
When Cronbach (1951) introduced coefficient alpha more than

half a century ago, he correctly anticipated the usefulness of this

index of internal consistency. It has proven to be the most

popular reliability estimation method by far (Hogan, Benjamin

& Brezinzki, 2000), and social sciences citations of Cronbach’s

1951 article run into several hundreds per year (Cronbach,

2004). Cortina (1993) refers to this coefficient’s use not only in

the various areas of psychology, but also in sociology, statistics,

medicine, counseling, nursing, economics, political science,

criminology, gerontology, broadcasting, anthropology and

accounting. Undoubtedly this coefficient’s popularity may be

attributed to the fact that it doesn’t require more than one test

administration (as does the test-retest method), or more than

one parallel test form (as does the parallel-forms method), or the

splitting of a test into two parallel halves (as do the split-half

methods). 

Not only is Cronbach’s 1951 article the source of the highly

popular coefficient alpha, but it still continues to stimulate all

kinds of methodological comments and developments. There

has been a continuous stream of attempts to derive alternative

coefficients for situations where the assumptions underlying

coefficient alpha have been relaxed (cf. Lucke, 2005). Other

methodological contributions (e.g., those of Cortina, 1993;

Henson, 2001; Schmitt, 1996; Streiner, 2003 and Thompson,

2003) have had a more modest aim, namely, to explain some of

the anomalies and misconceptions associated with coefficient

alpha. These contributions addressed, amongst others, the

possibility of relatively high alpha values for multidimensional

item data and the occurrence of negative alpha values. However,

it would appear that these messages still haven’t reached all of

those who have access to computer programmes for the

computation of coefficient alpha – it is not uncommon to find

applications of coefficient alpha as a test of unidimensionality

or as an internal-consistency index across subtests (of relatively

independent constructs) in some locally published research.

To explain the intricacies of coefficient alpha, the authors

referred to above used numerical examples of item variance-

covariance (VCV) matrices which may be less than helpful in

explaining how such aberrant matrices have come about in the

first place. The purpose of the present article is to revisit these

earlier contributions but to start off the explanations involved in

terms of simple item data matrices rather than item VCV

matrices. In the process, some inconsistencies and omissions in

at least some of these contributions will be noted and clarified.

A clear understanding of coefficient alpha may prevent its

incorrect use and interpretation. Finally, some of the alternatives

to coefficient alpha for situations in which some of its

assumptions do not hold will be mentioned. But first, a review

of the assumptions, derivation and computation of this

coefficient is presented.

ASSUMPTIONS AND DERIVATION 

OF COEFFICIENT ALPHA

The computation of coefficient alpha is indicated when scores

on a composite test (the total scores on a set of items) are to be

interpreted as indicative of some construct that presumably

underlies all the items. In other words, if one person obtains a

higher total score than another on such a composite test, the test

user would like to conclude that the former person occupies a

higher position than the latter on whatever construct the test

(questionnaire, etc.) is designed to measure. For this reason, it

makes no sense to compute coefficient alpha on the sum of

individuals’ responses to, for example, a set of biographical

questions (age, marital status, salary, etc.) even if the responses

to the various items have been converted into some common

metric. To interpret the total scores on such a set of items would

make no sense as they cannot be considered to be reflecting a

common underlying construct (e.g., something like a

“biographical trait”). In structural equation modelling

terminology, coefficient alpha may be said to become relevant

when we are dealing with effect indicators rather than causal

indicators of constructs (Bollen & Lennox, 1991).

Classical test theory decomposes an individual’s observed test

score, X, into a true-score and an error-score component. The

true score, T, is defined as a person’s mean over an infinitely

large number of independent applications of the test. A person’s

error score, E, on a particular test application is the deviation of

the observed score for that application from his or her (constant)

true score. Under certain assumptions (e.g., that error scores are

uncorrelated), it can be shown that the observed-score variance

(over persons) is equal to the sum of the true-score variance and

the error-score variance:

�²X = �²T + �²E

Reliability, then, is defined statistically as the ratio of true-score

variance to observed-score variance:

�rel = �²T/�²X, (1)
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Equivalently, it may be defined as the correlation between

strictly parallel tests,

�rel = �jk,

where strictly parallel tests j and k are defined to have the same

true score for any particular person i: Tij = Tik. Such tests have

equal observed-score variances, equal true-score variances, and

equal error-score variances. It can be shown (Lord & Novick,

1968) that for any pair of parallel tests, j and k, with true scores

t’ and t”, respectively, the true-score variances and true-score

covariance are equal:

�²t’ = �²t” = �²t’ t”. (2)

Moreover, it can be shown that the true-score covariance of any

pair of parallel tests is equal to the observed-score covariance of

such tests:

