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ABSTRACT 
 
It has been accepted for over 270 years that the expected monetary value (EMV) 
of the St Petersburg game is infinite.  Accepting this leads to a paradox; no 
reasonable person is prepared to pay the predicted large sum to play the game 
but will only pay, comparatively speaking, a very moderate amount.  This 
paradox was ‘solved’ using cardinal utility.  This article demonstrates that the 
EMV of the St Petersburg game is a function of the number of games played and 
is infinite only when an infinite number of games is played.  Generally, the 
EMV is a very moderate amount, even when a large number of games is played.  
It is of the same order as people are prepared to offer to play the game.  There is 
thus no paradox.  Cardinal utility is not required to explain the behaviour of the 
reasonable person offering to play the game. 

JEL  D81 
 
Samuelson (1977: 24) pointed out that ‘the veritable who’s who2 in probability 
and the social sciences’ have been connected with Bernoulli’s (1954/1738) St 
Petersburg Paradox3.   Indeed, few would dispute the correctness of Bernstein’s 
(1998,100) observation that Bernoulli’s ‘...paper is one of the most profound 
documents ever written’.  Besides those who specifically considered the 
paradox, the utility solution to the paradox is implicitly accepted by those who 
apply cardinal utility notions to problems of decision making under conditions 
of risk and uncertainty.  This has produced a formidable body of literature4. 
 
The St Petersburg Paradox has thus been enormously influential.  The purpose 
of this article is to demonstrate that contrary to the accepted view, the St 
Petersburg game does not lead to a paradox at all.  
 
The St Petersburg Game 
 
The background to the St Petersburg game5 is now6 well-known and it is not 
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necessary to repeat it here in any detail.  For ease of reference only a brief 
overview is given. 
 
Attempts have been made for a long time to develop decision criteria to assist in 
the decision making process or to find theories7 explaining why people make the 
decisions they do when facing conditions of risk and uncertainty.  The earliest 
and most well-known criterion is the expected monetary value (EMV) criterion8, 
the formulation of which is credited9 to Pierre de Fermat (1601-1665) and Blaise 
Pascal (1623-1662).  According to this criterion a person faced with this kind of 
decision would or should choose the path involving uncertainty, if it has the 
most advantageous EMV. 
 
Daniel Bernoulli (1738) attempted to demonstrate that this criterion did not in 
fact explain the behaviour of a reasonable person10 under these circumstances.  
He used a number of problems including the poor fellow problem and the St 
Petersburg game11 to support his hypothesis. He then went on to suggest an 
alternative theory.  His new theory was based on the notion of marginal 
decreasing value of wealth12. This today, in its developed form is the expected 
utility value (EUV) criterion or expected utility value hypothesis. 
 
The St Petersburg game goes like this.  Peter offers Paul an opportunity to take 
part in a game of chance where a coin is flipped and if a head appears (with an a 
priori probability of 1/2), Paul receives $1 (ie $20)13.   If it does not appear, the 
game continues.  If the head appears after the second flip (with an a priori 
probability of 1/2 2 ), Paul receives $2  (ie $21) and if not, the game continues in 
this fashion, until such time as a head appears (if ever) whereupon the game 
terminates and Paul can take his winnings.  It is conceptually possible for any 
game to continue to infinity.  The probability of the game terminating at the ith 
flip of the coin is 1/2i with a corresponding payout of $2i-1. 
 
The simple question to be answered is how much should, a reasonable person, 
the proverbial Paul be prepared to pay to play the game?  As a rule-of-thumb, 
the answer should be of the same order as the EMV of the game14.  From 
Bernoulli (1738) to Aase (2001) it has been accepted that the EMV of the game 
is infinite.  In other words accepting the EMV as a rule-of-thumb guide, a 
reasonable man should be prepared to pay an exceptionally large sum to play the 
game. 
 
The traditional derivation is as follows.   
 
