizations compared with 76 

patients with late diagnosis.7 Late diagnosis is also associated with the risk of developing 77 

progressive organ damage and subsequently increases the mortality rate.8  78 

 79 

This study focuses on effective SLE prediction as well as finding the associated clinical 80 

features. With the aid of interpretation tools, clinicians can understand the decision-making 81 

process of Machine Learning (ML) models. This, in turn, enables clinicians to be alerted to 82 

different manifestations and symptoms at early stages and provide better healthcare outcomes. 83 

The model is trained on a local cohort of 219 Omani patients with SLE as well as other control 84 

diseases. Additionally, we identified the minimum set of clinical and demographic features 85 

required for an accurate prediction. Finally, an explainable approach based on SHapley 86 

Additive exPlanations (SHAP) method was applied to generate individual explanations of the 87 

model's decisions as well as ranking clinical features by contribution. 88 

 89 

Methods 90 

The dataset used in this study was collected from structured and unstructured sources. This 91 

includes the Electronic Medical Records (EMR) in Sultan Qaboos University Hospital’s 92 

Rheumatology clinic named TrakCare. TrakCare stores the patients’ information, medical 93 
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state, and medical history. Patients' demographic data were obtained directly from TrakCare 94 

meanwhile clinical data was unstructured as it was stored in the patient's medical history as 95 

clinical notes from each visit to the hospital. Entry criteria for Rheumatology patients is a 96 

positive Antinuclear Antibodies test (ANA test) while the Exclusion criteria included all non-97 

Omani patients as well as patients with non-sufficient data. To separate patients with SLE and 98 

control diseases, the most recent SLE classification criteria set by EULAR/ACR were used.9 99 

When applied, patients with a score of 10 or above are diagnosed with SLE. A total of 219 100 

patient records match the entry criteria, 138 are diagnosed with SLE, and 81 have other control 101 

diseases, this was also validated by a rheumatologist on case-by-case bases. 102 

 103 

Our framework contains three main stages, starting with feature selection that reduces noisy 104 

data and utilizes only the most informative features followed by the classifier, which trains and 105 

tests the model to predict the presence of SLE. After the model is trained, the explainer 106 

algorithm proceeds to provide individual prediction breakdown through informative visual 107 

plots. 108 

 109 

In the first stage [Figure 1], the recursive feature elimination (RFE) algorithm with ten-fold 110 

cross-validation (CV) was used. RFE works by building a model, selecting the best feature, 111 

picking out the selected feature, and then repeating this process for the remaining features until 112 

all the features are traversed. For the second stage of this framework, we have implemented 113 

Categorical Boosting or CatBoost, an ensemble learning algorithm that is based on gradient 114 

boosting.10  115 

 116 

For the final stage, the SHAP library is implemented.11 SHAP calculates ‘Shapley values’ for 117 

each feature to determine the contribution of a feature to the final prediction represented by the 118 

magnitude and sign of the Shapley value. Specifically, the importance of the feature relative to 119 

the prediction is represented by the magnitude of the Shapley value. SHAP tool can also 120 

perform local and global interpretability simultaneously. With the help of SHAP algorithm, we 121 

can break down each prediction individually. As a demonstration, we took two individuals 122 

from the testing set, one that was predicted to have the disease and one that was not. Three 123 

types of figures were used to show the prediction breakdown, force plot, waterfall plot, and 124 
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summary plot. The force plot demonstrates how the features contributed to the model’s 125 

prediction for a specific observation. The colors in the force plot correspond to the feature 126 

pushing the prediction probability higher or lower. The target in our model has two classes, 127 

class 1 for a positive diagnosis of SLE and class 0 for a negative diagnosis of SLE. To obtain a 128 

full list of features ranked by their contribution we use a waterfall plot. The summary plot 129 

displays the feature's effects and their importance. Each point on the summary plot represents a 130 

Shapley value for a feature and an instance. 131 

 132 

To train and validate the performance of CatBoost, the dataset was divided into training and 133 

testing sets. The former is used to train the model and the latter is used to test the performance 134 

of the model. Additionally, a subset of the training data set was used for cross-validation to 135 

protect the models from overfitting and optimize the model's parameters. Each of the models 136 

undergoes a hyper-parameter optimization through grid search with five-fold cross-validation. 137 

To avoid reporting biased results and limit overfitting, we calculated the measurement’s 138 

average of 10 repetitions for each model. Finally, three other classifiers were evaluated 139 

similarly, which are Multi-Layer Perceptron (MLP), Support Vector Machine (SVM), and 140 