�t’t” = �jk. (3)

The derivation of coefficient alpha assumes that the

components (items or subtests) comprising the total test are

essentially tau-equivalent, which is a less restrictive assumption

than parallelism: individuals’ true scores on essentially tau-

equivalent components are allowed to differ by a constant, c: Tij

= c + Tik, so that true scores on essentially tau-equivalent

components, although unequal, are perfectly correlated. If, for

example, c = 0,68, one person may have true scores of 16,23 and

16,91 on such components whereas another may have true

scores of 12,19 and 12,87, respectively, on them. (So, such

components may be said to be essentially true-score equivalent,

hence the term essentially tau-equivalent, as true scores often

are denoted by �, pronounced tau.) Whereas parallelism implies

equally difficult items or tests, essential tau-equivalence allows

for differences in difficulty. For example, a spelling test

containing words such as computer and complication may show

higher true scores (be less difficult) for individuals than one

comprising of words such as commission and accommodation,

and yet these tests may be highly correlated. As the addition of

a constant (such as c) leaves variances and covariances

unaffected, Equations (2) and (3) apply with equal force to

essentially tau-equivalent components. (However, the observed-

score variances of essentially tau-equivalent components,

unlike those of parallel components, may differ.)

To understand coefficient alpha as a function of the variances

and covariances of the items comprising a test, it is instructive to

consider the VCV matrix for such items. For a test of J items,

there are J item variances and J(J – 1) covariances (cf. Tables 1b,

2b, 3b, and 4b for sample data). The diagonal elements

(indicated in bold) of such a J × J matrix are the variances of the

J items, and the J(J – 1) off-diagonal elements are the covariances.

The CVC matrix is symmetrical, by which is meant that for every

pair of items (e.g., the 2nd and 5th items) there are two (equal)

covariance terms, one (namely, s25) situated in the upper right

triangle (in the cell formed by the second row and the fifth

column) and its identical twin member (s52) located in the lower

left triangle (in the fifth row, second column). Because of this

equivalence the covariance terms in only one of these triangles

are typically shown. In common with the variance of any linear

combination of J variables, the variance of total test scores is

equal to the sum of all the entries in the VCV matrix for the

items comprising the test. So, the variance of the total observed

score X, where X = x1 + x2 …. xJ, may be given as:

�X² = ��j² +2�j�k�jk, k = j + 1, (4)

where ��j² = the sum of the J item variances; �jk = is the

covariance of items j and k; and the double summation sign,

�j�k, in this and in all subsequent applications, in view of k = j +

1, means that all the J(J – 1)/2 entries in only the upper right

triangle of the VCV matrix are summed. (Multiplication by 2

takes care of the equivalent covariances in the lower left

triangle.)

In the derivation of coefficient alpha (cf. Novick & Lewis, 1976)

as the reliability of a composite test, Equation (4) may be used

for the observed-score variance in Equation (1). Next, an

equation for �²T, the variance of total true scores, T (where T =

t1 + t2 + … + tJ), in terms of an observable quantity, is required.

Equations (2) and (3) make it possible to express �²T in terms of

the sum of item observed-score covariances,

�²T = [J /(J – 1)][2�j�k�jk],

which, upon substitution into Equation (1), yields:

� = [J/(J – 1)][2�j�k�jk/�²X], where k = j + 1. (5)

If one solves Equation (4) for 2�j�k�jk and substitutes the result

into Equation (5), the more familiar version of coefficient alpha

is obtained:

� = [J/(J – 1)][1 – (��j²/�²X)],

which may be easier for computational purposes. However,

Equation (5) proves to be more helpful in showing how

coefficient alpha is determined by the size and signs of the item

covariances.

Computation and interpretation of coefficient alpha

To facilitate the computations in the following numerical

examples, dichotomous items will be used. Coefficient alpha is

applicable to both dichotomous and multi-point items (such as

those in typical Likert scales), whereas the algebraically

equivalent Kuder-Richardson formula 20 is applicable to

dichotomous scores only (Cronbach, 1951). The variance of a

dichotomous item j, written in Roman symbols now to denote

sample statistics, is equal to

s²j = pj(1 – pj), (6)

where pj is the proportion of participants who answered item j

correctly (or endorsed it, in typical-performance measurement).

In all the following numerical examples every item is passed (or

endorsed) by half of the participants. As a result, these items

show the maximum variance (for dichotomous variables but not

for items with more than two categories) of 0,25 so that the

effect of item variance is kept constant. The covariance of items

j and k is equal to

sjk = pjk – pjpk, (7)

where pjk is the proportion of participants who passed (or

endorsed) both items j and k.

