
SAJEMS NS 19 (2016) No 2:321-329 
 

321  
 

How to cite DOI: http://dx.doi.org/10.17159/2222-3436/2016/v19n2a10 
ISSN: 2222-3436  

FAIR PRICING, AND PRICING PARADOXES 

Barbara Swart 
Department of Decision Sciences, University of South Africa 

Accepted: February 2016 
 

The St Petersburg Paradox revolves round the determination of a fair price for playing the St Petersburg 
Game. According to the original formulation, the price for the game is infinite, and, therefore, paradoxical. 
Although the St Petersburg Paradox can be seen as concerning merely a game, Paul Samuelson (1977) 
calls it a “fascinating chapter in the history of ideas”, a chapter that gave rise to a considerable number of 
papers over more than 200 years involving fields such as probability theory and economics. In a paper in 
this journal, Vivian (2013) undertook a numerical investigation of the St Petersburg Game. 

In this paper, the central issue of the paradox is identified as that of fair (risk-neutral) pricing, which is 
fundamental in economics and finance and involves important concepts such as no arbitrage, discounting, 
and risk-neutral measures. The model for the St Petersburg Game as set out in this paper is new and 
analytical and resolves the so-called pricing paradox by applying a discounting procedure. In this 
framework, it is shown that there is in fact no infinite price paradox, and simple formulas for obtaining a finite 
price for the game are also provided. 
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1 Introduction 
The famous St Petersburg Game pricing paradox has, over the last 275 years, occupied many great 
minds, including economists such as Paul Samuelson and J.M. Keynes, and has directly or 
indirectly influenced some of the work of mathematicians such as Borel (1949), and even John van 
Neumann. 

1.1 The St Petersburg Game (PG) 
The paradox surrounding this very famous game goes back to the early 1700s. Bernoulli presented 
the paradox to the St Petersburg Academy in 1738, and it has attracted attention ever since. 
Samuelson (1977) states that the paradox “enjoys an honoured corner in the memory bank of the 
cultured analytic mind”. The PG concerns a single game (between a player and a bank or casino) 
which may last arbitrarily long, has infinite expected payoff and, according to the paradox, an 
infinite price. 

One play of the game proceeds as follows: A coin is flipped repeatedly at times t = 1, 2, 3, … 
until the first tails T appears, when the payoff is paid out and the game ends. The accumulated 
payoff St, if the game ends at time t, consists of doubling up initial amount S0 = 1 for each 
successive heads H, and has possible values St = 2; 22; 23; … 2t ; …, with respective probabilities 
½; (½)2; (½)3; … (½)t ;… ; and so on. The run of heads can be arbitrarily long, and the expected 
payoff for one play of the PG is infinite: 

E[Final payoff] = 2(½) + 22(½)2 + 23(½)3 + … + 2t(½)t + … = ∞.  (1.1) 

The argument for finding the fair price FP for the St Petersburg Game given in the literature 
(Bernoulli 1738; Samuelson 1977; Mackinnon 1990; Vivian 2013) then proceeds as follows: 

A fair price implies that the expected profit should be zero. That is: 
E[Profit] = E[Final payoff − FP] = 0 (1.2) 

If one writes: 
E[Final payoff − FP] = E[Final payoff] − E[FP] (1.3) 
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it follows that: 

FP = E[Final payoff] (1.4) 

This pricing argument, together with (1.1), then implies that the “fair” price FP is infinite: 
FP= ∞ (1.5) 

What makes the PG so interesting is that the length τ of the St Petersburg Game, that is, the 
number of Hs before T appears, is a random variable. The PG may have an arbitrarily long run, but 
may also end after only 1 coin flip, with payoff 1, or after 2 flips with payoff 4, and so on. It is 
rather a shock to calculate the expected value of the length τ of the St Petersburg Game. Noting 
that τ = 1 with probability ½; τ = 2 with probability (½)2; and so on, it follows that: 

E[τ] = 𝑛(1/2)'(
')*  = 2 (1.6) 

The paradox is this: It appears that the correct, fair price is infinite, but no player will pay this 
upfront for an expected, infinite final payoff, especially for a game that is expected to end after 2 
tosses. Also, the probability of winning amount 2τ for very long τ is only (½)τ − for example, there 
is a 0.098 per cent chance of winning 1,024 units of money and about a 0,0000009 per cent chance 
of winning a million units. 