The game can have any payout from the following infinite range of payouts (C i 
expressed in dollars);  
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2 0, 2 1, 2 2, 2 3, ... 2 i -1 …  (1) 
 
each with a corresponding a priori probability (p i) associated with it, indicated 
as follows: 
 
2 -1, 2 -2, 2 -3, 2 -4 ... 2 -i  …  (2) 
 
And since 

 
                                                                                          

(3) 
 

 
it follows from series (1), (2) and equation (3) that, expressed in dollars, the 
EMV is determined as shown in Table 1 
 
Table 1  Traditional solution of the St Petersburg game 

Term T1 T2 T3 T4 ... Ti ... T8  Totals 

Payout (C i) 2 0 2 1 2 2 2 3 ... 2 i  - 1 ... 8  Na 

Probability (p i) 2 -1 2 –2 2 -3 2 -4 ... 2 -i ... 0 1 

Contribution 
to EMV (pi x Ci) 

2 -1 2 –1 2 -1 2 -1 2 -1 2 -1 2 -1 ... 
EMV  = 
? pixC i 

= 8  
 
or the EMV = 8 . 
 
A number of points about the traditional solution of the EMV should be noted. 
The EMV is infinite because the series consists of an infinite number of terms 
each of constant value, in this example $½.   The sum of this infinite series of 
finite numbers is infinite 
 
An infinite amount can be an issue for another reason.  As the game continues, 
the payouts become increasing large, tending to infinity.  It is possible to 
confuse the infinity which comes from the sum of the series and infinity of a 
very large payout.  These two infinities are more often than not confused.   The 
paradox concerns Paul’s decision vis-à-vis the EMV = 8 , not Paul’s decision 
vis-à-vis final large payout. Even for very large payouts, according to the 
traditional derivation15, the contribution of each of payouts to the EMV is still 
the same constant16.  
 

EMV p Ci i
i

i

=
=

=∞

∑
1
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Concluding that the EMV of the game is infinite, empirical evidence indicates 
that no reasonable person in the position of Paul will risk a substantial amount 
(let alone an infinite amount) to play the game.  Numerous empirical17 tests 
indicate that in general people will not risk more than $12 - $13 to play the 
game, and in the vast majority of cases a sum much less than this.  Therein lies 
the paradox.  The EMV predicts that a reasonable person should be prepared to 
risk a very large amount to play the game, and generally no fault can be found 
with the EMV decision criterion which is still the most widely used decision 
criterion and no-one can fault the reasonable person for not being prepared to 
risk a large amount to play the game.  Both are seemingly correct and no 
completely satisfactory18 explanation has been found to reconcile these 
contradictory conclusions - hence the apparent paradox. 
 
 
2 DETERMINING THE EMV THE ST PETERSBURG GAME 
 
It will now be shown that the traditional determination of the EMV is only 
correct as a special case where the game is played an infinite number of times. 
 
2.1 A single game 
 
First, the position of a single game19 is considered.    
 
It seems to me the source of the paradox stems from the irrational assumption 
that the EMV can be applied equally when a large number of games are played 
or when a single game is played.   This irrational assumption ignores the Law of 
Large Numbers.  Since the EMV by definition, is concerned with the average 
payouts of a number of games, the EMV is of little assistance when a single 
game is played20. 

  
If the game is played only once, there will be one outcome (?) taken from the 
following series of possible outcomes, shown with their respective probabilities 
of occurring: 
 
? = [(2 0; 1/2 1 ) or (2 1; 1/2 2) or (2 2; 1/2 3) or ...or (2 i ; 1/2 i-1) ... (8 ; 0)] 
 
This is an infinite series of mutually exclusive outcomes 1, 2, 4, 8 ... with 
corresponding probabilities of 0,5; 0,25; 0,125; 0,0625  ...).  To accept the 
traditional view that the EMV of a single game is infinite or a large number is to 
ignore the possibility of any of the lower, high probability outcomes.  This is a 
very unrealistic assumption. 
 
When a single game is played, the EMV is of little use and an alternative 
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approach is  needed.  It must be decided how much should Paul be prepared to 
pay to play this single game with this range of outcomes and probabilities?  
Although the EMV may not, where a single game is played be of much 
assistance to Paul, Arrow (1974,415) correctly points out that probabilities are 
relevant, even when a single game is played.  He wrote, ‘[w]hile it may seem 
hard to give justification for using probability statements when the event occurs 
only once ... the contrary position [that probability statements are irrelevant] also 
seems difficult to defend.’  It is not the EMV which is important when playing a 
single game but the probability of the outcome.  The choice facing Paul can be 
likened to Paul placing his hand in a very large barrel filled with millions of 
small, marked balls and he can select only one.  Fifty percent of the balls are 
marked T1 (paying $1) , twenty-five percent are marked T2 (paying $2), twelve 
and a half per cent are marked T3 (paying $4),  and so forth.  Thus 93,75  per 
cent of the balls will pay an amount of $8 or less.   The question then becomes, 
which single ball does he think he will draw and how much should he be 
prepared to pay for the right to draw this single ball?  
 