Consider the example of the item data matrix in Table 1a, where

rows refer to participants (A, B, etc.) and columns to items (1, 2,

etc.). In this example there is perfect consistency in responding

among the performances of the eight individuals on the five

items. Any person (such as A) who passes Item 1, is sure to pass

all of the other four items; any person (such as E) who fails Item

1, is bound to fail all of the remaining four items. The VCV

matrix in Table 1b indicates that in terms of Equation (6), every

item’s variance is equal to 0,50(0,50) = 0,25. In terms of

Equation (7) the covariance of every pair of items, say that of

Items 1 and 2, is equal to 0,50 – 0,50(0,50) = 0,25, p12 being

equal to 0,50 because four (A, B, C, and D) of the eight

participants passed both items 1 and 2. (Notice that a covariance

of 0,25 corresponds to a perfect item intercorrelation as r12 =

s12/s1s2 = 0,25/(�0,25)(�0,25) = 1,00.) As a result, the VCV matrix

contains five variance terms (there being five items), each equal

to 0,25, so that �s²j = 5(0,25) = 1,25. There are J(J – 1) = 5(4) = 20
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covariance terms (recall that those in the lower left triangle are

not shown), each equal to 0,25, so that 2�j�ksjk = 20(0,25) = 5. As

a result, in the sample analog of Equation (4) in which

population parameters �²j and �jk are replaced by sample

statistics sj² and sjk, respectively, the total-test variance is equal

to 1,25 + 5 = 6,26. By Equation (5), the sample estimate of

coefficient alpha for the five items is equal to = [5/4][5/6,25] =

1,00. A value of 1,00 for coefficient alpha is quite apt as the item

matrix on which it is based reflects perfect consistency in

responding.

TABLE 1

AN EXAMPLE OF COMPLETE INTERNAL CONSISTENCY

1.a: Item matrix

1 2 3 4 5

A 1 1 1 1 1

B 1 1 1 1 1

C 1 1 1 1 1

D 1 1 1 1 1

E 0 0 0 0 0

F 0 0 0 0 0

G 0 0 0 0 0

H 0 0 0 0 0

1.b: Variance-covariance matrix

1 2 3 4 5

1 0,25 0,25 0,25 0,25 0,25

2 0,25 0,25 0,25 0,25

3 0,25 0,25 0,25

4 0,25 0,25

5 0,25

Table 2a presents the other extreme as there is no consistency

among the individuals’ scores on the items in this example. If a

person passes any particular item, there is no way of telling how

he or she would fare on any other item. For example, whereas

both individuals A and B pass Item 1 and also pass Item 2,

individuals C and D, who also pass Item 1, fail Item 2, and so on.

Now, if we follow the same procedures as before, the covariance

of every pair of items is found to be equal to 0,25 – 0,50(0,50) =

0,00. The VCV matrix consists of five variance terms, each of

which is equal to 0,25, and 20 covariance terms, each equal to 0.

The variance of the total test, therefore, is equal to 5(0,25) +

20(0,00) = 1,25, and coefficient alpha equals [5/4][0/1,25] = 0.

Once again, the obtained value is fitting because the value of

zero reflects complete inconsistency in responding.

TABLE 2

AN EXAMPLE OF COMPLETE INTERNAL INCONSISTENCY

1.a: Item matrix

1 2 3 4 5

A 1 1 1 1 0

B 1 1 0 1 1

C 1 0 1 0 0

D 1 0 0 0 1

E 0 1 1 0 1

F 0 1 0 0 0

G 0 0 1 1 1

H 0 0 0 1 0

1.b: Variance-covariance matrix

1 2 3 4 5

1 0,25 0,0 0,0 0,0 0,0

2 0,25 0,0 0,0 0,0

3 0,25 0,0 0,0

4 0,25 0,0

5 0,25

An intuitively meaningful definition of coefficient alpha is that

it is the mean of all possible split-half reliability coefficients that

could be determined for a test (Cronbach, 1951). The value

obtained for any split depends to some extent on that particular

split, for example, whether it consists of the first half of the items

against the second half, or all odd-numbered items against all

even-numbered items. As the mean of all such split-half

reliabilities, coefficient alpha is a more stable internal-

consistency estimate than that based on any particular split.

However, the present split-half reliabilities are not those

obtained by correlating two parallel split halves and stepping up

the obtained value by means of the Spearman-Brown formula.

Instead, it is the mean of the Rulon-Flanagan split-half

reliabilities that are computed by:

rrel = (4s12)/sX²,

where s12 is the covariance of two essentially tau-equivalent test

halves (Feldt & Brennan, 1989).