Is there a way out of the paradox? An immediate objection to (1.1) and (1.5) could be that an 
infinite amount of money has no meaning in a real-life situation. However, this does not resolve 
the paradox on a theoretical level where economics and mathematics apparently show that the 
price of the PG is infinite. For the sake of investigating the paradox, it is therefore assumed that 
player and bank have unrestricted resources. 

In Sections 1.2 to 1.3, we present some important observations on the St Petersburg Paradox, 
observations that are not mentioned elsewhere in the literature. 

1.2 Mathematical issues 
The pricing argument in respect of (1.2) to (1.4) is flawed mathematically. 

For any random variable X, the expression E[X] = ∞ may be defined in probability theory, but 
working with infinity needs care. For example, E[X − Y] = E[X] − E[Y] is not true if both E[X] = ∞ 
and E[Y] = ∞ (Durrett, 1996). This simple fact (though not mentioned in the literature relating to 
the PG) already dispels the “paradox” presented by the simplistic reasoning in Equations (1.2) and 
(1.3). Writing E[Payoff − Price] = E[Payoff] − E[Price] implies that either E[Payoff] or Price must 
be finite. And, if either is finite, then, by assumption (1.2), they must be equal and both will be 
finite. Therefore, applying fair pricing and Formula (1.3) means there can be no paradox: both 
expected payoff and price must be finite. An appropriate model for the pricing of our games 
should reflect this, and relationships (1.2) to (1.4) do not. 

1.3 Issues of time and risk 
Firstly: Even if one is guaranteed to have a very long run of successive Heads, it makes no 
economic sense to pay an infinite (or even finite but large) amount now, for a large amount paid 
out only after a very long time. 

Secondly: Suppose it is agreed that the game lasts for a maximum of K flips with a maximum 
possible final payoff of 2K (if there are K successive Heads). Then: 

E[Payoff at time K] = 2(½) + 22(½)2 + 23(½)3 + … + 2K(½)K = K  (1.7) 
The “fair” price for this truncated game then has a finite value K and there is no apparent paradox. 
But, to break even in this truncated PG, the player must have an immediate run of X number of 
successive Heads such that 2X ≥ K. Solving for X gives us: X ≥ log. 𝐾. As an example, assume the 
rule is that the game stops after K = 28 flips, so that the price is 28. An immediate run of at least 
log228 = 8 successive Heads is needed just to break even, and the probability of this happening is 
only (½)8 = 0.39 per cent. The probability of making a profit of only 4 units is about 0.01 per cent 
(0.0001). This is too risky for the player. 
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From the point of view of the bank, it is unlikely that the PG can be hedged by a portfolio with 
the same outcome space and price K. There is a probability – however small – that the bank may 
have to pay out a massive amount of 2K, and this may be far too risky for the bank. 

In conclusion: The economics of “infinite payoffs and prices”, without taking time and risk into 
consideration, makes little sense. The “fair” pricing formula (1.4) for St Petersburg games does not 
appear to satisfy all the criteria of fair pricing. This brings us to the concepts of no arbitrage, 
discounting, and true fair pricing, which we will show resolves the paradox. 

1.4 Fair pricing, no arbitrage, and discounting 
The “no-arbitrage” assumption is basic to all pricing theory. It is also known as the “no-free-
lunch” assumption and implies that there should be no expectation of riskless profit when entering 
into a financial transaction. The expected present value (PV) of the profit must be zero in order to 
ensure a fair price (Pliska, 1997; Björk, 2004): 

E[PV of Profit] = E[PV(Final payoff) − Fair price] = 0  (1.8) 
The PV of a quantity is obtained by discounting it to time t = 0 or when the price is paid, most 
commonly using factor ( *

*01
)t, where r is the benchmark risk-free bank rate and t indicates time. 

This then yields the true fair pricing formula: For any investment V over time interval [0, T], its 
fair price V(0) is determined from (1.8) by relationship: 

E[ *
(*01)2

V(T) – V(0)] = 0 

That is: 

Fair price V(0) = *
(*01)2

 E[V(T)] 

The important roles of time and discounting in ensuring a risk-neutral price are now clear. None of 
the previous papers that deal with the St Petersburg Game mention this. The present contribution 
is to use the above insights and replace the simplistic and incorrect “fair” pricing of section 1.1 
with a mathematically and economically sound model, along the lines implied by (1.8). 