Paul as noted is the proverbial reasonable man.  He is not the most pessimistic 
nor most optimistic; not the wisest nor the most foolish. Based on probabilities it 
is suggested that he will not wager much in excess of $8 to play this single 
game. In general he does not expect to win more than this by playing a single 
game.  If this is so, he should not be prepared to loose more than this.  At $8 
there is a 93.75 percent possibility that he will win $8 or less and a 6.25 per cent 
that he will win in excess of $8.  He would be an optimist to pay an amount in 
excess of $8.  If a range indicating what people generally will wager to play a 
single game, rather than a single figure of $8 is selected, the range is between $4 
to $32.  This range is in line with the collective wisdom of history21.  
 
2.2 The EMV of M games 
 
As indicated it is doubtful if the EMV is meaningful when only a single game is 
played so, multiple games are now considered.  Multiple games must be 
considered for another reason.  The issue is not only what is Paul prepared to 
pay for his ticket, but also what should Peter be prepared to accept to allow Paul 
to take part in the game.  Logically if Paul is asked how much would he be 
prepared to pay to play the game, his answer will be, ‘As little as possible - 
preferably nothing.22’   It is Peter after all who carries the risk. If Peter accepts 
$8 for the ticket, then Paul knows the extent of his possible loss, $8.  It is Peter 
who does not know the extent of his liability until the game or all the games 
have ended.  Although Paul has only one ticket, seen from Peter’s perspective, if 
for example he is a casino owner, prepared to accept wagers on the St 
Petersburg game there may, over a period of time be millions of other tickets 
about which he must be concerned. So Peter needs to know what is likely to 
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happen if he accepts $8 per game and M games are played. 
Assume then that M games are played.  This assumption carries with it a number 
of implications which may not be obvious.  Firstly, if M games are played there 
are only M outcomes, not an infinite number of outcomes. Each game can have 
only one outcome.  Conceptually one of these could continue to infinity23.  
Secondly the mere statement that M games will be played implies that all games 
do in fact terminate, ie that one of the M games does not continue to infinity.  
This accords with reality24 and theory25.  The fact that a game may go to infinity 
does not mean that a game does go to infinity.  What is not known is where each 
or any of the M games end. Thirdly despite the fact that all the games end, no 
limit is placed on any single game.  Particularly no limit is placed on the length 
of time that any game may last26 or on the magnitude of the payout.  If a game 
happens to go to infinity, Peter must live with that risk. 
 
Once it is accepted that the games are played a multiple number of times, the 
mathematical nature of the problem becomes clear.  Peter must find a way of 
determining the EMV of a series of terminating games, but the point of 
termination is not known beforehand.  If Peter is prepared to accept $8 per 
game, millions of Pauls may be prepared to play games for that amount.  Will 
Peter be able to pay the millions of Pauls out of the $8 per game he is prepared 
to accept? 
 
Once the problem is correctly stated, it is not difficult to solve.  Assume the 
game is played M = 2 k times.  If this generalised approach is adopted then M (or 
k) can be varied from 1 to infinity.  In this manner all possible numbers of 
games are catered for, including M = ∞ .  The methodology for solving the 
problem was suggested by Bernoulli (1954/1738, 32) himself.  The solution set-
out in this paper could have been arrived at in 1738.  Bernoulli pointed out that 
the number of games (ni) which terminate at the first flip of the coin (first term) 
is ½ of the total number of games played,27 and ¼ terminate at the second term 
and so on.  In general if M games are played then the number terminating at 
term T1, T2, T3, ...Ti ... is ni =  pi.M.  This number is then multiplied by the 
payout C i for that term and divided by the total number of games played, M.  In 
this way the contribution of each individual term to the EMV is established.  
The various contributions are then summed to arrive at the EMV. 
 