Random Forest. Their performance evaluations were compared to CatBoost to observe the 141 

effectiveness of CatBoost. The classifiers were selected based on related studies that employed 142 

ML for disease prediction.12 13 143 

 144 

Due to the imbalanced nature of the problem, the AUC (area under ROC curve) and Sensitivity 145 

parameters are used to evaluate the classification performance.  146 

 147 

The study was approved by the Ethics Committee of the College of Medicine and Health 148 

Science at Sultan Qaboos University (SQU) in protocol number MERC #1418 and #1650. No 149 

participant consent is required for this study as per the regulation of Sultan Qaboos 150 

University’s Hospital. 151 

 152 

Results 153 

The extracted data covers patient records from January 2006 to December 2019. Female 154 

patients represent the majority of our records with 92%. Patients between 25 years old and late 155 
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30’s represent the largest age group with a mean age of 38. Al Batinah Governorate had the 156 

highest number of patients (37.9%) followed by Muscat (23.7%). 157 

 158 

Initial data contained 28 clinical, demographic, laboratory variables (so-called “features” in 159 

ML), and no missing values were found in the data [Table 1]. Laboratory features include 160 

immunological test results such as Anti-dsDNA Test, Anti-Smith antibody, and more. These 161 

features however, are highly sensitive to SLE and can introduce bias to the prediction model 162 

therefore it was dropped. The remaining data consist of 20 clinical and demographic features. 163 

The majority of the features are represented by non-numerical (categorical) values. This entails 164 

a transformation (encoding) to numerical values as this is a prerequisite for all statistical 165 

models. Thus, Ordinal encoding was applied, moreover, because of the variance in range for 166 

different features, Min-Max normalization was also applied.14 167 

 168 

Applying the RFE feature selection algorithm, the optimal number of features selected was 13. 169 

From the RFE selected features, three demographic features, as well as 10 clinical features, 170 

were selected. CatBoost had an AUC score of 0.956, with the Random Forest classifier and 171 

SVM scoring 0.935 and 0.916 AUC respectively. For Sensitivity, CatBoost had 92%, Random 172 

Forest achieved 89% and SVM score is 86%. 173 

 174 

Two samples from the testing set were used to generate the different SHAP plots. The first 175 

sample (Patient 1) is predicted to have SLE, the force plot attributes this to renal disorders, and 176 

the patient’s age [Figure 2.a]. Since the values are normalized we cross-referenced them with 177 

test data and found that the patient’s age is 40 which falls within the age group SLE that is 178 

most active. Additionally, the patient has been diagnosed with Lupus Nephritis a disease that 179 

is commonly caused by an auto-immune disorder. On the other hand, the second sample 180 

(patient 2) displays a lack of any autoimmune manifestation [Figure 2.b], a long disease 181 

duration, and the age of 56 makes him outside the age group that SLE is most active. 182 

 183 

Looking at the waterfall plot for patient 1[Figure 3.a], the feature with the highest SHAP value 184 

is Renal by a large margin. Due to its high SHAP value, the presence of renal disorder in 185 

patient 1 had the greatest contribution to the positive prediction of SLE. This was followed by 186 
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the age and province features. Overall, four blue features were pushing the prediction 187 

probability lower toward class 0. The non-existence of alopecia, hemolytic anemia, and Acute 188 

Cutaneous Lupus (ACL) in the patient 1 profile resulted in negative SHAP values. The 189 

remaining features had minimal impact on the prediction probability evidenced by their low 190 

SHAP values. In contrast, the waterfall plot for patient 2[Figure 3.b] indicates that age is the 191 

largest contribution toward class 0, followed by the absence of any renal disorders.   192 

 193 

In [Figure 4], similar to what was deduced, the older the patient is the less likely it is to have 194 

SLE, which is evident by the red dots on the negative scale of SHAP values. The same can be 195 

said for disease duration, we find that long disease durations without autoimmune 196 

manifestation correlated with the absence of SLE. Our result indicates that the higher the 197 

patient’s age and disease duration the less likely that SLE is the cause. Renal disorders are 198 

ranked the highest in contribution followed by alopecia, ACL, and hemolytic anemia. The 199 

lowest contributing features are Serositis, Proteinuria, and Leukopenia. 200 

 201 

Discussion 202 

In clinical applications, the ability to justify the prediction is equally as important as the 203 

prediction score itself. This is because of the high sensitivity of the medical environment 204 

where misclassification could lead to devastating results. It is therefore challenging to trust 205 

complex ML models for several reasons. First, the models are often designed and rigorously 206 

trained on specific diseases in a narrow environment. Second, it depends on the user’s 207 

technical knowledge of statistics and ML. Third, how the data is labeled affects the results 208 

produced by the model.15 For these reasons and more, Interpretable ML has thus emerged as 209 

an area of research that aims to design transparent and explainable models by developing 210 

means to transform a black-box ML model into white-box ML models. By providing 211 

transparent prediction, domain experts can accurately interpret the results meaningfully.  212 