In summary: The “fair” pricing formula (1.4) for St Petersburg games does not satisfy all the 
criteria in respect of fair pricing. Here, the problem will be placed within a martingale framework 
and it will be shown how to apply discounting in particular to the pricing model for the PG so that 
time value and risk considerations are introduced and fair pricing can be shown to yield finite 
prices. The notion of a pricing paradox is dispelled, and a formula for the actual value of the 
(finite) fair price of a game will be given. 

2 Literature review 
Samuelson (1977) provides a detailed discussion of the history of the game and of the efforts at 
solving the paradox. This is in effect a literature review in itself. Vivian (2013) also provides a 
good overview. The next sections give brief summaries of some of the attempts at resolving the St 
Petersburg Paradox. 

2.1 Utility functions 
Some authors (see Samuelson’s discussion (1977)) suggest the use of an equilibrium framework 
and utility functions to determine a price that would satisfy both agents, that is, a utility price 
rather than a fair price. The basic idea is that players base decisions on an expected (concave) 
utility function of wealth rather than on the expected value (a linear function) of wealth. This 
presents one way of resolving the pricing paradox and reveals fascinating applications of utility 
theory (Menger, 1934). 

We prefer to stay within the fair price framework in which the pricing paradox was originally 
formulated. 
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2.2 Truncating the game 
One can consider the variant St Petersburg game with the rule (Mackinnan, 1990) that, if pre-
specified throw number K still shows Heads (i.e. you have successive HHH … HH for K throws), 
you will accept cumulative payoff (2K) and the game will stop. In other words, the game is 
restricted to K flips at most (but may, of course, end much sooner). This case was discussed in 
Section 1.3 above − the “fair” price for this truncated game is finite K (Equation (1.7)) and there is 
no apparent paradox. But, as pointed out there, problems arise even in this case, and, furthermore, 
the truncation is not really a satisfactory solution, since it does not apply to the true PG. 

2.3 Playing the St Petersburg Game repeatedly 
The idea, here, is to consider a large number of plays of the PG, and then take the average value as 
the price per game. To formalise this framework something like the Weak or Strong Law of Large 
Numbers is needed. Neither law can be used for the PG, but there is, however, a Weak Law for 
Triangular Arrays that can be applied to the PG. The discussions in Feller (1945, 1968) and 
Durrett (1996) provide the solid basis for this method. We give the result without the proof (which 
can be found in Durrett (1996:44-46): Let Sn denote the cumulative payoff after playing the St 
Petersburg Game n times. Then it can be shown that 34

'5678'
 → 1, in probability, as n → ∞. This 

means that, for large n, the average payoff per game, namely 3
4

'
, is close to log. 𝑛 in probability. 

The price for playing n games is nlog. 𝑛, and the fair price per game, when playing n games, is: 
FPn=log. 𝑛  (2.1) 

This is an intriguing result. The “fair” price for playing the PG only once (n = 1) is zero. Clearly, 
no bank will accept this price and will insist on the player playing a larger number of times. The 
price for playing 2K times is 2Klog. 29 = 2K*K, or K units per game. There is no fixed fair price 
per game – it all depends on how many games you agree to play. This pushes up the cost of 
playing. Remember, also, that the convergence leading to result (2.1) is in probability only, and 
the result is therefore a weak one. 

2.4 Simulating the St Petersburg Game 
Count Buffon proposed this method as far back as the 18th century (Buffon, 1777). He employed a 
child to play the game repeatedly and then tabulated the results. According to him, there would 
always be a finite run of Heads, and, therefore, a finite price and no paradox. Apart from this 
questionable methodology, both Buffon and D’Alembert (see Samuelson, 1977) made another 
astonishing statement: They agreed that any probability smaller than, say, 10−

4 could simply be set 
equal to zero, in this way guaranteeing a finite payoff and price! 

More recently, the use of computers has been suggested to simulate and examine the paradox. 
In this case, a virtual coin is flipped a very large number of times and the payoff is then calculated. 
The process (game) is repeated a large number of times and the average of payoffs is taken. This 
value is then offered as the expected final payoff – and thus price – for playing the PG once. This 
can be seen as a practical implementation of the discussion in Section 2.3. 