If the game is played 2 k times, the number28 of (n1) games which terminate after 
the first flip of the coin is ½ x 2 k or 2k - 1.  The payout for the first term (T1) is 
$2 0.  The number of (n2) games which terminates after the second flip, (T2) is 
1/22 x 2 k or 2 k-2 with a payout of $2 1 and so the pattern continues until 2 0 is 
reached.  The results are shown in Table 2. 
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Table 2  The EMV of the St Petersburg game played 2k times 
 

Term T1 T2 ... Tk Sub 
Total Tk+1 Tk+2 Tk+3 ... Totals 

(EMV) 

Payout (C i) 2 0 2 1 ... 2 k-1 ... 2 k 2 k+1 2 k+2 ...  

  n i 2k-1 2k-2 ... 2 0 2 k -1 0 or 1 0 or 1 0 or 1 0 or 1 2 k 

Contribution 
to EMV  
(n i.C i/2k) 

2 -1 2 -1 2 -1 2 -1 k.2 – 1 0 or 20 0 or 2 1 0 or 2 2 ... 

k/2+ (0 or 1)
+ (0 or 2) 
+ (0 or  4) 

+ ... 

Probability 
of games  
terminating at 
specific term 

0 0 0 0 ... 2 – 1 2 - 2 2 – 3 ... 1 

 
At the k th term (Tk) the game has been played 2 k - 1 + 2 k - 2 + 2 k - 3 ... 1 times.  
This is a geometric progression the sum of which is 2 k - 1.  In other words all 
games have terminated by the kth term, except one29, which had already30 
terminated at some point beyond the Tk term by the time M games had been 
played. 
 
If this solitary game ended at T(k+1) the payout is $2k and the contribution to the  
EMV is ($2 k   . 2 - k)=$1.  Since all the 2 k games have now terminated all other 
terms in the series equals zero, all the way to infinity.  If the remaining game 
terminated at T(k+2) then the payout for this game is $2 k + 1 and the contribution 
to the EMV from this game is ($2 k + 1 . 2 -k ) = $2.  In this event the contribution 
from T(k+1) term is 0 as are all the other terms to infinity.   Thus although terms 
beyond the kth term have both payouts31 and  a priori probabilities pi, the 
contribution from all of these except one, equals zero, since all games had 
ended.    The contribution of this final game, to the EMV depends on its position 
after the kth term. 
 
Thus using a priori32 probabilities when the St Petersburg game is played 2k 
times it produces, with certainty a series consisting of not more than k+1 terms, 
with the series terminating beyond the kth term.  If played a finite number of 
times, a finite, not infinite series is produced.  The probability of there being less 
than k terms is thus zero. After the Tk term the series can terminate at any term 
to infinity.  However each term beyond Tk requires an additional flip of the coin, 
with a probability of ½.  The probability thus of the term ending after the Tk 
term, decreases at the rate ½.  In other words the probability of terminating at 
Tk+1 is 1/2 at Tk+2 is 1/4, at Tk+3 is 1/8, at or beyond the k+4 is 1/16, adding 1, 2, 
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4, 8 ... to the EMV arrived at by summing the contributions to the EMV up to 
the Tk term.  It is clear that the series beyond the Tk term is once again the same 
series as for a single game.  As indicated above a reasonable man would value 
this at an amount of approximately $8. 
  
The EMV of the St Petersburg game, played 2 k times and which pays $1 if a 
head appears on the first flip of the coin can now be stated.  
 
EMV (2 k) = k/2 + [(1;1/2) or (2;1/4) or (2 2;1/8) or (2 3;1/16) or ... 8 ; 0] 
and if  ? = [(1;1/2) or (2:1/4) or (2 2;1/8) or (2 3;1/16) ... ] then: 
 

( ) λ+=
2

2
k

EMV k  

with the lowest value of the EMV being k/2 + 1. 
 
or for all practical purposes:  
 

( ) 8
2

2 +≈
k

EMV k  at a 93.7 per cent confidence level. 

 
 
The St Petersburg game thus does not have a single a priori value for the EMV.  
It has a series of possible EMVs starting at k/2 + 1 and continuing to infinity 
with decreasing probabilities.  Of course for any specified number of games, the 
empirical EMV will have only one value determined by the above equation. 
 
