

 1

ANALYSIS AND USE OF CRYPTOGRAPHY TECHNIQUES IN

PROGRAMMING LANGUAGE C#

Naim BAFTIU

University "Ukshin Hoti" Prizren, Faculty of Computer Science, naim.baftiu@uni-prizren.com

Article history:

Submission 04 August 2020

Revision 13 September 2020

Accepted 27 November 2020

Available online 31 December 2020

Keywords:

Cryptography,

Algorithm,

Substitution,

Cipher,

C #.

A b s t r a c t

Cryptography is an old idea and science, but its ap-proach exists and plays a large role in

modernization today. Conventional cryptographic techniques form the basis of today's cryptographic

algorithm. The different categories of algorithms have their respec-tive features; internally, in

performance and imple-mentation. Cryptographic schemes and mechanisms have undergone

continuous improvement. The appli-cation of cryptography has grown increasingly, rang-ing from

limited use in state institutions to widespread use by private individuals and companies. The in-

creased use of the Internet has significantly influenced the nature of applications and the way we

communi-cate. Data security dictates the use of different cryp-tographic techniques. For this reason,

we analyze in detail the various coding techniques by evaluating their performance and efficiency.

Regarding the new paradigms in cryptography there are also new cryp-tographic schemes whose

application requires detailed study and analysis. The classical cryptography algo-rithm is the oldest

algorithm that was used long be-fore the cryptographic system was discovered. Cur-rently, the

system has been widely applied to secure data, and using new methods in a way to improve existing

methods. In this thesis the use of crypto-graphic methods using the C # programming lan-guage will

be discussed.

1. Introduction

The purpose of this research is to analyze Cryptography

techniques in a more convenient way to do more, where you will

find more techniques than I teach in theoretical practice, try to

introduce them through C # programming languages, and use

Visual Studio. The field of analyzing large amounts of data is

current because the number of data is increasing every day.

Comparing and finding differences in cryptography techniques is

also important when analyzing. Each of the techniques has its

own characteristics, and therefore Cryptography is a very broad

field of research. It involves algorithms and techniques from

different disciplines. First, to make the selection of techniques, it

is important to specify the data to be analyzed in order to know

how to make the algorithm selection.

This study will use comparative methods in order to reach

conclusions regarding the performance of cryptography

techniques. All the research will be done in a practical way by

implementing different code in Visual Studios C # programming

language. The increasing use of the Internet has significantly

influenced the nature of applications and the way we

communicate. Data security dictates the use of different

cryptographic techniques. For this reason, we analyze in detail the

various coding techniques by evaluating their performance and

efficiency. To understand the importance of applying

cryptographic techniques it is enough to know the wide range of

applications and services where we have sensitive data. Data

storage is one of the basic personal but also operational

requirements in ensuring the success of a business initiative such

as different banks or companies. The new encryption forms

dictated by the computational difficulties of specific schemes

consist of data processing without having a private key to the data,

including format encoding, symmetric search encryption,

functional encryption and homomorphism encryption. Regarding

the new paradigms in cryptography there are also new

cryptographic schemes whose application requires detailed study

and analysis. Quantum cryptography and Turing-complete

encryption programs are really new forms and currently have a

http://prizrenjournal.com/index.php/PSSJ/issue/view/9
http://orcid.org/0000-0001-9432-9293

 2

good theoretical basis. What poses a challenge in many perfect

coding schemes is closely related to the compositionality that is

the functional axis of applying a cryptographic algorithm.

2. Cryptography Today

Cryptography, in general, is the science of art to preserve the

confidentiality of data. Furthermore, there is also a sense of

understanding the study of mathematical techniques related to

information security aspects such as data confidentiality, and data

validation and not all aspects of information security are

addressed by cryptography. There are four basic purposes of

cryptography which is also an aspect of information security,

namely:

1. Confidentiality is a service used to keep

information content from anyone who receives

it with a secret key to unlock the information that

is encrypted.

2. Data Integrity in order to maintain data integrity,

the system must have the ability to determine

data manipulation by parties who are not entitled

to do, inter alia, enter, delete and sign data in

current data.

3. Authentication, which relates to identification as a

whole system and to the information itself. The

parties must communicate on their own. The

information presented through the channel must

be verified, the authenticity, the content of the

data and the time of delivery.

4. Non-repudiation is an attempt to prevent the denial

of remittances and the creation of information

that transmits or makes.

