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I. INTRODUCTION 

Matrix converter is a new generation of the direct 
power converter controlling the output voltage, 
amplitude and frequency.  It has an adjustable 
power factor to control the input, regardless of the 
load. The absence of heavy and susceptible-to-
failure capacitors, matrix converters can perform 
operations at high temperature, gain reliability, 
control input and output current and adjust voltage 
sine waves with an adjustable phase shift. These are 
considered some advantages of this type of 
converters. The controlling of output voltage, 
amplitude and frequency represents one more 
advantage over the previously mentioned 
advantages and over other types of converters as 
well. Those advantages promote the integration of 
this new topology in several areas of industrial 
applications. For example, aerospace industries 
have a great interest in that converter [1], [2], marine 
propulsion industries, electrical drive machines with 
variable speed [3]-[10], embedded systems and 
other fields of renewable energy which are based on 
wind and fuel cells [11]-[14]. 

Various research works on the topologies of 
matrix converters, led to the discovery of appropriate 
structures that minimize the number of semi-

conductors. Two types of topologies for the matrix 
converter have been established by researchers 
including direct and indirect matrix converter 
topologies [15]-[26]. It has been shown that the 
indirect topology is handled easier. Other studies 
have been published on the design of multilevel and 
Z-Source Matrix Converters. 

In previous work [24], authors showed the 
primary concerns of the MCs on bidirectional 
switches as well as the direct MC topologies and 
associated modelling. In this paper, the indirect 
topologies for MCs are investigated. Various 
features of those topologies are studied and a brief 
summary of the research will be shown at the end. 

 

 
II. INDIRECT MATRIX CONVERTER 

TOPOLOGY 

A new topology, developed in the early 2000s, 
can be proposed as an alternative to the matrix 
converter. This configuration consists of a 
combination of two conventional converters through 
a fictitious intermediate floor without capacitive 
storage element. It is called "double stage 
converter". The first floor is a controlled rectifier 
directly connected to the second floor, which 
consists of a voltage inverter, traditionally used in 
variable speed AC machines as presented in figure 
1. 

This indirect converter topology has two stages: 

- Rectifier stage and inverter stage  

The rectifier stage is formed of two switching 
cells, denoted (R) and (R'), modeled by the (1). One 
switch is closed at each switching time for both cells; 
this condition is expressed by the relation (2). 

                          (1)   (1) 

Where …. is the connection matrix of the 
rectifier. 
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                                   (2)   

The operation of the rectifier is described by (3) 

and (4). 

                                     (3) 

                                  (4) 

The inverter stage of the indirect matrix converter 
consists of three switching cells called a, b, c as 
shown in figure 1. This floor is modeled by equation 
(5) and satisfies the constraints described by (6). 

                                       (5) 

Where … is the connection matrix of the 

inverter stage. 
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Fig. 1. Dual-stage indirect matrix converter 

Every rectifier switch may be one of the following 
switches Fig. 2 

                                           (6) 

The inverter operation is set by the relations (7) 

and (8). 
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Fig.2. Different topologies of the bidirectional switches 

                                      (7) 

                                  (8) 

The connection matrix of two-stage matrix 

converter named  is obtained by the product of 
the connecting matrices of the inverter and rectifier, 
as shown in equation (9). 

  (9) 

A tie between two matrices connections can be 
established as shown in (10). 

    (10) 

In the same manner as the direct matrix converter, 

(9) 

  
(10) 
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a formulation based on modulation of the switches 
may also be set for the dual stage matrix converter. 
The equations described above in "connection 
function" are transposed in "modulation function" 
and the conversion matrices defined by the 
modulation functions of each stage of "dual-stage" 
matrix converter are described by (11), (12) for the 
rectifier stage and (15), (16) for the inverter stage. 

  where  represents the conduction time of 

switch ( ) during the commutation period  .                                                             

                    (11) 

                            (12) 

The laws of conversion of electrical values,
whatsoever voltage/voltage or current/current are set 
by relations (13), (14) for the recovery block and 
(17), (18) for the inverter stage. 

                                 (13) 

                           (14) 

                              (15) 

                                      (16) 

                                 (17) 

                              (18) 

Product conversion matrices of inverter and 
rectifier stages are the conversion matrix of "double 

stage" matrix converter, denoted   It is 
expressed by (19). 