Finally, if we bear in mind the relation between correlation and

covariance, r12 = s12/s1s2, it follows that coefficient alpha

somehow has to be related to the item intercorrelations. If we

define the average item intercorrelation, rjk, as follows,

rjk = [2�j�ksjk/J(J – 1)] /[�jsj²/J],

coefficient alpha of the composite of J items can be shown to

result from applying the Spearman-Brown formula to rjk (Feldt &

Brennan, 1989): 

� = J rjk/[1 + (J – 1) rjk]. (8)

COEFFICIENT ALPHA AND DIMENSIONALITY

In factor-analytic terms, the observed-score variance of a

composite test may be broken down into common-factor

variance (where common factors are those on which several items

show high loadings), specific-factor variance (specific factors

being those on which only individual items load non-negligibly),

and residual error variance. Coefficient alpha is related to the

proportion of common-factor variance (as opposed to specific-

factor and residual error variance) but for a comprehensive

explication of this relationship, the reader is referred to Cronbach

(1951) and McDonald (1981). Cronbach (1951) pointed out that

among the common factors the first one is likely to be a general

factor even though all items may not uniformly show high, or

even nonzero, loadings on it. As the number of such items

increases, the proportion of the total test-score variance due to

such a general factor and, hence, coefficient alpha, increases. This

has led to alpha being described as a measure of first-factor

saturation (Cortina, 1993), in other words, the extent to which

most, if not all, items load appreciably on the first factor.

However, Green, Lissitz and Mulaik (1997) showed that the

presence of such a general factor is not a prerequisite for high alpha

values. They artificially constructed an example of a ten-item, five-

factor test in which (i) each (factorially complex) item had a

loading of 0,67 on each of two orthogonal factors, (ii) no pair of

items showed such loadings on the same two factors, and (iii) each

item’s loadings on the remaining three factors were zero. (For

example, each of Items 1 to 4 showed a loading of 0,67 on Factor I

and numerically the same loading on each of Factors II to V,

respectively.) Thirty of the 45 unique item pairs showed

correlations of 0,45 and each of the remaining 15 item pairs had a

correlation of zero, signifying a violation of essential tau-

equivalence. The mean item intercorrelation over all 45 item pairs

was 0,30 and, by Equation (8), coefficient alpha for the composite

of ten factorially complex items was equal to 0,81. As the

commonality of each item was equal to 0,67² + 0,67² = 0,90,

common-factor variance was bound to occupy the major share of

observed-score variance and so resulted in a high coefficient alpha. 
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Cronbach (1951) emphasised that for a test to be interpretable,

all items need not be factorially similar but instead that the first

common factor should account for a large proportion of test

variance. Obviously, a test such as Green et al.’s (1977) example

with five equally strong factors may be rather difficult to

interpret. As a matter of fact, Hattie (1985) considers

unidimensionality to be a prerequisite for interpretability. (For

the analyses of multidimensional item data, including factorially

complex item data, the interested reader is referred to

McDonald, 1999, and Lucke, 2005.) And if unidimensionality is

sought, the preceding paragraph clearly suggests that coefficient

alpha should not be considered for gauging unidimensionality.

Rather, it is generally recommended that a dimensionality

analysis should precede the calculation of coefficient alpha

(Gerbing & Anderson, 1988). Hattie (1985) discusses among

others the use of factor and component analysis and latent trait

analyses for this purpose and Schmitt (1996) refers to the

increasing use of structural equation modelling in this regard.

DETERMINANTS OF THE SIZE OF 

COEFFICIENT ALPHA

The numerator of the key ratio, 2�j�k�jk/�²X, in Equation (5) for

coefficient alpha consists of the sum of the covariances whereas, in

terms of Equation (4), the denominator consists of the sum of the

covariances plus the sum of the item variances. In other words, for

a fixed sum of item variances, the size of coefficient alpha will

increase as the sum of the covariances increases. Although the

variance of an item places a limit on its covariance with any other

item, as the number of items increases, the number of covariance

terms increases at a faster rate (than does the number of variances),

and so allows the present ratio (and, hence, coefficient alpha) to

increase as well. The VCV matrix for a five-item test (J = 5), has only

five variance terms but J(J – 1) = 5(5 – 1) = 20 (i.e., four times more)

covariance terms; for a six-item test there are six variances but 30

(i.e., five times more) covariances. But more important than the

number of items and the attendant number of covariances is the

presence of covariances that are both positive and large in sign.

More specifically, Equation (8) shows that for a particular

average item intercorrelation there is a curvilinear relationship

between test length and reliability. As a test is lengthened by the

addition of parallel or essentially tau-equivalent components,

the reliability of the resulting composite increases but sooner or

later it reaches a point where such increase tapers off. The lower

the reliability of the initial test, the greater the number of times

it should be lengthened before this point is reached. For

example, if the initial test has a reliability of 0,80, lengthening

it six times would yield a reliability of 0,96 but any further

increases in test length wouldn’t raise reliability appreciably.

