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ABSTRACT: This paper introduces a scaling parameter to the Fletcher-Reeves (FR) nonlinear conjugate gradient
method. The main aim is to improve its theoretical and numerical properties when applied with inexact line searches to
unconstrained optimization problems. We show that the sufficient descent and global convergence properties of Al-
Baali for the FR method with a fairly accurate line search are maintained. We also consider the possibility of extending
this result to less accurate line search for appropriate values of the scaling parameter. The reported numerical results
show that several values for the proposed scaling parameter improve the performance of the FR method significantly.
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1. Introduction

This paper is concerned with the line-search Fletcher-Reeves (FR) conjugate gradient (CG) method for solving the

unconstrained optimization problem

min f(x), (D)

XER™

where f: RN — R is a smooth function and its gradient g(x) = Vf(x) is available for any value of x. For a given
starting point x;, the method defines a sequence of points {x;} iteratively as follows. On each iteration, once
the function value f, = f(x;) and the gradient value g, = g(x;) are calculated, a search direction d; is
defined such that the descent property dlg, < 0 holds, assuming g, # 0 since g, = 0 holds at a solution of
problem (1). Then it is possible to find a positive steplength oy and hence a new point
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Xiey1 = Xp + Qpdy 2

such that the function reduction f;, — fi,1 is sufficiently positive (see for example Fletcher [1]).
In the class of CG methods, the search direction d,, is defined initially by the steepest descent choice d;= —g;
that satisfies the above descent property for k = 1. The other directions are defined by

A1 = —Gik+1 T Brdi, (3)
where fy is the CG parameter. In particular, Fletcher and Reeves [2] propose the positive value of
_ lgknal® 4)
B = g2
(referred to as BER), where || - || denotes the Euclidean norm. If the exact line search equation
diGxs1 =0 (5)

is satisfied, which is guaranteed if the steplength ox = a* is obtained by solving the minimization subproblem
o* = arg min, f(x;, + ady) exactly, then the above descent property with k replaced by k + 1 is also satisfied. Since
solving this subproblem exactly (referred to as exact line search) is impractical, inexact line search is usually used so
that the descent property may not hold. In this case, choice (4) is replaced by g, = 0 (i.e., direction (3) isreset to
that of the steepest descent) so that the descent property holds for all k (for further detail, see for example Fletcher [1],
Nocedal and Wright [3] and Pytlak [4]). Because this resetting may destroy the useful features of the CG method, in
certain cases, many choices for replacing the CG parameter FR formula have been proposed (see for example Hager
and Zhang [5] and the references therein). Ifexact line search is employed and f (x) is quadratic, all the
directions generated via (3) are mutually conjugate. Hence, the gradients of f(x) at the different iterates are
mutually orthogonal, i.e., we have

Gk+19k = 0, (6)

and these formulae are reduced to the FR one (see e.g. [1, 3, 4]).
Our aim in this paper is to maintain the global convergence property of the FR method and improve its behavior
by scaling formula (4) by &, before using it in (3) (as in Al-Baali [6]). Therefore, the resulting scaled direction

dir1 = —Gk+1 + SkBrdi (7)

would be close to the steepest descent one if &, is chosen sufficiently close to zero. Hence, by continuity, the
corresponding class of scaled CG methods (referred to as ScFR when S, = BE®) would satisfy the descent and
convergence properties that the steepest descent method has.

It is important to mention that Powell [7] and essentially Zoutendijk [8] show that the FR method with exact line
searches converges globally, in the sense that lim,_,, inf || g, || = 0. This result has been extended by Al-Baali [9] to
inexact line searches with a fairly accurate values of «, known as the first practical global convergence result for the FR
method (see for example Nocedal [10]). Al-Baali has obtained this result based on showing that the sufficient descent
condition

digr < —cllgell® ®
holds for some positive constant ¢, assuming the steplength «, satisfies the strong Wolfe conditions
fis1 < fie + pargidi, | Gierr dic | < —0gigdy, 9)

forO<p<o< % It is worth noting that a value of a;, > 0 which satisfies these conditions, for 0 < p < % and p <

o < 1, can be found in a finite number of operations whenever the above descent property holds (see for example
Al-Baali and Fletcher [11] and Fletcher [1]).