 213 

Through the use of SHAP algorithm, clinicians can understand the model’s reasoning, thus 214 

resembling clinical reasoning. Our model is situated between early to mid-screening 215 

suggesting that physicians have minimum visible clinical symptoms and subsequently no 216 

immunological test data.16 The model can reasonably make predictions that can alert clinicians 217 
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to investigate the presence of SLE by requesting immunological tests once suspicion of SLE is 218 

predicted. Specifically, the ANA test and the anti-double stranded DNA (anti-dsDNA) are 219 

highly sensitive and decisive if found positive.17 Additionally, an immunologist has compared 220 

multiple individual prediction breakdown plots and validated the results and the model 221 

justification.   222 

 223 

One of the features that were used to profile patients are age, age-onset, and disease duration 224 

features. It was deduced from the SHAP algorithm that older patients were the least affected 225 

by the disease. Similarly, patients with long disease duration without adverse manifestations 226 

such as anemia or lupus nephritis are shown statistically to be less likely diagnosed with SLE. 227 

Experts point out, however, that SLE intensity increases and decreases at intervals differently 228 

from patient to patient, thus in rare occasions clinical symptoms might not manifest until the 229 

late phases of the disease.18 Research suggests that late-onset SLE occurs at a rate of 3-18% in 230 

the exposed population.19 231 

 232 

Renal disorders were the highest feature in contribution according to SHAP [Figure 4]. This 233 

was in concordance with Beckwith and Lightstone (2014) who states that about 40-70% of 234 

SLE patients develop clinically diagnosed renal involvement which is known as Lupus 235 

Nephritis.20 Lupus Nephritis (LN) is commonly diagnosed through kidney biopsy, previous 236 

research identified proteinuria, urine protein-to-creatinine ratio, anti-dsDNA, and complement 237 

levels as laboratory markers of LN. However, these LN laboratory markers lack specificity 238 

and sensitivity for identifying renal activity and damage.21 In Oman, LN is the most frequent 239 

glomerular disease occurring in about 30%-36% of all patients who had a renal biopsy. This is 240 

supported by Al Adhoubi (2020),4 where 52% of SLE patients have developed LN. Despite the 241 

majority of our data lacking kidney biopsy information, LN is also present in 11% of patients 242 

with renal disorders. 243 

 244 

Moreover, we found other clinical features that had about the same influence on the prediction. 245 

These are Alopecia, Cutaneous Lupus, and Anemia. Alopecia is a hair loss that also varies in 246 

damage activity from non-scarring to scarring. Currently, it is estimated that more than half of 247 

SLE patients develop alopecia, although most of the research that estimates alopecia 248 
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prevalence is limited by the small population size. Cutaneous Lupus which includes a butterfly 249 

rash across the face between the eyes and nose. ACL is a sign of VGLL-3 & Anti-SSA 250 

antibodies which indicate skin damage activity caused by Lupus.22 Anemia is the most 251 

common blood disorder, affecting about half of all people with active lupus.23 Anemia is 252 

caused by a shortage of healthy red blood cells needed by the body to carry oxygen to the 253 

body's tissues. Hemolytic anemia, however, is not exclusive to SLE. 254 

 255 

The prevalence of these influential clinical features across other Arab ethnicities was also 256 

investigated. While no study examined the differences between ethnicities within the Arab 257 

region, there have been few studies that have collected data on the SLE population locally. We 258 

looked at three cohorts from Saudi Arabia,24 UAE,25 and Egypt [Figure 5].26 ACL or skin rash 259 

was found more prevalent in all other Arab cohorts reaching as high as 62% in UAE. 260 

Hemolytic anemia was the most varying feature, in Egypt and UAE, it is less prevalent than in 261 

Oman while in Saudi Arabia it is more prevalent than in Oman.27 Renal disorders remained 262 

high at around 50% of all cohorts having some renal damage except for a slight decrease to 263 