However, if the initial reliability is 0,10 only, lengthening it 12

times would raise its reliability to only 0,57, and the point of

inflection then still hasn’t been reached.

Cortina (1993) demonstrated the manner in which coefficient

alpha is affected by the number of items, the average item

intercorrelation and the number of dimensions present among

the items. He calculated alphas for 6-, 12- and 18-item tests for

each of three situations, namely, where the average item

intercorrelation was 0,30, 0,50 and 0,70, respectively. For an

average item intercorrelation of 0,30, coefficient alpha for these

three test lengths is equal to 0,72, 0,84 and 0,88, respectively.

For an average item intercorrelation of 0,70, the corresponding

increases in the number of items result in coefficients of 0,93,

0,96 and 0,98, respectively. An increase in the items benefits

alpha also in the case of multidimensional data. For example,

Cortina’s data indicate that in the case of two orthogonal factors,

alpha for a six-item test for the three situations (in which the

factorially simple items within a particular cluster now show the

mean intercorrelations mentioned), are 0,45, 0,60 and 0,70,

respectively. Under the same conditions, 18 items raised the

coefficients to 0,75, 0,85 and 0,90, respectively.

The data in Table 3 demonstrate how alpha is affected when

factorially simple items divide into two clusters that each

measures a distinct construct. Items 1 through 5 behave much

like any item in Table 1 and so do Items 6 through 10. If a

person passes Item 1 he or she is likely to pass Items 2 to 5 as

well; if he or she fails Item 1, he or she is likely to do the same

on Items 2 to 5 as well. Similarly, a person’s performance on

Item 6 predicts pretty well his or her performance on Items 7 to

10. However, there is no similar consistency between

individuals’ performances on the first cluster (Items 1 to 5) and

their performances on the second cluster (Items 6 to 10). Some

individuals (such as A) who pass Items 1 to 5 also pass Items 6

to 10 but others (such as B) who pass the first five items, fail the

last five items. This lack of consistency shows up in the

uniformly poor covariances (printed in italics in Table 3b)

between any item from the first cluster and any item from the

last cluster. For example, the covariance of Items 1 and 10 is

equal to 0,30 – 0,50(0,50) = 0,05, which translates into an item

intercorrelation of 0,05/(�0,25)(�0,25) = 0,20. There are 5 × 5 =

25 such item pairs that clearly fail to meet the assumption of

essentially tau-equivalence. Each cluster of five items shows a

coefficient alpha of 0,88 (on its own). However, if one treats the

ten items as a single composite, the within-cluster covariances

sum to 6,00 whereas the between-cluster covariances sum to

only 0,10 and so restrict the total sum of covariances to 6,10.

Total test variance is equal to 8,60, and coefficient alpha

amounts to (10/9)(6,10/8,60) = 0,79. This is a quite respectable

value, that is, despite the fact that there are two clusters of items

that obviously represent two different dimensions. This comes

about because the within-cluster covariances (in regular print)

have such high values relative to the between-cluster

covariances that the mean over all J(J – 1) covariance terms is

still high and coefficient alpha for the composite test has an

appreciably high value.

TABLE 3

AN EXAMPLE OF HETEROGENOUS ITEM DATA

WITH HIGH COEFFICIENT ALPHA

3.a: Item matrix

1 2 3 4 5 6 7 8 9 10

A 1 1 1 1 1 1 1 1 1 1

B 1 1 1 1 1 0 0 0 0 0

C 1 1 1 1 1 1 1 1 1 1

D 1 1 1 1 1 0 0 0 0 1

E 0 0 0 0 0 1 1 1 1 1

F 1 0 0 0 0 0 0 0 1 0

G 0 1 0 0 0 1 1 1 1 1

H 0 0 1 0 0 0 0 1 0 0

I 0 0 0 1 0 0 1 0 0 0

J 0 0 0 0 1 1 0 0 0 0

3.b: Variance-covariance matrix

1 2 3 4 5 6 7 8 9 10

1 0,25 0,15 0,15 0,15 0,15 -0,05 -0,05 -0,05 0,05 0,05

2 0,25 0,15 0,15 0,15 0,05 0,05 0,05 0,05 0,05

3 0,25 0,15 0,15 -0,05 -0,05 0,05 -0,05 0,05

4 0,25 0,15 -0,05 0,05 -0,05 -0,05 0,05

5 0,25 0,05 -0,05 -0,05 -0,05 0,05

6 0,25 0,15 0,15 0,15 0,15

7 0,25 0,15 0,15 0,15

8 0,25 0,15 0,15

9 0,25 0,15

10 0,25
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EVALUATING COEFFICIENT ALPHA’S SIZE