In Section 2, we show that the ScFR class of methods with &, € (0, 1] maintains the sufficient descent property
that the FR method has for the strong Wolfe conditions (9) with ¢ < % We will also enforce this property for any
line search technique with sufficiently small values of the scaling parameter &. In addition, that section defines some
choices for &,. In Section 3, we introduce the quasi-Newton feature to &, for the FR method as considered by Al-Saidi
et al. [12] for the scaled CG methods. Section 4 shows that the proposed class of ScCFR methods maintains the global

convergence property that the FR method has when the strong Wolfe conditions are employed with o < % In

Section 5, we study the behavior of the proposed ScFR methods by applying them to a set of standard test
problems. It is shown that the proposed scaling technique improves the performance of the FR method significantly
in many cases. Finally, Section 6 concludes the paper.

2. The ScFR Class of Methods
We now define the scaled FR (ScFR) class of methods as suggested by Al-Baali [6] for the CG class of methods.

The author replaces the search direction (3) by (7), for k > 1, where 0 < §, <1 is the scaling parameter, and
maintains d, = —g,. Since the value of &, = 0 reduces this direction to that of the steepest descent, it follows by
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continuity that the ScFR class of methods, with values of &, sufficiently close to zero, has the sufficient descent and
global convergence properties that the steepest descent method has.

We first define some values of &, that enforce the sufficient descent condition (8) as follows (Al-Baali [6]). We
note that this condition holds for k = 1 and ¢ = 1. We now prove this condition for k > 1 as follows. On substituting
(7) into (8) with k replaced by k + 1, we have

IFi1dier = =N Grsal? + EBrdh s < —cllgrsall’. (10)
Hence,

ExBr(di grer) < (1 — Ollgpsall® (11)
or equivalently by the FR formula (4),

&dEgrs) < (1 = O)llgill?, (12)

where 0 < ¢ < 1. This upper bound on c is included because condition (11) cannot hold for ¢ > 1 and df g,.,=0 (the
exact line search option). We note that (11) holds if its left hand side is nonpositive or either &, dr gy, 0r fx is
sufficiently close to zero.

This paper assumes that the CG parameter Sy is given by the FR formula (4), unless otherwise stated, and defines
&, such that (11) holds whether dy satisfies the sufficient descent condition (8) or not. For convenience, we start with
the following result of Al-Saidi et al. [12] assuming S satisfies (8).
Theorem 1. Consider the ScFR class of methods, defined by (2), (4) and (7) and assume that the search direction
(7) with &= 1 satisfies the sufficient descent condition (8). Then, this condition remains satisfied for 0 <&, <1.
Proof. When k =1, d,= —g, and hence condition (8) holds with ¢ = 1. For k >1, it follows from (7) that

Gir1dics1 = _"gk+1”2 + &eBrc(di Grer1)- (13)
If B (dr gr+1) <O, it follows that

T 2
Jie+1k41 < =Gkl

which is (8) with ¢ = 1 and k replaced by k + 1, since &, > 0. Otherwise, if B, (dLgk+1) >0, then (13) implies

Gk+19k41 < _"gk+1”2 + B (di Gres 1),
since &, <1. Hence, by the theorem assumption we obtain (8) with k replaced by k + 1. o

We note that this result remains valid for any value of ¢ > 0 if the choice &, = 1 is used when B, (df gyx.+1) <0 as
we consider below for some choices of &. It is important to note that if the strong Wolfe conditions (9) are
employed with ¢ < 1/2, then the sufficient descent condition (8) holds for ¢ = ¢, = 11__2: (see Al-Baali [9], for detail).
Thus, for any choice of ¢ < ¢4, & = 1 and the ScFR method is reduced to the standard FR method. However, using
values of ¢ > ¢, require defining &, <1, for which we suggest the following way.

If condition (11) holds with &, = 1, then we use this value so that the CG search direction is unchanged.