The traditional solution EMV = ∞  is correct but only where the St Petersburg 
game is played an infinite number of times.   
 
Many people may, subconsciously if nothing else, hold the view that the EMV, 
is the aggregate of the payouts divided by the number of games played (M), in 
the limit, when M approaches infinity.  In terms of this view there is only one 
EMV and that is the value derived when the numbers of games tend to infinity.  
Those who hold this view will then hold that the traditional solution to the St 
Petersburg game that the EMV is infinity is correct by definition.  There is no 
problem with this view but it still does not produce a paradox. One must 
compare apples with apples.  If the assumption is that the game is played an 
infinite number of times, then it must be accepted that Paul can play the game an 
infinite number of times.  In other words the question is ‘Paul plays the St 
Petersburg game an infinite number of times, how much should he be prepared 
to wager per game to do so?’  The answer to this question is quite correctly an 
infinite amount. 
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One cannot compare apples with pears.  It clear that the traditional question is 
irrational if stated as, ‘Paul plays the game a finite number of times (M), why 
does he not wager a substantial amount to play the game?’  The answer is of 
course because he is only playing the game a finite number of times.  In the 
traditional formulation of the paradox, the assumption is that Paul plays the 
game only once but then uses the EMV of an infinite number of games.  It is not 
comparing apples with apples. 
 
Returning to the above example.  Assume Paul decides he will play one game 
for $8.  Should Peter accept the wager?  Peter needs to know how many other 
games will be played at his casino33.  Assume he accepts the $8 from all the 
Pauls and estimates that during the next financial year his casino will play 220 
(i.e. 1 048 576) games.  The question now is, will he face a loss at the end of the 
year from all of these games?  The EMV of these games34 is $10+($1 or $2 or $4 
or $8) ie within realistic confidence limits from $11 to $18.  The first point to 
note is that whatever figure is chosen it is a modest amount, nowhere near the 
say $10m or more required by the traditional solution to the St Petersburg game.  
The second point is using a priori probabilities Peter faces certainty that the 
EMV will not be less than $11.  In other words if he accepted $8 from all the 
Pauls he would have lost not less than $3 per game or a total certain loss of not 
less than $3 146 328 pa.   What Peter should have charged was not less than k/2 
+ ? or $18 to be 93.75 per cent confident that he would not suffer a loss. 
 
 
3 CONCLUSION 
 
So it is easy to answer the question, ‘How much should the reasonable man, 
Paul, be prepared to pay to play the St Petersburg game?’ Paul would simply 
respond, ‘How many times am I allowed to play the game?’  If the answer is 
twice he would answer, ‘An amount in the order of $1/1 + $8 = $9.’   If the 
answer is that he can play the game 2 18 times he would answer, ‘An amount in 
the order of $9 + $8 = $17.’   It will be noted that although the number of games 
increase substantially, the size of Paul’s wager does not.  In all cases the amount 
the EMV, once correctly determined, predicts that his wager is moderate and 
this is in accordance with common experience. If the answer is that he can play 
an infinite number of games, his answer would be that he would wager an 
infinite amount. 
 
The correct determination of the EMV does not thus expect Paul to wager an 
infinite amount to play a finite number of games, nor would a reasonable person 
do so.  The EMV once correctly derived for the St Petersburg game does not 
lead to a paradox at all − it never did.  The application of the EMV criterion 
gives an answer that is consistent with the behaviour of the reasonable man. 
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Traditionally the incorrect value of the EMV was used.  Utility (cardinal or 
ordinal) is not required to explain the behaviour of Paul – he has during all these 
centuries been quite rational after all.  
 
 
ENDNOTES 
 
1 Earlier drafts of this paper were presented at a Business Economics 

Research Group of the University of the Witwatersrand and at the 12th 
Annual Conference of the South African Institute for Management 
Scientists 31st October-2nd November 2000.  The paper has benefited 
from comments and advice from a number of academics from various 
parts of the world.  The usual disclaimers apply. 