 

 As explained before; there is a relationship 
between "modulation functions" of the direct matrix 
converter and the indirect matrix converter, which is 
the equality of two conversion matrices according to 
(20). 

 where   represents the conduction time 

of switch ( ) during the commutation period  .                                                             

Matrix converter « dual-stage » 
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Two  antiparallel
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 Fig. 3. Different indirect MC topologies 

This two-stage indirect matrix converter structure 
developed by “J.W. Kollar” has a major advantage 
which is the ability to minimize the number of power 
transistors. The different topologies derived from 
indirect dual-stage MC have been shown in figure 3. 
Based on the two-stage indirect MC configuration, 
the following topologies have been derived: 

A. Indirect matrix converter: 

The configuration shown in figure 4 includes a 
rectifier stage comprising six bidirectional switches 
connected to a common emitter or common 
collector. This configuration generates less switching 
and conduction losses compared to other 

(19) 

(20) 
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configurations. It has a complex control for the 
number of switches to handle. All this leads to the 
development of other configurations with the aim of 
reducing the number of required transistors which 
facilitates the monitoring and control of the matrix 
converter. 

Inverter stageRectifier stage

 
                        Fig. 4. Indirect matrix converter   (19) 

B. Sparse matrix converter: 

The configuration shown in figure 5, leads to 
remove an IGBT from each arm of the rectifier, so 
three components will be eliminated totally 
compared to the previous configuration, which 
facilitates the development of control algorithm of the 
converter. Conduction losses will be greater than 
those generated by the first configuration since three 
transistors and diodes are working during the 
feeding phase of the load as well as two transistors 
and two diodes in the feedback phase to the 
network. 

Fig. 5. Sparse Matrix converter 

C. Very-Sparse matrix converter: 

The structure of this topology illustrated in figure 6 
is based on the implementation of bidirectional IGBT 
switches connected to a diode bridge, where the 
number of the controlled components in the rectifier 
is reduced compared to the two configurations 
mentioned above. Each active element of the 
rectifier requires the activation of a transistor with 
two diodes in each commutation phase, the rectifier 
requests two transistors and four diodes, bearing in 
mind that conduction losses are then a matter of 
importance.  

Fig. 6. Very-Sparse Matrix Converter 

D.  Ultra-Sparse Matrix Converter: 

In this configuration, the least number of switches 
is employed. There is a single switch via input phase 
as shown in figure 7. In each arm, one transistor and 
two diodes are controlled. This structure generates 
similar conduction losses to those produced by the 
"Very- Sparse" structure. Yet, this configuration does 
not allow bi-directional power flow which limits its 

practical application. 

Fig. 7. Ultra-Sparse matrix converter 

E. Matrix Converter "to inverter stage" 

The first stage of this configuration includes a 
rectifier in cascade with an inverter circuit as shown 
in figure 8. This structure has many controlled 
components than the "Sparse" topology. It creates 
additional switching losses and has a high 
complexity level in control. Consequently, this 
configuration will not be an objective study. 

 

 

Fig. 8. Matrix converter with rectifier stage  

F. Matrix Converter based on RB-IGBT: 

The structure shown in figure 9 incorporates RB-
IGBTs into the rectifier stage with advantages like 
reduction of conduction losses. The poor diode 
recovery behavior of the RB-IGBT is of less concern 
here than in a matrix converter because it is possible  
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to switch the rectifier stage at zero current as soft 
switching pattern. At low switching frequencies, a 
matrix converter built with RB-IGBTs will be more 
efficient than the one built with IGBTs. 

Fig. 9. Matrix converter or rectifier unit switches are based on RB-

IGBT 

G. Matrix Converter based hybrid switches: 

The topology of matrix converter using hybrid bi-
directional switches in the rectifier stage (as shown 
in figure 10), provides low conduction losses in 
motoring operation as well as soft turn-on 
commutation of the RB-IGBTs, whereas in the 
rectifier stage the standard IGBTs and diodes 
provide low switching losses in regenerative 
operation.  

 

Fig. 10. Matrix converter or rectifier unit switches are based on a 
RB-IGBT on anti-parallel to an IGBT with a series diode 

 

Table 1 shows the summary of the above-
mentioned MC topologies considering various points 
including some elements such as a number of 
components, power losses, control strategy 
complexity and reversibility. 