Otherwise, we choose &, such that condition (11) holds with equality. Thus, we choose

1-Olgrsl® . (14
. = % i Be(dl grn) > (1= Ollgesal?
k +

1 otherwise,

or equivalently for the SCFR method,

A -olgl® . (15)

&= Tkk if diGiesr > (1= Ollgell?,
k +1

1 otherwise.
In this case, it follows that

(1= gesl® (16)

g =g kg > A= Olgl’,
kJdk+1
,fR otherwise

which shows that scaling is employed only when « is sufficiently remote away from the right hand side of a
minimizer «. To beprecise, & = 1 isused when B (dfgx+1) < 0, although inthiscase (11) holds for any value of
&, > 0. To obtain the least change in the CG parameter, ¢ should be chosen close to zero (in practice, the value
of ¢ = 0.001 seems reasonable as observed by Al-Saidi [13]). We also note that &= 1 usually is used for a fairly
accurate line search (o < 0.1). Thus,we consider the outline of the scaled FR (ScFR) method as in Algorithm 1
that is reduced to the standard FR method if &,=1 for all k. If in Step 2 exact line searches (or nearly so) are
employed for all k, then Algorithm 1 is reduced to the standard FR method. In practice, we observed that the above
scaling technique improves the performance of the FR method significantly in several cases (see Section 5, for details).
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Algorithm 1 (ScFR)

Step 0: Givene>0,0<c<land Xy, letd;= —g, andsetk =1

Step 1: Stop if ||g1lI<e

Step 2: Compute a positive steplength o, which satisfies certain standard conditions
Step 3: Compute a new point by (2); xpy1 = X + a,dy

Step 4: Define the FR parameter S, by (4)

Step 5: Define &, (e.g., by (14))

Step 6: Compute a new search direction by (7); dys1 = —gx+1 + ExBrdi

Step 7: Set k :=k +1 and go to Step 1.

It is important to realize that the choice of &} in (15) is independent of the line search technique.
However, if the strong Wolfe conditions (9) are employed, the first case of (15) could be replaced by a smaller value
to obtain

a-9lgd® an

: T _ 2
613 = U|d£gk| lfdkgk+1 > (1 C)"gk" )

1 otherwise.

This choice satisfies the sufficient descent condition (11) with &, = &2, because &2 < & and we have df gy., >0 and

E(dl grs1) < E(dEgrs1) = (1 = ¢) lgill>. Indeed, replacing &2 by a smaller value, which we consider below,
maintains the sufficient descent condition (12). In practice, for ¢ = 0.001, we observed that choice (17) works better

than (15).
We now consider the rearrangement of Al-Baali [6] for the FR parameter as
Br = U£9k+1: Nk = Iﬁ;+||12 ) (18)
k

which is possible for most CG methods (e.g., see Hager and Zhang [5] and Narushima and Yabe [14] and the
references therein). Using this form and observing that

di gr+1 < Ndillllgpesa Il (19)
the first case of (15) can be reduced to obtain

i L2 )
& = {(l oty g > (1= Olgl® )

ldrlllgr+l
1 otherwise.

To increase the interval for the scaling parameter, we use (19) again in the condition of (20) so that we obtain
the following choice of Al-Baali [6]:

(1)
lxllgrsal

1 otherwise .
We note that the interval for using &, < 1 in (21) is larger than or equal to that used by (20) so that sufficiently

large values of ¢ might be used. Indeed, in practice, we observed that choice (17) is preferable to (21). Thus, we
will not provide further details about (21).

_ 2
o = {M if ldelll il > (1= ) llgicl®

3. A Quasi-Newton Feature

One feature for choices (20) and (21) is given by Al-Baali [6] who shows that the values of &, < "T(]m;:”,
where 7 for the FR formula is given in (18), enforce some positive eigenvalues of the ScCG matrix
Hiyr =1 = &edieni, (22)
noting that direction (7) (similar to that of Perry [15]) can be rearranged as follows
diev1 = —Hkr19k+1: (23)

Thus, we introduce another feature to the ScFR method like that of Al-Saidi et al. [12] for the CG methods by
modifying the scaling parameter &, such that ideally the quasi-Newton condition

Hyp1Yie = Ok, (24)
Where

Ok = X1 — X Vi = Gks1 — 9o (25)

holds, assuming H, ., approximates the inverse of Hessian of f(x) at x,. Because, in general, we cannot fulfill
condition (24), we let
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$ic = argmin | Hy1vic = 6ill = arg min [y, = 8 = Emivid)del (26)
Solving this minimization problem (see for example Al-Saidi et al. [12]), it follows that
g9 = emdw'd @7
T nkyilagl®”
On substituting n,, for the FR formula (18), (27) is reduced to
£ = ie=810 " dicligei® (28)
= e

Vi Gierlldil’

