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أسلوب بييز: ريب الاحتمال الذيلي لتوزيع تتق  

 محمد فريوان الصالح 

لقد تم استخدام أسلوب بييز في تقريب الاحتمال الذيلي لتوزيع ت ، حيث تم ايجاد مجموعة من الحدود الدنيا والعليا                      :   خلاصة
وقد تمت مقارنة   . حدود مناسبة للاستعمال    وبالاعتماد على بساطة هذه الحدود ودقتها ، يمكن القول بان هذه ال            . لهذا الاحتمال   

 .و قد تم بحث إمكانية استخدام هذا الأسلوب لتوزيعات مهمة أخرى. بعض هذه الحدود بما هو متوفر من تقريبات 
 

ABSTRACT: A Bayesian technique is used to approximate the tail probability of the t-distribution. A 
set of upper and lower bounds are obtained for this probability. Based on their simplicity and accuracy, 
these bounds are very adequate to use. Some members of these bounds are compared to some existing 
approximations. The possibility of using this new procedure for some other distributions is explored.  
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1. Introduction 

I f   is a random sample from the same normal distribution with mean nXXX ,..., 21 θ  and 
variance , both being finite but unknown, and if 2σ ))1/()(and)/( 22 −−==∑ ∑ nXXSnX iiX , then 

the statistic SXn /)( θ− has a t-distribution. This statistic is very useful in the construction 
of tests and confidence intervals of θ . For a brief recent description of this distribution and its 
properties, see Stuart and Ord (1994) and Johnson, et al. (1995). 

The importance of approximating the tail probability of this distribution is due to the fact 
that this probability is frequently used in constructing confidence intervals or in finding the p-
values of some statistical tests. There has been intensive work on approximating the t-
distribution which produced approximations of very high accuracy, though some times very 
complicated. Fisher (1935) gave a direct expansion of the probability density function and 
hence of );( νtF = ) as a series in , where v  is the degree of freedom. Elfving 
(1955) suggested the following approximation: 
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=σ ,  and Φ φ  are respectively, the cumulative distribution and the density 

function of the standard normal distribution. Cucconi (1962) obtained the following 
approximation: 
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where is a number with tail area (probability) (1-α,vt α ). Pinkham and Wilk (1954) suggested 
the use of the expansion: 
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 is the remainder term.  mR
Abu-Dayyeh and Ahmed (1993) considered a similar problem. They provided an upper 

bound for Mill ' s ratio )(/))(1()( xxxR φΦ−= . They showed that 5.22 )),(max()( −+≤ πxxxR

)(xR

. 
Al-Saleh (1994) initiated a Bayesian approach to approximate Mill ' s ratio and hence to 
approximate the tail probability of the standard normal distribution. He obtained a sequence of 
upper bounds and a sequence of lower bounds of , each converges to .  )(xR

As mentioned by Johnson et al. (1995), the available tables of the t-distribution are more 
than sufficient for almost all applications. However, a major concern raised by the above 
authors, is how to quickly evaluate the tail probability. It is well known that the t-distribution 
converges to the normal distribution as  goes to infinity. Thus, for v , if is the 
distribution function of the t-distribution then 

v 30≥ )(xF
)()( xxF Φ≈ . However this approximation is 

not so accurate for small . Recently, Li and Moor (1999) suggested the approximation of 
by 

v
)(xF )( xλΦ , whereλ  is a shrinkage factor and its value is given by 
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This approximation has a much simpler form and very accurate when compared with many of 
the approximations listed in Johnson et al. (1995). A weak point of this approximation is that 
it is written in terms of Φ , which has no closed form and has to be obtained from tables. For 
other approximations of the t-distribution see Johnson et al. (1995) and Gleason (2000). 

In this paper we use the Bayesian approach introduced by Al-Saleh (1994) to obtain new 
approximations of the tail probability of the t-distributions. These approximations, which 
turned out to be of a simple form, can give very accurate values. The possibility of applying 
this approach to some other distributions is discussed.  

2.    Derivation of the Bounds 

Assume that X  is a random variable, which has a t- density with parameters θ  and . 
Then the density of 

v
X  is  

)1(5.21 ))(1(
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where  is a positive number and v x  is any real number. Assume further that the median θ  is 
positive. Let )(θπ be an improper uniform prior of θ , defined by 1)( =θπ for 0>θ  and zero 
otherwise. Then the posterior density of θ  for given x  can be written as: 
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where stands for the t density with parameter (.)f ν  and zero median and stands for the 
corresponding cumulative distribution. The main object of this paper is to approximate the tail 
probability, 1 . 