From the preceding section it follows that a blanket, rule-of-

thumb statement to the effect that coefficient alpha should have

a particular value may be misleading. Cortina’s (1993) data show

that a (relatively high) coefficient of 0,85 may be obtained in

three quite different situations: (i) 18 items comprising of two

clusters of nine items each, each measuring a different

construct, and with an average item intercorrelation of 0,50

within each cluster; (ii) 18 items measuring a single construct,

with an average item intercorrelation of only 0,30; or (iii) only

six items measuring a single construct, with an average item

intercorrelation of 0,50.

Schmitt (1996, p. 350) uses the attenuation formula and argues

that “(e)ven with a reliability as low as .49, the upper limit of

validity is 0,70”. The attenuation formula states that validity as the

correlation between a test and a criterion is equal to (i) the

product of the correlation between the true scores on the test and

those on the criterion, (ii) the square root of the reliability of the

test, and (iii) the square root of the reliability of the criterion:

�XY = �XY
2 ��XX’��YY’, (9)

where X represents the true scores on the test, X; Y indicates the

true scores on the criterion, Y; and where �XX’ and �YY’ denote

the reliability of the test and of the criterion, respectively.

However, Schmitt fails to mention that for Equation (9) to show

that a reliability of 0,49 is sufficient for an upper limit, �XY =

0,70, one has to assume that the correlation between the true

scores on the two variables equals unity (�XY = 1,00), and that

the criterion is perfectly reliable (�YY’ = 1,00). Both of these

assumptions are unrealistic in the extreme. If one substitutes

�XY = 0,80, and �YY’ = 0,90 in Equation (9), it turns out that �XX’

has to be equal to 0,85 for �XY to be equal to 0,70. This result

seems to cast serious doubt on the acceptability of rules of

thumb that tolerate alpha values as low as 0,70.

Several authors point out that a high alpha may be obtained

simply by focusing on a narrowly defined area which doesn’t

correlate with any criterion of importance. Streiner (2003)

cautions that higher values may be obtained through an

unnecessary duplication of content across items, for example, by

phrasing the same question in many different ways. Although

such redundancy certainly may result in a high alpha, a high

alpha does not necessarily reflect such redundancy.

There is the danger that thumb-sucking exercises regarding the

appropriate size for coefficient alpha may conceal a more

important issue, namely, that coefficient alpha is registering

only specific-factor or content-specific measurement error (apart

from random response error). To the extent that measurement

error due to instability in responding over time (transient error)

is present, coefficient alpha presents an overestimate of

reliability. Textbooks diligently spell out that if the assumption

of essentially tau-equivalence does not hold, coefficient alpha

represents a lower bound to reliability. It is less often mentioned

that if transient error or correlated error scores are present (and

it is a good bet that generally such flaws do prevail), coefficient

alpha overestimates reliability. A more inclusive view would be

that whether coefficient alpha is an underestimate or an

overestimate depends on which one of these assumptions is

more seriously violated (Becker, 2000; Komaroff, 1997). So, in

the presence of transient error, obtaining an alpha even as high

as one of 0,90 may be regarded as a Pyrrhic victory.

THE OCCURRENCE OF NEGATIVE VALUES 

FOR COEFFICENT ALPHA

More than half a century ago, Cronbach and Hartmann (1954, p.

344) pointed out that “negative internal-consistency coefficients

may be expected when negatively correlated factors are thrown

together in one test”. More specifically, a negative coefficient

alpha is obtained when the (absolute value of the) sum of the

negative covariances exceeds the sum of the positive

covariances. For this to occur, the items should divide into (at

least) two clusters of one or more items each, with either a

sufficiently large number of negative covariances and/or at least

a few sufficiently large covariances with negative signs among

the between-cluster item covariances. Consider Table 4a. Notice

that persons A to C pass Items 1 to 4 but fail Item 5, whereas F

to J who pass Item 5 tend to fail Items 1 to 4. As a consequence,

Item 5’s covariances (in the last column of Table 4b) with all the

other items are large and negative in sign. The sum of the

positive covariances (all of them within the cluster of Items 1 to

4) is 2(0,40) = 0,80, and the sum of the negative covariances is

2(-0,50) = -1,00, so that the total sum of covariances (2�j�ksjk) is

-0,20. The total test variance is 1,05 and coefficient alpha turns

out to have a negative sign: [5/4][-0,20/1,05] = -0,238.