To maintain the search direction differs from that of the steepest descent, the values of &, should be bounded
away from zero. Since, in addition, the first case of (15) enforces the sufficient descent condition (12) with equality,
and that replacing &, by a smaller value keeps inequality (12) holds, we may enforce &, € [€, 1], where € is a small
positive number. Thus, we modify (15), which defines &z, to

(1 —)ligell? , ) (29)
T if d7 grsr > (1 = 0)llgiell? and €7 ¢ [2,1],
Ak Gre+1
= A - Oligel?
min {Ti,f,f} ifdlgrsr > (1= )lgell® and & € [¢,1],
t A Gr+1
1 otherwise.
and modify (17), which defines &7, to
A=)l gl? . . (30)
I(TT ifdlgers > (1 —o)llgl” and & ¢ [¢,1],
p” { kYK ,
Kk = (@ =olgkl . n
n {—T ; .f:f} if df gesr > (1= O)ligiell* and & € [¢,1],
k Uldkgkl
1 otherwise.

Since choices (29) and (30) can be rewritten as f,‘ji = min(max( {,f,é),ili), for i = 1,2 respectively, we observe that

It < &L Similarly, we modify any &£, for i = 1, 2, 3, 4, to &= min(max(&/?, ©), £). In practice, we observed that

these modified choices with ¢ = 0.1 and ¢ = 0.001 improves the performance of &2 (further possible choices and

details can be seen in Al-Saidi [13]). Therefore, the above choices for &, are chosen to enforce the sufficient descent

condition as shown in the following result which is an extension to Theorem 1.

Theorem 2. Consider the ScFR class of methods, defined by (2), (4) and (7), and let &, = & or & = o, for

i = 1,2,3,4. Then, the sufficient descent condition (8) holds for all k > 1.

Proof. It is obvious for k = 1. Fork> 1, &, = &, , 1 <i <4, are chosen such that inequality (12) holds which is

equivalent to the sufficient descent condition (10). Since &' < &L, 1 < i <4, inequalities (11) and (12) remain

satisfied so that condition (10) holds. Hence, condition (10) implies (8). i
Introducing other features to the scaling parameter &, are also possible. In particular, we could introduce the

T
useful conjugacy condition y% d,,,= 0. This equation with (7) holds if &, = & z‘é’;jﬁ which exists if the Wolfe
k
condition holds. Similarly if we consider the modified conjugacy condition of Dai and Liao [16], Y% dj.1= td% grsq

_ k—td)Tgker

where t > 0 is a scalar, we obtain &, = 5o Ta which reduces direction (7), for any p to the class of Dai and
kVk %k

Liao.
It is worth noting that Al-Baali [6] defines a bound on &, to ensure that matrix (22) ispositive definite, but we do
not consider it here because it may increase the value of &, so that the sufficient descent condition (11) may not hold.

4. Global Convergence Property

We now study the possibility of imposing the global convergence property
lim inf llg,ll = 0 (31)

to the ScFR methods which we proposed in the previous sections such that the sufficient descent condition (8) holds

for all k > 1. Therefore, we first state the following standard assumptions on the objective function.

Assumption 1.

1. The level set £ = {x: f(x) <f(xg)} is bounded,

2. The objective function f is continuously differentiable in some neighborhood N of L,

3. The gradient g(x) is Lipschitz continuous, that is there exists a positive constant L such that
lgx)—g@EI<LlIx—X%I forallx,X¥ € V. (32)
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Supposing Assumption 1 holds, Powell [7] and Zoutendijk [8] prove the ideal result that the FR method, defined by
(2), (3) and (4), satisfies the global convergence property (31) if exact line searches are used. This means that
impractical choice of ¢ = 0 in (9) is considered. Al-Baali [9], however, considers the practical strong Wolfe

conditions with ¢ <% to show that the sufficient descent condition (8) holds and extends the above global

convergence result to the practical FR method. This result has been extended by Touati-Ahmed and Storey [17] to
the interval 0 <, < BER, while Gilbert and Nocedal [18] have extended it to

—BER < B < BER. (33)

Thus, we obtain the following convergence result for the ScFR methods.
Theorem 3. Suppose Assumption 1 holds and let the ScFR class of methods be defined by (2), (4), (7), and |&,| < 1.