 
III. SIMULATION RESULTS 

The SimPowerSystem toolbox of MATLAB has 
been used as the simulation tool. The simulation 
results before and after compensation of the three-
level sparse matrix converter feeding an RL load as 
illustrated in Fig.11, also  shown in Figs.12 to 17. 
Table II gives the system parameters used in the 
simulations. 
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Table 1. Summary of the indirect topologies features 

 

 
Figs.12 (a)-(b) show the phase a input current (ie) 

and its harmonic spectrum, respectively. The input 
current has a THD of 75.33%. The output voltage 
(vs) of phase (a), and its harmonic spectrum (output 
voltage THD of 92.21%) are shown in figs.13 (a)-(b), 
respectively. Figs.14 (a)-(b) show the phase (a) 
output current (is) and its harmonic spectrum. The 
output current THD is 2.43%. An input and output LC 
filters are necessary to compensate the high-
frequency ripple from the input currents and output 
voltages. Thus, an LC filter is connected at the input 
side to avoid overvoltage and to filter the high-
frequency ripple from the input currents. Similarly, on 
the other side, an output LC filter is connected 
between the converter and the load which allows 
controlling the output voltage and mitigates its 
harmonics. Figs. 15 (a) and (b) show the phase (a) 
input current and its harmonic spectrum after 
filtering. The measured THD of the input current in 
phase (a) is reduced from 75.33% before 
compensation to 1.78% after compensation. It is 
important to notice that the input current is kept free 
of harmonics. 
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(b) 

Fig. 12. (a) Waveform of phase a input current (ie) of three-phase 
three-level sparse matrix converter before filtering, (b) Harmonic 

spectrum of input current. 
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(b) 

Fig. 13. (a) Waveform of phase a output voltage (vs) of three-
phase three-level sparse matrix converter before filtering, (b) 

Harmonic spectrum of output voltage  
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(b) 

Fig. 14. (a) Waveform of phase a output current (is) of three-
phase three-level sparse matrix converter before filtering, (b) 

Harmonic spectrum of output current. 
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(b) 

Fig. 15. (a) Waveform of phase a input current of three-phase 
three-level sparse matrix converter after filtering, (b) Harmonic 

spectrum of input current. 
 

The waveforms and harmonic spectra of output 
voltage and current waveforms after filtering are 
shown in (figs.16 and 17) respectively. The output 
filter reduces the THD in the output voltage from 
92.21% to 0.26%. The THD of the output current in 
phase (a) is therefore reduced from 2.43% without 
output filter to 0.15% after filtering. These results 
show the output LC filter capability to compensate 
harmonics of output voltages and output currents. 
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(b) 

Fig.16. (a) Waveform of phase a output voltage of three-phase 
three-level sparse matrix converter after filtering, (b) Harmonic 

spectrum of output voltage 
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(b) 

 
Fig.17. (a) Waveform of phase a output current of three-phase 
three-level sparse matrix converter after filtering, (b) Harmonic 

spectrum of output current 
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Table 2. Specification Parameters 

Circuit 
Specifications 

Value 

Input side ,  

Load  ,  

Input filter 
 , , 

 

Output filter 
 , , 

 
Output side ,  

Ratio 0.825 

Switching frequency  

IV. CONCLUSION 

This paper proves that the dual stage MC topology 
has been studied and analyzed. Different topologies 
based on dual stage configuration of MC have been 
illustrated. The brief summary at the end shows 
some facts and characteristics of the afore-
mentioned topologies which would be useful for 
future applications on MC topologies and control 
aspects. As mentioned before, MC has two main 
topologies including direct and indirect ones. The 
comparison between these two topologies made it 
clear that the two-stage matrix converters have 
advantages over the direct or conventional ones. For 
example, the possibility of reducing the number of 
switches forming the converter enables consumers 
to reduce the switching power losses and 
manufacturing cost as well. Less switching 
difficulties occurs because switches of the input 
stage (rectifier) can be turned on by the application 
of the zero vector current. The second stage is 
controlled as a standard inverter and the Clamp 
circuit can be simplified only by a capacitor in series 
with a diode which is not compatible with the direct 
matrix converter topology. Simulation results for an 
RL load supplied via a sparse matrix converter with 
the PWM modulation show that output voltage is 
controllable with corresponding improvements in 
power quality and the unity displacement power 
factor is achieved at the input stage. Eventually, 
these studies offer a very wide field of research, 
especially in the study of reliability, maintainability, 
availability; faults tolerances and stability of these 
types of converters. 
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