2 For a history, including the treatment of the paradox by mathematicians of 
the previous centuries see Samuelson (1977).  Some of the more recent 
writers who accept that the EMV of the St Petersburg game is infinite or 
the utility solution to the paradox include Todhunter (1949/1865: 220); 
Marshall (1920: 134); Keynes (1973/1921: 350); Von Neumann and 
Morgenstern (1953); Friedman and Savage (1948: 281 and note 5); Stigler 
(1950: 374); Arrow (1951: 407); Menger (1954, note 9) published in 
Bernoulli (1954/1738); Samuelson (1960); Borch (1968,15); Savage 
(1972: 93); Arrow (1974: 63); Brito (1975: 123); Sennetti (1976); Shapley 
(1977: 439); Epps (1978); Hagen published in Allais and Hagen (1979: 
14); Gorovitz (1979: 259); Allias (1979: 498); Székely (1987: 28); Bassett 
(1987: 517); Cowen and High (1988: 199); Machina (1987: 50); Russon 
and Chang (1992: 8); Schmeidler and Wakker (1996); Starmer (2000); 
Aase (2001). 

3 Bernoulli’s paper was presented in 1731 but only published in 1738 
however the St Petersburg game was formulated in 1728. 

4 Von Neumann and Morgenstern’s (1953) book sparked off the renaissance 
in cardinal utility theory.  The literature on cardinal utility is immense but 
fortunately for purposes of this paper it is not necessary to discuss cardinal 
utility since it is the thesis of this paper that the St Petersburg paradox can 
be resolved without resorting to utility theory.  For a review of the current 
position see Schoemaker (1982), Machina (1987) and Starmer (2000). 

5 A number of explanations have been given as to why the game is called 
the St Petersburg game.  Samuelson (1977: 36 note 1) suggests it is 
because Bernoulli's article appeared in St Petersburg.  Savage (1972: 93) 
ascribes the name to the journal in which Bernoulli’s paper was first 
published.  Slight variations in the name are encountered.  Some writers 
such as Keynes (1973/1921: 349) refer to the paradox as the Petersburg 
paradox. 

6 I say now because until Samuelson (1977) set-out its history this had not 
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really been done or as Samuelson put it '... I found to my surprise that no 
one seems to have provided anything like a complete survey of the 
subject.' Earlier writers in particular Todhunter (1865) provided at least an 
outline of the subject. 

7 The theory could have more than one emphasis.  It can for example 
attempt to explain the behaviour of people when faced with decisions 
involving uncertainty or be a management tool to assist in making an 
appropriate decision. 

8 The EMV is derived as follows.  If a game of chance is played M times 
and has a range of possible outcomes C1, C2, C3 ... CM then the 
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M
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.  Implicit in the idea of the 

EMV is that M is large, indeed the EMV is often defined as the value 

when M tends to infinity ie ( ) ( ) dxxCxpEMV ⋅⋅= ∫
+∞

∞−
∞  for continuous 

distribution. 
9 Samuelson (1977: 37 n4) points out that crediting Pascal and de Fermat 

underplays the rôle of earlier contributors. 
10 I have used the term reasonable person, the same term used by Daniel 

Bernoulli, to avoid a debate if this reasonable person is rational or risk 
averse or risk neutral or risk seeking.  It can of course be argued, as 
Bernoulli did, that no gambler is rational. 

11 Bernoulli did not claim to be the originator of the game. Nicolas Bernoulli 
appears to have first suggested the game. 

12 Marshall (1920: 134 et seq) preferred using income rather than wealth as a 
measure of utility.  Income is not however in issue when it comes to 
investment decisions where “something” is risked. It is capital (what 
Marshall referred to as stock of wealth) not income, which is risked when 
undertaking risky projects.  See also Friedman and Savage (1948) for the 
use of income instead of wealth.   

13 The original currency was the ducat, which Bernstein (1998: 106) equates 
to about $40 today. In principle the type of currency is irrelevant.  This 
paper uses dollars. 

14 It is accepted that the typical gambler would be prepared to pay an amount 
in excess of the mathematical expectation of a game of chance. 

15 There is a further problem with the traditional solution.  In the limit as the 
payouts tend to infinity and the probability of these large payout tends to 
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zero and the contributions from this point onwards, strictly speaking 
become which is 1/2 n-1 . 2 n or 0.4 which is indeterminate and not a 
constant. 

16 Assume for example the game continues to a payout of 2100 an enormous 
amount.  The probability of this happening is 2-101 and hence, according to 
the traditional view the contribution of this term is still only ½.  The size 
of the final payout is irrelevant in the determination of the EMV.  