In cryptography, substitution is a type of identification method,

in which each character in plaintext replaces the chipper text with

the regular system. The recipient of the message can read the

message after performing the decoding process on a message

using a method identical to the method used by the sender. The

replacement method only changes the characters without

changing the structure of the message itself, in contrast to the shift

method which changed the wording but did not change the

character in the message.

3. The use of Methods

The replacement method is divided into several types, namely:

1. Simple substitution is a method of substitution for

character.

2. Substitute polygraph is a method that replaces two

characters or more.

3. Mono-alphabetical replacement is a method that uses

a fixed pattern (eg: Galih password)

4. Poly replacement is the method that the pattern was

different as long as the message was.

3.1. Coding and Decoding

If we want to keep information confidential, we have two options:

to hide the existence of the information or to make the

information incomprehensible. Coding is nowadays widely used

and is one of the most commonly encountered techniques in

various applications. In electronic money schemes, encryption is

used to protect symbolic transaction data such as account

numbers and transaction quantities, digital signatures can replace

handwritten signatures or credit card authorizations, and public

key encryption can provide confidentiality. There are a large

number of systems that cover such applications, from classic

transactions to complex bank payment schemes. Before we get to

the basic coding forms and schemes let's look at a number of

concepts that we will come across.

 Plain Text - The original or original message to be sent

is known as open text.

 Cipher Text - The message on which the cipher is

applied is known as the cipher text. In cryptography

the initial message "hello" can be converted to such

incomprehensible form "Ajd672 # @ 91uk".

 Encoding - The process of converting an open text into

encoded text is known as encoding. Cryptography

uses encryption techniques to send confidential

messages over an unsecured line of communication.

The coding process requires two things: a coding

algorithm and a key. The encryption algorithm means

the technique used and the encryption occurs on the

sender side.

 Decoding - An inverse process of decoding is known

as decoding, where the encoded text is converted to

the original text. Cryptography uses decryption

techniques on the recipient's side to retrieve the

original message from the encoded text.

 Key - A key is an alphanumeric text or can be a special

symbol.

Private keys are used for signature; public keys are used for

verification: For example, to sign something digitally, we encrypt

it with our private key (usually a hash is created and encrypted).

Anyone can decode this data (deciphering the hash value and

comparing their hash value to the previous value) and verify that

since it is signed by our private key then the data belongs to us.

Key selection in cryptography is quite important as it directly

affects the security of the encryption algorithm. For example, if

 3

Anna uses key 3 to encode the original text "President" we will

have the text as follows "Suhvlghqw”.

3.2. Cryptographic Algorithms in Use

The most commonly used algorithms in data storage are: 3DES,

RSA, Blowfish, Two fish and AES. Also a trend regarding the

use of encryption algorithms is their presence in security

certificates, various protocols and public-key infrastructures.

DES is the first coding standard recommended by NIST and

operates with a key (56 bits) and a 64-bit data block. DES has a

Festal structure, operates with a bit of bits and is no longer

considered a secure algorithm. The 3DES is a DES upgrade,

operating with a 64bit block and 192 bit (168 bit) switch. In this

algorithm the cipher is applied three times to increase the level

and average security time. It is a known fact that 3DES is the

slowest method among other block chains. AES (Rijndael) is a

block chain and usually operates at 256 bits out of three possible

128, 192 or 256-bit key lengths. It encodes 128-bit data block in

10, 12 and 14 rounds depending on the size of the key. Encryption

in AES is fast and flexible; it can be implemented on different

platforms especially on small devices, which is an advantage

already. The Blowfish algorithm created by Schneider and known

since 1993, does not turn out to be broken, at least not completely.

This algorithm is optimized in hardware applications, though like

all other figures it is often used in software applications. It is a

64-bit block and receives a variable length key, from 32 to 448

bits: usually 128 bits. Bluefish has a very good performance

compared to AES, DES and 3DES. The RSA is named after its

creators (Rivets, Shamir, and Adelman) have some operational

limitations. With the most commonly used variant (PKCS # 1

v1.5), with a 1024-bit RSA key size, this algorithm can encode a

message up to 117 bytes, and receive a 128-byte encoded

message. Hash functions are good "randomizers" (the output of a

hash function does not display known and expected structures)

and this makes it quite suitable for building more complex

schemes with good security features and moreover hash functions

do not they don't even have keys. SHA is a common term for a

cryptographic family of hash functions. Four SHA functions were

then added (SHA-224, SHA-256, SHA-384 and SHA-512,

known as 'SHA2'). SHA-256 and SHA-512 are relatively new and

well known functions. SHA-256 is used by the DKIM (Domain

Keys Identified Mail) framework for email signatures in

controlling spam and phishing phenomena. SHA-512 is

supported by True Crypt software for encrypting disk space and

virtual images. Also SHA-256 and SHA-512 are recommended

for DNSSEC (Domain Name System Security Extensions)

regarding security services that can be added to the DNS protocol.