The paper of Vivian (2013) follows this path and we can compare his computer results with the 
theoretical price given by (2.1). It appears that his simulated values for the price per game when 
playing large numbers of times are roughly of the order of the theoretical values predicted by 
Feller (1945). For example: For 210 repeated computer plays, the price per game is 6.84, while 
Feller’s price is 10. See Table 3 in Vivian (2013). All his simulated PGs ended after a finite run of 
Heads. 

Vivian’s conclusion is that numerical experiments show that the St Petersburg Paradox is 
resolved: There is no paradox, since his computer simulations show finite lengths of games, and 
finite prices can be computed as the average of a large number of plays. Although his paper is very 
insightful and a valuable way of investigating the paradox, computer experiments still amount to a 
truncation of the repeated plays after some (however long) time. From a mathematical or statistical 
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point of view, it is also not quite satisfactory to state that a finite number of experiments shows 
that all PG games will have a finite length. Another problem with the simulation method is that it 
does not produce a unique, feasible price per game for practical use: Repeating the simulations 
will yield different payoffs and different prices. 

3 Research methodology for solving the original St Petersburg Game 
The research methodology is to develop the ideas presented in Sections 1.2 to1.4 and to show that 
the concept of discounting can be used to introduce time value and risk considerations into games 
such as the PG, which then leads to finite expected payoffs and finite prices. The pricing paradox 
is thus resolved. We will also attempt to place the problem within a martingale framework. 

Fair pricing involves determining the expected values of terminal payoffs, and, in the case of 
the pricing paradox, includes instances where we have possibly infinite payoffs and infinite 
exercise times. We first explain pricing concepts in an accessible way, but using the necessary 
mathematics and correct pricing procedures. These ideas will then be used to give alternative 
analytical solutions to the St Petersburg Paradox which are not based on numerical experiments 
such as those of Vivian (2013). 

We start with some definitions to set up the general risk-neutral framework for fair pricing in 
economics and finance − it is essential to understand the foundations of fair pricing, since failure 
to do so may lead not only to our PG paradox, but also to serious mispricing of financial assets, 
and may play a role in financial crises. 

3.1 The assumption of no arbitrage 
As mentioned in Section 1.4, this assumption is the basis of pricing theory. There should be no 
riskless profit, so that today’s price should equal the present or discounted value PV of the 
expected final payoff. 

Discounting is done via a discount factor or discount rate: The PV of a payment made at time t 
is obtained by discounting it to t = 0 when the price is paid. Usually, a risk-free bank rate r is 
assumed, and the factor ( *

*01
)t, or 𝑒;1< in the case of continuous compounding, is applied to the 

final payment. For any investment V over time interval [0, T], therefore, its fair price V(0) is 
determined by relationship: 

Price V(0) = *
(*01)2

 E[V(T)]  (3.1) 

Note that the final values V(T) are random variables representing all possible outcomes at time T, 
while V(0) is the deterministic price at time 0 when the transaction is entered into. 

It seems obvious that the expected value in (3.1) is taken with respect to the probability measure 
P, which describes the real-world probability distribution of V at T. However, this is not the case: 
The fair price is determined by an artificially constructed risk-neutral measure Q which assures 
zero risk-less profit and is linked to the discounting factor. We discuss this next. 

3.2 Martingales 
The no-arbitrage condition for a market with risky price process S(t) and risk-free bank rate r is 
most clearly stated as follows (Pliska; 1997; Björk 2004): There are no arbitrage opportunities if – 
and only if – there exists a probability measure Q with the following properties: 

Q> 0; and for any time t = 1, 2, …, Tin [0, T] S*(t) = EQ[S*(T)|Ft] (3.2) 
for discounted price process S* (t) = *

(*01)=
S(t) (3.3) 

Note: EQ[S*(T)|Ft] is the expected value of S*(T), conditional on filtration F at time t. Without 
going into the mathematics, one can think of the filtration Ft as “information generated by all 
observed events regarding S up to time t” (Bjőrk, 2004). 

Specifically, time-0 fair values or prices are given by: 
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S(0) = S*(0) = EQ[S*(T)]  (3.4) 

Statement (3.4) is the “First Fundamental Theorem of Mathematical Finance”. In economic terms, 
it states that today’s price is the expected value under measure Q of the discounted future price. 