33% in Egypt. Studies also indicate that out of all renal biopsies, approximately 10%–36% are 264 

diagnosed with LN in the Gulf region. LN also tends to run a severe course in gulf populations 265 

with a high incidence of Class IV LN.28  266 

 267 

Overall, with three critical features out of four found more prevalent in other Arab ethnicities, 268 

our model can be extended to include not only Omanis but also other Arab cohorts. It is 269 

important to note that all of these clinical features are not exclusive to SLE, but to autoimmune 270 

diseases in general. However, classification models can be trained to detect patterns specific to 271 

the Omani population, these patterns are the bases of the model’s prediction for SLE presence.  272 

 273 

These findings help to identify patterns in clinical manifestation which are unique to the 274 

Omani population and the Arab region by employing explainable prediction. Moreover, our 275 

research also highlights CatBoost algorithm, which had widespread attention in recent years 276 

for its fast calculation speed, powerful generalization ability, and strong predictive 277 

performance.29 30 31 We achieved a margin of improvement of 0.21 AUC over the other 278 

classifiers, this may be attributed to its novel implementation of ordered boosting, and 279 
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permutation-driven alternative to the classic algorithm. This study also acknowledges the 280 

problem with imbalanced classification evaluation where the research is biased toward the 281 

performance of cases that are poorly represented in the data samples.32 Standard evaluation 282 

criteria tend to focus the evaluation of the models on the most frequent cases, thus if applied, 283 

could lead to sub-optimal classification models. Thus, AUC and Sensitivity were selected as 284 

evaluation criteria. 285 

 286 

Finally, by combining the framework’s prediction with the interpretation algorithm we are 287 

promoting self-explainable frameworks that enable physicians to make meaningful decisions 288 

based on ML-based information combined with their knowledge. Thereby improving the 289 

probability of correct diagnosis and encouraging the adoption of ML in healthcare. These goals 290 

however are hindered by the retrospective nature of the data. An ideal framework is much 291 

more effective with longitudinal data of SLE patients that include pre-diagnosis profiles before 292 

the appearance of adverse symptoms. Moreover, our framework may not scale properly with 293 

large datasets. Specifically, large data will significantly increase the computational time for 294 

SHAP, and categorical data with high cardinality is inefficient with the Ordinal encoder 295 

algorithm.33 Different tools can also be applied to increase the accessibility and presentation of 296 

our model such as presenting the outcome as a prediction probability instead of a binary value. 297 

 298 

Conclusion  299 

This study proposes a three-stage interpretable framework for predicting the presence or 300 

absence of SLE in an Omani cohort of 219 patients. CatBoost classifier and SHAP 301 

interpretation tool were implemented to predict and justify individual predictions and eliminate 302 

any risk of misclassification. Four clinical features were identified to have the highest 303 

influence on the prediction in addition to the patient’s age. Alopecia, Renal, Acute cutaneous 304 

lupus, and Hemolytic Anemia are all indicators of lupus activity at varying rates, combined 305 

with the patient’s age and age-onset the model was able to establish a profile of the disease 306 

relative to Omanis. Overall, our findings aid in providing a practical introduction of machine 307 

learning and interpretation tools to medical diagnosis, thereby increasing the efficiency of 308 

medical testing and subsequently enabling early intervention which leads to better treatment 309 

and a positive healthcare outcome. 310 
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 426 

Table 1: Dataset’s features and its occurrence 427 

Feature Name Categories Occurrence in SLE 

Population (No. %, 

N=138) 

Occurrence in Control 

Population (No. %, 

N=81) 

Fever Yes 

No 

41 (29.7%) 

97 (70.2%) 

7 (8.6%) 

74 (91.3%) 

Acute cutaneous lupus 

(ACL) 

Yes (Rash) 

No 

63 (45.6%) 

75 (54.3%) 

7 (8.6%) 

74 (91.3%) 

Chronic cutaneous lupus Yes 

No 

5 (3.6%) 

133 (96.3%) 

0 

81 (100%) 

Oral ulcers Yes 29 (20%) 0 

https://doi.org/10.1007/s00296-018-4032-2
https://doi.org/10.48550/arXiv.1809.04559
https://dl.acm.org/doi/10.1145/2907070
https://doi.org/10.1007/s00180-022-01207-6


 

15 
 

No 109 (79%) 81 (100%) 

Alopecia Yes 

No 

57 (41.3%) 

81 (58.7%) 

4 (4.9%) 

77 (95%) 

Joint Involvement Yes 

No 

121 (87.7%) 