Also hash functions can be used in SSL / TLS technologies that

are standard for encrypting connections between servers and web

browsers.

3.3. Cryptography Techniques

Cryptography is a broad field but we have analyzed some of the

classical encryption techniques such as:

- Caesar Cipher,

- Monoalphabetic Ciphers,

- Playfair Cipher,

- Hill Cipher,

- Polyalphabetic Ciphers,

- Vigenere

- And Rail Fence.

While some of the analog encryption techniques are: Data

Encryption Standard (DES) as well Advanced Encryption

Standard (AES).

3.4. Caesar Cipher

It is a technique in which the letters of the original text are

replaced by letters, numbers or other symbols. We can divide

traditional symmetric figures into two broad categories:

replacement figures and transposition figures.

If the symbols in plain text are alphabetical characters, we replace

one character with another. For example, we can replace the letter

A with the letter D and the letter T with the letter Z. If the symbols

are digits (0 to 9), we can replace 3 with 7 and 2 with 6.

The implementation of the said algorithm in C # follows:

namespace Algoritmet

{

using System;

using System.Collections.Generic;

using System.Linq;

using System.ComponentModel.Composition;

using System.Data.Common;

publicclassCeaser : SecurityAlgorithm

 {

readonlyint key;

#region Constructor

public Ceaser(int key)

 {

this.key = key;

 }

#endregion

#region Public Methods

publicoverridestring Encrypt(string plainText)

 {

return Process(plainText, Mode.Encrypt);

 }

 4

publicoverridestring Decrypt(string cipher)

 {

return Process(cipher, Mode.Decrypt);

 }

#endregion

#region Private Methods

privatestring Process(string message, Mode mode)

 {

string result = string.Empty;

foreach (char c in message)

 {

var charposition = alphabet[c];

var res = Common.GetAlphabetPosition(charposition, key,

mode);

 result += alphabet.Keys.ElementAt(res % 26);

 }

return result;

 }

#endregion

 }

}

3.5. Mono Alphabetic Ciphers

In a mono-alphabetic figure, a character (or symbol) that is

plaintext is always changed to the same character (or symbol) in

the cipher text regardless of its position in the text. For example,

if the algorithm says that the letter A in plaintext is changed to

letter D, then every letter A is changed to letter D. In other words,

the relationship between letters in plaintext and cipher text are

one-to-one. The simplest mono-alphabetic figure is the extra digit

(or change digit). Assume that plaintext consists of lowercase

letters (a to z) and that cipher text consists of uppercase letters

(from A to Z). To be able to apply mathematical operations to

plaintext and cipher text, we assign numeric values to each letter.

Implementing the said algorithm in C # does the following:

namespace Algoritmet

{

using System;

using System.Collections.Generic;

using System.Linq;

publicclassMonoalphabetic : SecurityAlgorithm

 {

readonlyDictionary<char, char> _alphabetShuffled;

readonlyDictionary<char, char> _alphabetShuffledReverse;

public Monoalphabetic()

 {

 _alphabetShuffledReverse = newDictionary<char,

char>();

 _alphabetShuffled = newDictionary<char, char>();

 ShuffleAlphabet();

 }

#region Public Methods

publicoverridestring Encrypt(string plainText)

 {

return Process(plainText, Mode.Encrypt);

 }

publicoverridestring Decrypt(string cipherText)

 {

return Process(cipherText, Mode.Decrypt);

 }

#endregion

#region Private Methods

privatestring Process(string token, Mode mode)

 {

string result = "";

for (int i = 0; i < token.Length; i++)

 {

switch (mode)

 {

caseMode.Encrypt:

 result += _alphabetShuffled[token[i]];

break;

caseMode.Decrypt:

 result += _alphabetShuffledReverse[token[i]];

break;

 }

 }

return result;

 }

privatevoid ShuffleAlphabet()