17 I have often explained the game to students and asked them to indicate the 
amount they would be prepared to risk to play the game.  No student is 
ever prepared to risk more than a few dollars to play the game.  Despite 
going to great lengths to explain the game I doubt if every student 
understood the explanation since some students indicate that zero is a 
reasonable amount to play the game.  Since the lowest amount to be won 
is $1, it is clear that those students did not comprehend the game. 

18 Utility solutions do not, of course, try to reconcile the EMV criterion and 
the paradox.  They do the very opposite and look for an alternative 
solution to the paradox, accepting that the EMV cannot explain the 
paradox.  Cardinal utility solutions to decisions under uncertainty are 
increasingly coming under attack, see Starmer (2000); Rabin and Thaler 
(2001). 

19 For a discussion of a single game of the St Petersburg game consult Allais 
(1979: 501 et seq). 

20 Allais (1979: 502) concludes that ‘the rule of mathematical expectation 
cannot be a rational principle for decision taking in the case of a single 
game.’  He concludes that $33 dollars would be the amount a syndicate 
would offer to play a single came if the banker’s (casino owner) wealth is 
$10bn. 

21 The various writers arrived at their conclusion for different reasons.  
Daniel Bernoulli (1954/1738: 32) accepted an amount of 2 ducats if Paul 
had no initial wealth, Nicolas Bernoulli, his cousin (or uncle) accepted an 
amount of less than 20 ducats. Gabriel Cramer, in 1728 accepted an 
amount of less than 20 ducats. Arrow (1974, 407) accepts that Paul will 
not pay the predicted large amount.  Sennetti (1976: 960) accepts an 
amount of less than $10.  Allais (1979: 502) postulates an amount less 
than $33 where a single game is played.  

22 This is almost invariably the answer I get from at least one student when I 
ask a class of students the question, ‘How much would you be prepared to 
pay to play one round of the St Petersburg game?’  

23 I say only one because if it goes to infinity it never ends and thus the next 
game in the series will never be played. 

24 I simulated St Petersburg games millions upon millions of times; all 
ended.  An academic commenting on an earlier draft of this paper 
simulated the game a billion times; all ended.  In practice the games end. 
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25 See in particular see footnotes 29 and 30. 
26 Many writers think that time is a factor which limits the game.  It is not 

clear why they believe that time is an issue.  In order to win $2100, only 98 
tails in a row would be required, even if played manually this game would 
take less than five minutes to complete. 

27 Bernoulli confused matters slightly by saying an infinite number of games 
are played.  This being so Karl Menger, in footnote 10 in Bernoulli’s 
(1954/1738) paper correctly pointed out that it is not possible to divide 
infinity by ½ or a ¼ etc.  

28 Strictly speaking, ni is the ‘… probable number of times that the game 
terminates…'  

29 The implications of this statement must be understood.  If the game is 
played 2 k times it is certain that there will be 2k-1 games all of which 
terminate by the kth term. In other words the idea that the St Petersburg 
game continues to infinity is not only wrong in practice it is wrong in 
theory.  Only one game can continue beyond the kth term. 

30 The game which terminates beyond the Tk term could be any one of the M 
games.  By the time the last game is played, the game which survives 
beyond the Tk term is almost certain to have long already have ended.  The 
idea that the last game which is played will also somehow be the game 
which continues to infinity can be dismissed as a statistical improbability. 

31 The fact that all terms have a payout is relevant to Menger's super-
paradoxes (see Samuelson (1977)).  It does not matter what values are 
assigned to the payouts if  n i is zero.  Neither the a priori probabilities nor 
payouts matter if all games have ended. 

32 It is possible to simulate the games in which event ni will only 
approximate pi .M.  In this case it is possible to get more or less than one 
game terminating beyond Tk. 

33 It is not unusual that the two parties to a transaction involving risk are in a 
different position.  A person seeking insurance for his house faces a low 
frequency of the destruction of his house, say 1/10 000 per annum.  Most 
insureds will not in their lifetime experience a total loss.  The insurer on 
the other hand which insures say 1 000 000 houses, faces a virtual 
certainty that at least more than one insured house will be destroyed each 
year and more likely than not 100 houses a year will be destroyed. 

34 Derived from the formula developed in this paper. 
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