TABLE 4

AN EXAMPLE OF A NEGATIVE COEFFICIENT ALPHA

4.a: Item matrix

1 2 3 4 5

A 1 1 1 1 0

B 1 1 1 1 0

C 1 1 1 1 0

D 1 0 0 1 0

E 1 0 0 0 0

F 0 1 0 0 1

G 0 1 0 0 1

H 0 0 1 0 1

I 0 0 1 0 1

J 0 0 0 1 1

4.b: Variance-covariance matrix

1 2 3 4 5

1 0,25 0,05 0,05 0,15 -0,25

2 0,25 0,05 0,05 -0,05

3 0,25 0,05 -0,05

4 0,25 -0,15

5 0,25

Most of the authors contemplating the occurrence of negative

values for coefficient alpha seem to be oblivious of Cronbach

and Hartman’s (1954) observation cited above and appear to be

at a loss to explain this phenomenon. Henson (2001, p.186) calls

such a negative coefficient “a mathematical artifact”. Without

elaborating, Thompson (2003, p.13) observes that “in practice

such a result may mean either that the scores are quite

unacceptable, or alternatively that the wrong measurement

model has been used to estimate reliability”. However, a good

starting-point to look for an explanation of negative alphas is

the possibility of one or more negatively formulated items that

are in need of recoding. (In other words, there may be an error

in the scoring key, i.e., “no” responses rather than “yes”

responses should earn a mark.) If the scoring of Item 5 in Table

4 is reversed, all its negative covariances become positive and

coefficient alpha changes from -0,238 to +0,738. By the same

token, if Item 1 in Henson’s Table 3 (p. 185) is reversed, the

value of coefficient alpha in that example becomes 0,997

instead of -0,373; if the scoring of Items 2, 4 and 6 in

Thompson’s Table 1.1 (p. 13) is reversed, coefficient alpha

changes from -7,00 (notice the absolute value greater than 1,00)

to +1,00. Henson (2001, p. 186) says that when the sum of the

item covariances is negative “the items seem to be measuring

different constructs!” (exclamation mark in the original). Of

course, negative item covariances with large absolute values

suggest items that measure the opposite poles of the same

construct rather than items that are measuring different

constructs. (Items with very low covariances irrespective of sign

may be measuring different constructs.) 
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Admittedly, in actual examples the decision which items should

have their scoring keys reversed, or whether the scoring key is

really the problem at all, may not be as clear-cut as in the present

examples. At the same time, items that covary negatively with a

large proportion of the other items will probably be detectable

by their negative item-total correlations, by their negative

loadings in a component or factor analysis, or by a negative sign

for their discriminating parameters in latent trait analysis.

ALTERNATIVE COEFFICIENTS

In some situations, the different components of a composite test

are of unequal lengths, such as reading passages that contain

different numbers of questions. To keep the passages intact, a

total score is determined for each passage but due to the

passages’ varying lengths, individual’s true scores on them may

no longer be equal (as in parallel components), or differ by the

same additive constant (essential tau-equivalence). For

situations like these, the assumption of congeneric equivalence,

which is less restrictive than essential tau-equivalence, may be

appropriate. Whereas the true scores of individuals on

essentially tau-equivalent components differ by the same

additive constant, in the case of congeneric equivalent

components they differ by the same multiplicative constant as

well: Tij = (b)Tik + c. So if b = 1,5, the true scores of one individual

on two congeneric equivalent components may be 4 and 6,

whereas for another it may be 6 and 9 (assuming c = 0).

Often the test items are grouped into different subtests in terms

of content or difficulty. Under these circumstances, stratified

alpha may be more appropriate than coefficient alpha. Its

formula is as follows:

Stratified alpha = 1 – [��²j(1 – �j)]/�²X,

where �²j and �j are the variance and coefficient alpha,

respectively, for the jth subtest. When the correlations between

items in the same subtest are higher than the correlations across

items in different subtests, stratified alpha provides a better

estimate than coefficient alpha (Osburn, 2000). For the data in

Table 3, stratified alpha turns out to be 0,844 (granted that these

data probably would be more consistent with a

multidimensional model).