 {

Random r = newRandom(DateTime.Now.Millisecond);

var alphabetCopy = alphabet.Keys.ToList();

foreach (var character in alphabet.Keys)

 {

int characterPosition = r.Next(0, alphabetCopy.Count);

char randomCharacter = alphabetCopy[characterPosition];

 _alphabetShuffled.Add(character, randomCharacter);

 _alphabetShuffledReverse.Add(randomCharacter,

character);

 alphabetCopy.RemoveAt(characterPosition);

 }

 }

#endregion

 }

 5

3.6. Poly Alphabetic Ciphers

In poly alphabetic substitution, each appearance of one character

may have another substitution. The relationship between a

character in plaintext and a character in cipher text is one-to-

many. For example, "a" may be coded as "D" at the beginning of

the text, but as "N" in the middle. Poly alphabetic figures have the

advantage of concealing the frequency of basic language paper.

To create a poly alphabetic cipher, we need to make each

character cipher text, which depends on both the corresponding

plaintext characters and the position of the plaintext in the

message. This implies that our key must be a stream of sub keys,

in which each sub key depends somewhat on the position of the

simple character that that sub key uses for encryption.

Implementing the said algorithm in C # does the following:

publicclassAutoKey : SecurityAlgorithm

 {

#region Member Variables

string _key;

#endregion

#region Constructor

public AutoKey(string key)

 {

this._key = key;

 }

publicstring getKey()

 {

returnthis._key;

 }

#endregion

#region Public Methods

publicoverridestring Encrypt(string plainText)

 {

return Process(plainText, Mode.Encrypt);

 }

publicoverridestring Decrypt(string cipher)

 {

return Process(cipher, Mode.Decrypt);

 }

#endregion

#region Private Methods

privatestring Process(string message, Mode mode)

 {

 _key = DuplicateKey(message);

returnCommon.Shift(message, _key, mode, alphabet);

 }

privatestring DuplicateKey(string message)

 {

if (_key.Length < message.Length)

 {

int length = message.Length - _key.Length;

for (int i = 0; i < length; i++)

 {

 _key += message[i];

 }

 }

return _key;

 }

#endregion

 }

}

3.7. Playfair Cipher

Known as multi-letter cipher. It treats diagrams in the original text

as a single unit and translates these units into encoded diagrams.

The Play fair algorithm is based on using a 5X5 matrix of letters

built using a word. Now the question is how to fill that 5x5

matrix? - To fill it, we need a keyword or a message, after that

you fill in the 5x5 word letters from left to right and from top to

bottom and then fill in the remaining parts of the matrix with the

remaining letters in alphabetical order. The letters I and J are

treated as one letter and they are placed in the same matrix box as

this - I / J. Plaintext is encoded two letters at a time, so you must

first put together plain text. Discovered by British scientist

Charles Wheatstone in 1854, it was used as a standard system by

the British Army in World War I and the US Army and other

allied forces during World War II.

Implementing the said algorithm in C # does the following:

publicclassPlayFair : SecurityAlgorithm

 {

string key;

public PlayFair(string key)

 {

this.key = key;

 }

#region Public Methods

publicoverridestring Encrypt(string plainText)

 {

return Process(plainText, Mode.Encrypt);

 }

publicoverridestring Decrypt(string cipherText)

 {

return Process(cipherText, Mode.Decrypt);

 }

#endregion

#region Private Methods

 6

privatestring Process(string message, Mode mode)

 {

//Key:Charcater

//Value:Position

Dictionary<char, string> characterPositionsInMatrix =

newDictionary<char, string>();

//Key:Position

//Value:Charcater

Dictionary<string, char> positionCharacterInMatrix =

newDictionary<string, char>();

FillMatrix(key.Distinct().ToArray(),

characterPositionsInMatrix, positionCharacterInMatrix);

if (mode == Mode.Encrypt)

 {

 message = RepairWord(message);

 }

string result = "";

for (int i = 0; i < message.Length; i += 2)

 {

string substring_of_2 = message.Substring(i, 2);//get characters

from text by pairs

//get Row & Column of each character

string rc1 = characterPositionsInMatrix[substring_of_2[0]];

string rc2 = characterPositionsInMatrix[substring_of_2[1]];

if (rc1[0] == rc2[0])//Same Row, different Column

 {

int newC1 = 0, newC2 = 0;

switch (mode)