In the risk-neutral (no-arbitrage) Q-world where fair prices are constructed, price processes  
S* (t) (= *

(*01)=
S(t)) are called martingales, and Q is a martingale measure. It is not identical to real-

world probability distribution P, but is equivalent to P. 
The modern framework for the pricing of financial products is based largely on martingale 

methods. Measure Q is unique if – and only if – the market is complete. (In a complete market, 
investments can be hedged or replicated so that, if two contracts or games V1 and V2 have the same 
final payoffs, they will also have the same prices.) 

In the case of an incomplete market where there is no unique Q and the seller of a contract 
cannot hedge the contract, finding Q is not just a mathematical exercise. The choice of Q is 
equivalent to choosing the market price of risk. One can do no better than quote Björk (2004:221): 
“In an incomplete market the price is also determined, in a nontrivial way, by aggregate supply 
and demand on the market. Supply and demand are, in turn, determined by the aggregate risk 
aversion on the market, as well as by liquidity considerations and other forces.” These remarks are 
important, since it is not clear that the St Petersburg Game (a possibly perpetual contract) can be 
hedged by the bank or casino (see Section 1.3). 

The framework presented above will form the basis of our solution to the pricing paradoxes. To 
summarise the important points: Discounting is necessary, since pricing is not absolute but 
relative; time plays a role; no-arbitrage pricing should imply finite prices even for perpetual 
products; and, especially in incomplete markets, the risk preferences of parties are needed to 
determine the price. See also Bru, Bru and Chung (2009) and Mazliak and Shafer (2009) for 
discussions on martingales. 

4 Results: Resolving the St Petersburg Paradox 
We consider the original St Petersburg Game, played once, as discussed in the Introduction, 
Section 1.1. 

4.1 A fair solution to pricing paradoxes using discounting 
Our submission is that the usual formula (1.4) used in the literature on games does not give a fair 
price for games with a large or possibly infinite time horizon, and that the pricing principles with 
discounting discussed in Section 3 should be followed. Looking at pricing formulas (3.1) and 
(3.4), it is clear that discounting is an essential component of fair pricing, but this is ignored in the 
literature on games, as shown by the application of (1.4). The fair, no-arbitrage price is determined 
by the present values of expected payoffs, and the payoff process under consideration should be as 
in definition (3.3): 

St* = (βtSt) (4.1) 
where St is the accumulated payoff considered in Section 1.1, and β is a discounting or deflating 
factor. 

The discounter β can be negotiated by both player and bank. (In financial portfolio or asset 
pricing, β = *

*01
with r the benchmark risk-free bank rate.) 

Factor β should be positive (β> 0) and satisfy β< 1 for all terms, or for all but a finite number of 
terms where one can take β = 1 if one so wishes (see (4.2) below). 

The function of parameter β is to reflect risk (including market price of risk) and/or time 
considerations. If it is felt that initial terms need not be deflated, since the first (say K) flips do not 
add up to much time, a better choice for β could be: 
β = β(t); with β(t) = 1 for t≤K and β(t) = β< 1 for t>K, with K being an  
agreed-upon time value  (4.2) 
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Or, more generally: 
β = β(t); with β(t) = β1 for t≤K and β(t) = β2 for t>K, with K being an agreed-upon time value (4.3) 

0 <β1≤ 1 and 0 <β2< 1 
More sophisticated choices for β(t) can be negotiated between player and bank. 

4.2 A finite price for the St Petersburg Game 
Payoffs for the PG should be discounted – in its simplest form, payoffs at each step t are 
discounted with factor βt where β< 1. The fair price for the St Petersburg Game is then: 

FP = E[Discounted payoff] 
= 2(½)β + 22(½)2β2 + 23(½)3β3 + … + 2τ (½)τβτ + … 
= 𝛽<(

<)*  
= ?
*;?

  (4.4) 
The fair price is finite and fixed once the value of β has been negotiated. 

(Formula (4.4) also gives the price of a perpetual annuity of a stream of unit payments with  
β = *

*01
.) 

Discounting makes sense of both the mathematics and economics for cases of large or infinite 
time and gets rid of any “infinite price paradox”. If the agents involved cannot agree on a value for 
β, there is simply no supply and no demand, and, therefore, no game. Pricing formula (4.4) has a 
simple analytical form and provides, at least theoretically, a more satisfying solution to the 
“infinite price paradox” than just limiting the wealth of players and banks or the number of flips of 
the coin. 