If the strong Wolfe conditions (9) are employed with o <%, then the ScFR methods converge globally in the

sense that limit (31) holds.

Proof. The ScFR methods are defined in the previous sections like the FR method, except that the FR formula
BER > 0, defined by (4), is replaced by SR = & BER. Because |&| < 1, conditions (33) hold and hence the
result follows from that of Gilbert and Nocedal [18]. i

5. Numerical Results

To show the efficiency of the proposed scaling technique for the Fletcher-Reeves method, we describe some
numerical results. The results are obtained by applying the FR method with several scaled choices to a set of 46
different type of unconstrained optimization problems; their function names are given in Table 1. They belong to the
CUTE [19] and Moré, Garbow and Hillstrom [20] collections of test problems. We also include the simple quadratic
function of Al-Baali (see for example Al-Saidi [13]). For each type of problem, we let the dimension n varies as 2,
10, 100, 1000, 10000 so that the total number of test problems is 230. All the ScFR methods that we consider are
defined by Algorithm 1 and differ only in Step 5 for defining the scaling parameter &, unless otherwise stated. For the
purposes of an accurate comparison, we use in Step 2 for all methods the Matlab line search program routine of Al-
Baali (which essentially written in Fortran by Fletcher) which computes a value of the steplength oy that satisfies the
strong Wolfe conditions (9) as described in Al-Baali and Fletcher [11] and Fletcher [1]. The run was stopped as in
Step 1 when either || g, || <107 or the number of iterations reaches 10°. We consider the following algorithms:

e FR; the standard FR method, defined by Algorithm 1 with p = 10 and ¢ = 0.1 in Step 2 and & = 1 in
Step 5.

Table 1. The test functions.

Number  Function’s name Number  Function’s name
1 A Simple Quadratic function 24 Trecanni
2 Extended White and Holst 25 Zettl
3 Extended Rosenbrock 26 Shallow
4 Extended Freudenstein and Roth 27 Generalized Quartic
5 Extended Beale 28 Axis Parallel hyper-ellipsoid
6 Extended Wood 29 Leon
7 Raydan 1 30 Generalized Tridiagonal 1
8 Generalized Tridiagonal 1 31 Generalized Tridiagonal 2
9 Diagonal 4 32 POWER
10 Extended Himmelblau 33 Quadratic QF1
11 Extended Hiebert 34 Extended quadratic penalty QP2
12 FLETCHCR 35 Dixon and Price
13 Extended Powell 36 Quartic
14 NONSCOMP 37 Diagonal4
15 Extended DENSCHNB 38 Colville
16 Extended quadratic penalty QP1 39 Schumer Steilitz
17 Extended Penalty | 40 Sphere
18 De Jong’s 41 Sum Squares
19 Hager 42 Powell Singular
20 Extended Maratos 43 Qing
21 Cube 44 Generalized PSC1
22 Three hump function 45 Perturbed Quadratic
23 Booth 46 Diagonal 2
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e ScFRi; same as FR except that in Step 5, &, = &L, for i = 1, 2, 3, 4, defined by (15), (17), (20), and (21),
respectively.

e ScFRgi, i <4; same as SCFRi except that in Step 5, & = &' = min(max( §/,¢), &%) with ¢ = 0.001, where
&l is given by (28).

We observed that ScFR1, ScFR4 and ScFRqi, for i = 1, 3,4, are less efficient than the others. Therefore,
we will not give further details about them. Although it is possible to study the behaviour of other methods that we
considered here, we do not consider them in our comparisons because they were less efficient than the above
algorithms.

For a useful comparison, we used the performance profiles tool of Dolan and Moré [21], which compares some
solvers on the above set of problems in terms of the number of line searches, the number of function evaluations, the
number of gradient evaluations and CPU time, required to solve the problems. In general the performance profile
Py (1), T 20, is defined by the formula

number of problems where log, (TP‘M) <7 (34)
Py (1) =

’

total number of problems

where 75y is the performance ratio of the number of line searches (similarly for the other measures) required to solve
problem p by a method M to the lowest number of line searches required to solve problem p. The ratio 7p y is set to oo
(or some large number) if the method M fails to solve problem p. The value of Py (1) at T = 0 gives the percentage of
test problems for which the M method is the best. The value for t large enough is the percentage of test problems that
M method can solve. The relative efficiency and reliability of each method can be directly seen from the performance
profiles: the higher the particular curve, the better is the corresponding method.