 {

caseMode.Encrypt://Increment Columns

 newC1 = (int.Parse(rc1[1].ToString()) + 1) %

5;

 newC2 = (int.Parse(rc2[1].ToString()) + 1) %

5;

break;

caseMode.Decrypt://Decrement Columns

 newC1 = (int.Parse(rc1[1].ToString()) - 1) %

5;

 newC2 = (int.Parse(rc2[1].ToString()) - 1) %

5;

break;

 }

 newC1 = RepairNegative(newC1);

 newC2 = RepairNegative(newC2);

 result +=

positionCharacterInMatrix[rc1[0].ToString() +

newC1.ToString()];

 result +=

positionCharacterInMatrix[rc2[0].ToString() +

newC2.ToString()];

 }

elseif (rc1[1] == rc2[1])//Same Column, different Row

 {

int newR1 = 0, newR2 = 0;

switch (mode)

 {

caseMode.Encrypt://Increment Rows

 newR1 = (int.Parse(rc1[0].ToString()) + 1) %

5;

 newR2 = (int.Parse(rc2[0].ToString()) + 1) %

5;

break;

caseMode.Decrypt://Decrement Rows

 newR1 = (int.Parse(rc1[0].ToString()) - 1) %

5;

 newR2 = (int.Parse(rc2[0].ToString()) - 1) %

5;

break;

 }

 newR1 = RepairNegative(newR1);

 newR2 = RepairNegative(newR2);

 result +=

positionCharacterInMatrix[newR1.ToString() +

rc1[1].ToString()];

 result +=

positionCharacterInMatrix[newR2.ToString() +

rc2[1].ToString()];

 }

else//different Row & Column

 {

//1st character:row of 1st + col of 2nd

//2nd character:row of 2nd + col of 1st

 result +=

positionCharacterInMatrix[rc1[0].ToString() +

rc2[1].ToString()];

 result +=

positionCharacterInMatrix[rc2[0].ToString() +

rc1[1].ToString()];

 }

 }

return result;

 }

privatestring RepairWord(string message)

 {

string trimmed = message.Replace(" ", "");

string result = "";

for (int i = 0; i < trimmed.Length; i++)

 {

 result += trimmed[i];

 7

if (i < trimmed.Length - 1 && message[i] == message[i + 1])

//check if two consecutive letters are the same

 {

 result += 'x';

 }

 }

if (result.Length % 2 != 0)//check if length is even

 {

 result += 'x';

 }

return result;

 }

privatevoid FillMatrix(IList<char> key, Dictionary<char,

string> characterPositionsInMatrix, Dictionary<string, char>

positionCharacterInMatrix)

 {

char[,] matrix = newchar[5, 5];

int keyPosition = 0, charPosition = 0;

List<char> alphabetPF = alphabet.Keys.ToList();

 alphabetPF.Remove('j');

for (int i = 0; i < 5; i++)

 {

for (int j = 0; j < 5; j++)

 {

if (charPosition < key.Count)

 {

 matrix[i, j] = key[charPosition];//fill matrix with

key

 alphabetPF.Remove(key[charPosition]);

 charPosition++;

 }

else//key finished...fill with rest of alphabet

 {

 matrix[i, j] = alphabetPF[keyPosition];

 keyPosition++;

 }

string position = i.ToString() + j.ToString();

//store character positions in dictionary to avoid searching

everytime

 characterPositionsInMatrix.Add(matrix[i, j],

position);

 positionCharacterInMatrix.Add(position, matrix[i,

j]);

 }

 }

 }

privateint RepairNegative(int number)

 {

if (number < 0)

 {

 number += 5;

 }

return number;

 }

 }

3.8. Vigenere Cipher

Improved Vernami encryption proposed by a military officer

named Joseph Mauborgne. Use a key that is as long as the

message so that the key does not need to be repeated. The key is

used to encrypt and decrypt the single message and then leave it

in use. Each new message requires a new key as long as the length

of the new message. The schema is invincible produces random

output that holds no statistical relation to the original text.

Because the encrypted text contains no information about

anything that is related to the original text, there is no way to

break the code.