17 (12.3%) 

0 

81 (100%) 

Serositis Yes 

No 

9 (6.5%) 

129 (93.5%) 

0 

81 (100%) 

Renal disorders Yes 

No 

62 (44.9%) 

76 (55%) 

0 

81 (100%) 

Lupus Nephritis class None (No 

Kidney   biopsy) 

Class II 

Class III 

Class IV 

Class V 

35 (25.3 %) 

 

1 (0.4%) 

4 (1.8%) 

16 (7.3%) 

5 (2 %) 

0 

 

0 

0 

0 

0 

Proteinuria Yes 

No 

51 (37%) 

87 (63%) 

0 

81 (100%) 

vasculitis Yes 

No 

12 (8.7%) 

126 (91.3%) 

0 

81 (100%) 

Neurologic Disorder None 

Psychosis 

Seizure 

121 (87.7%) 

5 (3.6 %) 

12 (8.7%) 

81 (100%) 

0 

0 

Hemolytic Anemia Yes 

No 

47 (34%) 

91 (66%) 

6 (7.4%) 

75 (92.6%) 

Leukopenia Yes 

No 

18 (13%) 

120 (86.9%) 

1 (1.2%) 

80 (98.7%) 

Thrombocytopenia Yes 

No 

11 (8%) 

127 (92%) 

0 

81 (100%) 

Anti-dsDNA Positive 

Negative 

102 (73.9%) 

36 (26%) 

2 (2.4%) 

79 (97.5%) 

Anti-Smith (Sm) antibody Positive 

Negative 

17 (12.3%) 

121 (87.7%) 

0 

81 (100%) 

Antiphospholipid 

Antibodies 

Positive 

Negative 

46 (33.3%) 

92 (66.6%) 

2 (2.5%) 

79 (97.5%) 

C3 Complement Positive 

Negative 

95 (68.8%) 

43 (31.1%) 

2 (2.5%) 

79 (97.5%) 

C4 Complement Positive 

Negative 

95 (68.8%) 

43 (31.1%) 

2 (2.5%) 

79 (97.5%) 

Rheumatoid factor Positive 

Negative 

18 (13%) 

120 (86.9%) 

0 

81 (100%) 

Gender Male 5 (3.6%) 12 (14.8) 

Female 133 (96.4%) 69 (85.2%) 

 20 years or less 16 (11.6%) 1 (1.2%) 

 21 – 25 year 15 (10.8%) 5 (6.2%) 

 26 – 30 year 25 (18.1%) 9 (11.1%) 
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Age Period 31 – 35 year 29 (21%) 11 (13.6%) 

 36 – 40 year 16 (11.6%) 8 (9.9%) 

 41 – 45 year 23 (16.6%) 7 (8.6%) 

 46 – 50 year 5 (3.6%) 7 (8.6%) 

 more than 50 

year 

6 (4.3%) 33 (40.7%) 

 428 

 429 

 430 

Figure 1: Flowchart of the three-stage interpretable framework. 431 

432 
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 433 

Figure 2: force plot of CatBoost model prediction (values are normalized). f(x) is the 434 

predicted probability. The arrows in each plot show the direction of influence each predictor 435 

has over the payout i.e. the prediction. The colors are used to indicate the influence of the 436 

predictors, whether it increases (red) or reduces (blue) the probability of having SLE. 437 

 438 

 439 

Figure 3: waterfall plot of CatBoost model. The waterfall plot displays SHAP values 440 

representing feature contribution toward a positive prediction. It reflects the magnitude of 441 

influence each predictor had. The colors represent negative SHAP values for Blue, and 442 

positive SHAP values for Red. 443 

 444 
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 445 

Figure 4: Summary plot of CatBoost model. The summary plot combines feature importance 446 

with feature effects. Each point on the summary plot is a Shapley value for a feature and an 447 

instance. The position on the y-axis is determined by the feature’s importance and on the x-448 

axis by the Shapley value. The summary plot is similar to the waterfall plot in ranking the 449 

contribution of all features based on SHAP values. The major difference between the two is 450 

that it is applied to the entire testing set rather than one single data observation. Each dot 451 

represents an observation from the testing set, and the color of the dot reflects the value of the 452 

associated feature. For example, in the feature ‘AGE’ red dots correspond to patients with high 453 

value i.e. old patients and Blue corresponds to young patients. 454 

 455 
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 456 

Figure 5: The frequency of the most influential features as shown by SHAP in cohorts across 457 

the Arab region. 458 