F

)(xF−
Now, if ν =1, the distribution function of the t-distribution is the same as that of the 

Cauchy which has a closed form. For , the posterior expected value of  is finite for 
 v  and is given by: 
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Since 0>θ , we have for all values of 0)|( >−xE kθ x . Thus, 
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Now, the last integral can be written as: 
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Integrating by parts, it can be shown that for 1;,,2 −≤= vkkLi  and  we have 2≥v
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Thus, using (3), upper and lower bounds can be obtained for the tail probability of the 

standard t-distribution, i.e. for the quantity )(1)(0 xFx −=µ . 
For even, i iµ can be written as  
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For odd, i )(xiµ can be written as  
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Thus, for k  with  and v< 110 == CB 00 =A  we have 
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Hence, for k even we have: 
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while for k odd we have 
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where  is the lower bound of 1 and U is k  upper bound of 1 .  )(xLk
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3.    Numerical Calculations of  and U  )(xLk )(xk

To see how accurate and U are, the two bounds have been obtained for some 
values of  and . For =10 and k =3, 4, the two consecutive bounds are: 
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For =15, the two bounds are: v
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And for ν =20, we have: 
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Here,  
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For a given  and suitable , we take the average of the two bounds as an approximation of 
the tail probability 1 , i.e. for  even  
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Table 1: Values of ,)(*

4 xα 1α , 2α  and 3α  
 

v  x Exacα  )(*
4 xα
 

1α  2α  3α  

10 1.812 .050 .0505 .0583 .0639 .0500 
 2.228 .025 .0252 .0288 .0309 .0249 
 2.764 .010 .0100 .0093 .0123 .0098 
 3.169 .005 .0051 .0041 .0063 .0048 

15 1.753 .050 .0506 .0595 .0609 .0500 
 2.131 .025 .0252 .0310 .0289 .0250 
 2.602 .010 .0101 .0132 .0111 .0100 
 2.947 .005 .0050 .0054 .0054 .0050 

20 1.725 .050 .0505 .0599 .0610 .0500 
 2.086 .025 .0252 .0318 .0288 .0250 
 2.528 .010 .0101 .0136 .0111 .0100 
 2.845 .005 .0050 .0063 .0054 .0050 

 
 

)(*
4 xα  is compared to the approximations provided by Elfving (1955), Pinkham and Wilk 

(1954), and Li and Moor (1999) denoted by 1α , 2α  and 3α respectively. Table 1 contains the 
values of ,)(*

4 xα 1α , 2α  and 3α for selected values of  and v x .  The values of x  are those 
values that are used frequently in applications, i.e. values that correspond to exact tail values 
of .0500, .0250, .0100, and .0050. It can be seen from this table that the value of is very 
accurate and closer to the exact value than the first two approximations. Furthermore, the 
values of  are almost as accurate as the values of 

)x(*
4α

)(*
4 xα 3α . Note that more accurate bounds 

can be obtained using higher values of . For example if we take =5, then  k k
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Table 2 contains the values of ,)(*

5 xα 1α , 2α  and 3α for selected values of x  when =10. It 
can be concluded from this table that the values of are even more accurate than 

v
)x(*

5α 3α .   
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Table 2:  Values of ,)(*
5 xα 1α , 2α  and 3α  

 
v  x Exacα  )(*

5 xα
 

1α  2α  3α  

10 1.812 .050 .0501 .0583 .0639 .0500 
 2.228 .025 .0250 .0288 .0309 .0249 
 2.764 .010 .0100 .0093 .0123 .0098 
 3.169 .005 .0050 .0041 .0063 .0048 

 
 
4.    Other Applications of the Technique 

The Bayesian approach, which is used in this paper to approximate the t-distribution, was 
used by the author to approximate the normal distribution. An inspection of the procedure 
reveals that it can be applied to some other distributions. 

If  X has a density that is symmetric around zero and if we let )(xf θ−= XY , where θ  
is a location parameter then the density of Y  is )( θ−yf . If we impose a uniform prior on θ  
of the type 1)( =θπ  for 0≥θ  and zero otherwise, then the posterior density of θ  given x  is 
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All moments of this density are nonnegative and hence as in section (2), it can be shown 

that 
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Now, depending on the functional form of , it may be possible to obtain a recursive 

formula for 
)(xf

)(xiµ  like the one in equation (3).  
We believe that some distributions such as the lognormal, non-central t and other location 

types-distribution can benefit from this procedure. Another useful application of the procedure 
is for estimating the cumulative distribution of the bivariate normal and other bivariate 
distributions. 

5.    Concluding Remarks 

There has been considerable work on the possible approximations of the tail probability 
of the t-distribution. Simplicity as well as accuracy are important factors in assessing the value 
of an approximation. In this paper, we use a Bayesian approach to provide a set of upper and 
lower bounds of this probability; the set consists of [ ]1−v  members. Any member of the set or 
a combination of members can serve as an approximation. Taking the average of two 
consecutive lower and upper bounds can be a good choice. It turns out that this approach is a 
suitable one in providing simple and accurate approximations and can be used for similar 
problems. Unlike many other approximations, the current procedure doesn’t depend on   ).x(Φ
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