Formula (4.4) can also be made more dynamic, as suggested above, by applying different 
discount factors over different time periods. For example, the fair price using discounting factor 
(4.2) is: 

FP = K+ ?
@AB

*;?
 (4.5) 

and, using (4.3) as the discounting factor: 

FP = 𝛽*<9
<)*  + 𝛽.<(

<)90*  = ?B;?B
@AB

*;?B
 +?8

@AB

*;?8
 (4.6) 

4.3 The price using a martingale measure adapted to β 
In the above discussion, probability measure Q = {½; ½} was used as a risk-neutral measure. The 
risk-neutral measure and the discounting factor are usually linked, as shown in the martingale 
theory for Section 3.2, Equation (3.4). Different risk-neutral measures are also possible in 
incomplete markets. 

The accumulated payoff process S(t) can be represented by a tree structure (Pliska, 1997), and 
one can then easily show that the following martingale property (the one-step version of (3.2)) 
holds at each t: 

S*(t) = EQ[S*(t + 1)|Ft] 
i.e.: 
S(t) = βEQ[S(t + 1)|Ft] (4.7) 

Martingale measure Q = {qu; qd}, consistent with deflator β, can now be constructed: Application 
of (4.7) at any time t, together with the probability condition, respectively yields equations: 

1 = β [2qu + 1qd] and qu + qd = 1 
The solution is: 

qu = = *;?
?

 and qd= .?;*
?

 

Since we must have both qu> 0 and qd> 0, the restriction on β is: ½ <β< 1. 
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Then, for ½ <β< 1, we have, for the simplest pricing case: 

FP = E[Discounted payoff] 

= 2(*;?
?

)β + 22(*;?
?

)2β2 + 23(*;?
?

)3β3 + … + 2τ (*;?
?

)τβτ + … 

= [2(1 − 𝛽)]'(
')*  = .(*;?)

.?;*
 (4.8) 

Negotiating a specific value of β implies a new risk-neutral probability measure. 
Note: For β= ⅔, Formula (4.8) gives FP = 2, and Formula (4.4) also gives FP = 2. (4.9) 

The fair price of 2 is thus consistent with martingale measure {qu; qd} = {½; ½}. 
The bank will probably not be happy with this price and will want to negotiate a value of β 

closer to ½ in pricing formula (4.8)! 

4.4 Other simple solutions to the paradox? 
Our final suggestions for resolving the pricing paradox are very simple, and are also not 
mentioned in the literature. Suppose that the notion of discounting is ignored and we return to the 
original Formula (1.4). In Equation (1.6), we saw that the expected time for the game to stop is  
τ = 2, and so the expected payoff for the PG should be no more than the expected time 2-payoff, 
namely E[S2]. Since E[S2] = 1+ .

.
 = 2, the “fair” price FP according to (1.4) should be: 

FP =E[S2] = 2 (4.10) 
This accords with the price given in (4.9) above. 

It is also interesting to consider a variation of the original pricing formula (1.4) using utility 
functions U(W), where W is the final payoff. Thus, assume formula: 

FP = E[U(Final payoff)] = E[U(W)] 
For U(W) = log.(𝑊) and W = 2t, we have: 
E[log.(2<)] = E[t] 
The equivalent of expected payoff (1.1) is: 
E[U(Final payoff)] = 1(½) + 2(½)2 + 3(½)3 + … + t (½)t + … 
= 𝑡(1/2)<(

<)* , 
so that the fair price is once again: 
FP= 2 

5 Summary 
Over the last 300 years, various analyses of, and solutions to, the St Petersburg Paradox have been 
offered. Applying the concept of discounted no-arbitrage pricing − based on the accepted model 
for obtaining fair prices for financial assets − to the St Petersburg Game shows that there is indeed 
no infinite price paradox. In this new framework, the price per game is finite, and there is a simple 
formula for pricing the game that depends on a discounting factor that can in theory be negotiated 
between bank and player. Finally: Although one may see the original St Petersburg Paradox as a 
case of a nonsensical question leading to a nonsensical answer, there is much to learn from the 
pricing exercise and the solutions to the “paradox”. 
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