The performance profiles for the FR, ScCFR2, ScFR3 and ScFRqg2 algorithms are given in Figures 1. We observe
that all scaling techniques improve the performance of the FR method substantially. We also observe that SCFR2 is
slightly better than ScFRg2 and both of them perform better than ScFR1. Thus, SCFR2 seems to be the best of the
ScFR algorithms.

fR

—ScFR2 | 1

—ScFR2 | |

~SufR3 | |

Parformance Profile
Parformance Profile

‘ : SefR3 | |
o e | 9 ]

4 uk -=SeFRe2,

(1 My |

[} 1 2 3 i 5 6 1 ) 1 2 1 4 § 6
T T

(a) # Line searches (b) # Function Evaluation

' ‘ - .

i
—SR2 |-

ScFR3

Pearformance Profile

- SofRQ2

] 1 2 3 i 5 6§ 2 1 1 § b

(c) # Gradient Evaluation (d) CPU time

Figure 1. Comparison among FR, ScFR2, ScFR3 and ScFRq2 for ¢ = 0.1.
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To give further idea about the behaviour of these methods for a large value of o, we repeated the run for the
previous four methods but with ¢ = 0.9 instead of ¢ = 0.1 in Step 2. The comparisons are given in Figures 2.
Although these figures show that the FR method failed to solve about 40% of the test problems which is expected,
the three ScFR methods solved almost all problems successfully. Thus, the ScFR methods are superior to the FR
method.

To choose the best choice for o, we repeated the run for the best SCFR2 method, using the values of ¢ = 0.1, 0.4,
0.7,0.9 and 0.9999 (for the first value, the method is referred to as ScFR2). The comparisons are given in Figures
3. We observe that the performance of the SCFR method as improves as o decreases in terms of the number of line
searches, function evaluations and gradient evaluations. However, the choice ¢ = 0.1 is significantly better than the
others in terms of CPU time. Thus, & = 0.1 is the best value for all the measurements. Another useful observation is
that the scaled methods solved all problems for not only ¢ < 1/2 but also for ¢ = 1/2. Thus, the scaled technique
improves not only the good behaviour of the FR method when ¢ is sufficiently small but also solved problems that
cannot be solved by the FR method.

We now compare the ScFR2 method with some useful CG methods such as the Polak-Ribiere-Polyak [22, 23],
Dai-Yuan [24] and Hager-Zhang [25] methods. These methods (referred to as PRP, DY and HZ) are defined by
Algorithm 1 with &, =1 in Step 5 and f in Step 4 is given respectively by the following formulae:

R FR

Parformances Profile
Parformance Profile

—SoFR2 —SCFR?
o SRS || b SoFR3
o —SeFRe2 | Uf ~=ScFRQ2
| | |
0. © o % [1] 1 12 14 15 .I @ o % [1] 1 12 1" 15
ol T

(a) # Line searches

—FR

-
b
T

Parformancea Profile

o —SeFR2

o SCFR3 SCR3

ur -=SCFRQ2 —SoFRg2

IO 5 1 15 u“ 11 (1] 1 12 " B

T T
(c) # Gradient Evaluation (d) CPU time
Figure 2. Comparison among FR, ScFR2, ScFR3 and ScFRq2 for ¢ = 0.9.

PRP _ yggk+1 (34)
S PATE
DY _ Igiesall” (35)
* dlt]/k

and
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T
hz (y Il ) e (36)
“ “ Vi di “ Vi di

Using ¢ = 0.1, the comparisons of the methods are given in Figures 4. We see that ScCFR2 performs a little better than
DY and a little worse than PRP and HZ. Thus, the ScFR2 method is efficient and there is a room for improving it. The
above numerical results show indeed that all the ScFR methods perform well and the ScCFR2 method is the best of them.
6. Conclusion

We show that introducing a simple scaling technique to the well-known Fletcher-Reeves method maintains its global
convergence property, improves its performance significantly and solved problems that cannot be solved by the FR method.
Since the ScFR methods work well when the strong Wolfe conditions are used with o > 1/2, it is expected to extend their
global convergence to o < 1. It is also worth testing further possible choices for the FR scaled parameter (e.g., similar to
that applied to the DY method by Esmaeili et al. [26]).
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