Osburn (2000) performed a simulation study in which various

internal-consistency estimates apart from coefficient alpha were

computed. In some of the data sets, the components were

congeneric equivalent or multidimensional rather than

essentially tau-equivalent (which differs from essential tau-

equivalence in that the additive constant equals zero). These

included an index proposed by Gilmer and Feldt and a maximised

adaptation of Guttman’s lamda4 which is based on split halves of

a test. The six data sets investigated included unidimensional data

sets that meet the requirements of parallelism, tau-equivalence

and congeneric equivalence, respectively, and two-factor data sets

that show increasing degrees of heterogeneity. When the

components (unidimensional data) were parallel or tau-

equivalent, all the internal-consistency estimates were equal to

the true reliability coefficient. For the case in which the

components were congeneric equivalent, only Feldt-Gilmer and

maximised lambda4 were equal to the true reliability of 0,786,

whereas coefficient alpha provided an underestimate, namely,

one of 0,778. However, for the two-factor data with different

clusters representing factors that were correlated at 0,80, 0,40 and

0,20, only maximised lambda4 was equal to the true reliabilities

of 0,781, 0,760 and 0,703, respectively. All other coefficients

underestimated the true reliabilities and this underestimation

increased as the data became more heterogeneous. For example,

both coefficient alpha and Feldt-Gilmer returned values of 0,752,

0,696 and 0,547, respectively, which corresponded to 96,29%,

91,58% and 77,81%, respectively, of the true reliabilities for the

three between-factor correlation sizes.

Next, Osburn (2000) grouped four components into two

subtests of two components each. Stratified alpha equalled the

true reliability irrespective of whether the components were

unidimensional (parallel, tau-equivalent or congeneric) and

irrespective of the degree of heterogeneity in the two-factor

data. By contrast, for the two-factor data coefficient alpha

underestimated the true reliability and this underestimation

worsened considerably as heterogeneity increased. In the most

heterogeneous case (correlation of only 0,20 between the two

factors), coefficient alpha was only 0,204 as opposed to a true

reliability of 0,613, thus demonstrating this coefficient’s

inappropriateness in situations in which the assumption of

essential tau-equivalence is clearly violated.

DISCUSSION
Several authors (e.g., Green et al., 1977; Hattie, 1985; McDonald,

1981) have lamented the interchangeable use of the terms item

homogeneity, internal consistency and unidimensionality. Hattie

regards the use of homogeneity as a synonym for

unidimensionality (as suggested by Green et al.) to be redundant,

although McDonald would contend that one collection of items

may be more homogeneous than another whereas a similar

statement cannot be formulated in terms of unidimensionality.

All would agree, however, that unidimensionality implies

internal consistency as reflected by coefficient alpha but that a

high alpha value does not necessarily imply unidimensionality.

As a result, an initial dimensionality analysis should be

performed if a test or its respective substests are to be

interpreted in terms of single dimensions. By the same token,

negatively framed items should be recoded following such

analyses so that all items that are subjected to internal-

consistency analyses are reflective of the same direction.

When items fail to meet the assumption of essential tau-

equivalence, more appropriate internal-consistency coefficients

than coefficient alpha should be considered, such as the Feldt-

Gilmer index and maximised lamda4 in the case of congeneric

equivalent data and maximised lamda4 for multidimensional

data. There may be no easy way of telling whether the

components at hand are essentially tau-equivalent, congeneric

equivalent or multidimensional. However, the total scores over

subtests of, say, a personality questionnaire designed to measure

distinct traits, obviously cannot be regarded as being essentially

tau-equivalent.

No degree of diligent test construction can compensate for

coefficient alpha’s inability to register transient error and hence

correct for its tendency to overestimate reliability when such

error is present. Just as the potential consequences of ignoring

such error were dawning on the psychometric community (cf.

Becker, 2000), along came Green (2003) and reinvented, so to

speak, coefficient alpha. His test-retest alpha requires that the

same test be administered on different occasions and uses the

covariances of each item administered on one occasion with

every other item administered on the other occasion. In this

manner he obtains an index similar to the original coefficient

alpha but one that is also susceptible to transient error. As the

covariance between any particular item administered on

different occasions is ignored in the calculation of the test-retest

alpha, it also reduces the possibility of the memory effects that

plague the test-retest estimation method. However, the chances

that Green’s test-retest alpha will reach the same levels of

popularity as did the original coefficient alpha are rather slim.

The very reason for the original coefficient’s popularity has

been that it doesn’t require a retest, and Green’s coefficient has

to forgo this luxury, as any other index that wishes to reflect

transient error by definition has to do. 

In reflecting on his 1951 article in the months prior to his death

in 2001, Cronbach (2004) professed his embarrassment about

references to Cronbach’s alpha. Cronbach’s (1951) influential
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article explicated the meaning of a previously existing quantity.

Amongst others, it provided the version that is amenable to

multi-point data and which Cronbach labelled coefficient alpha.

However, Cronbach (2004) concluded that he no longer

considered “the alpha formula as the most appropriate way to

examine most data” (p. 14) and pointed out that it provides for

“only a small perspective of the range of measurement uses for

which reliability information is needed” (p. 29). Certainly, a

proper assessment of Cronbach’s legacy will have to focus on his

role in the development of generalisability theory, an approach

in terms of which coefficient alpha is recognised to be reflective

of only one source of measurement error among many.
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