Implementing the said algorithm in C # does the following:

namespace Algoritmet

{

using System.Collections.Generic;

using System.ComponentModel.Composition;

using System.Data.Common;

publicclassVigenere : SecurityAlgorithm

 {

string key;

public Vigenere(string key)

 {

this.key = key;

 }

#region Public Methods

publicoverridestring Encrypt(string plainText)

 {

return Process(plainText, Mode.Encrypt);

 }

publicoverridestring Decrypt(string cipherText)

 {

return Process(cipherText, Mode.Decrypt);

 }

#endregion

#region Private Methods

privatestring Process(string message, Mode mode)

 {

 key = key.ToString().ToLower().Replace(" ", "");

 key = DuplicateKey(message, key);

returnCommon.Shift(message, key, mode, alphabet);

 }

privatestring DuplicateKey(string message, string key)

 8

 {

if (key.Length < message.Length)

 {

int length = message.Length - key.Length;

for (int i = 0; i < length; i++)

 {

 key += key[i % key.Length];

 }

 }

return key;

 }

#endregion

 }

}

3.9. Rail Fence

Simplified displacement coding. Plaintext is written as a sequence

of diagonals and then read off as a sequence of lines. In this

technique, the characters of plain text are written in diagonal form

at the beginning. This arrangement forms two rows, which

resemble the rail track. That is why it is called Rail Fence or Rail

Fence. After both rows are produced, the digit text is read

consecutively. In the figure of Rail Fence, the plain text is written

down and diagonally on successive rails of a fictional fence.

When we reach the bottom rail, we pass upward moving

diagonally, once we reach the top rail, the direction is changed

again. Thus, message alphabets are written in a zigzag manner.

After each alphabet is written, the individual rows are combined

to obtain the encoding text.

Implementing the said algorithm in C # does the following:

namespace Algoritmet

{

using System;

using System.ComponentModel.Composition;

publicclassRailFence : SecurityAlgorithm

 {

readonlyint key;

public RailFence(int key)

 {

this.key = key;

 }

#region Public Methods

publicoverridestring Encrypt(string plainText)

 {

return Process(plainText, Mode.Encrypt);

 }

publicoverridestring Decrypt(string cipherText)

 {

return Process(cipherText, Mode.Decrypt);

 }

#endregion

#region Private Methods

privatestring Process(string message, Mode mode)

 {

int rows = key;

int columns = (int)Math.Ceiling((double)message.Length /

(double)rows);

char[,] matrix = FillArray(message, rows, columns, mode);

string result = "";

foreach (char c in matrix)

 {

 result += c;

 }

return result;

 }

privatechar[,] FillArray(string message, int rowsCount, int

columnsCount, Mode mode)

 {

int charPosition = 0;

int length = 0, width = 0;

char[,] matrix = newchar[rowsCount, columnsCount];

switch (mode)

 {

caseMode.Encrypt:

 length = rowsCount;

 width = columnsCount;

break;

caseMode.Decrypt:

 matrix = newchar[columnsCount, rowsCount];

 width = rowsCount;

 length = columnsCount;

break;

 }

for (int i = 0; i < width; i++)

 {

for (int j = 0; j < length; j++)

 {

if (charPosition < message.Length)

 {

 matrix[j, i] = message[charPosition];

 }

else

 {

 matrix[j, i] = '*';

 }

 charPosition++;

 9

 }

 } return matrix;

 }

 }

4. Comparison of Algorithms and Conclusions

We will first compare the term cryptography, what it is in a

broader sense, comparing it with the term encryption.

Cryptography and Encryption have some differences which we

will mention below:

- Cryptography is the study of concepts such as

encryption, decryption, used to provide secure

communication while Encryption is the process of

encoding a message with an algorithm.

- Cryptography can be considered a field of study,

which incorporates many techniques and

technologies, while Encryption is more of a

mathematical nature and algorithms.

- Cryptography, being a field of study has a broader

category and range of techniques, where encryption is

one such technique, while Encryption is one of the

aspects of Cryptography that can codify the

communication process efficiently.

- Cryptography has a symmetric and asymmetric

version, with a concept of a shared rather than a shared

key, while Encryption follows the same approach with

some specific terms such as cipher text, plaintext, and

cipher.

- Cryptography involves working with algorithms with

basic cryptographic properties while Encryption is

one of the subcategories of Cryptography that uses

mathematical algorithms called digits.

- The areas of cryptography include computer

programming, algorithm, mathematics, information

theory, transmission technology while Encryption is

more digitized in nature since the modern age.

- Cryptography includes two major components called

Encryption and Decryption while Encryption is a

process of storing information to prevent

unauthorized and illegal use.

4.1. Comparison of Mono-Alphabetic and Poly

Alphabetic Algorithms

Mon A mono-alphabetical digit is one where each symbol in the

input (known as’ plaintext ') is mapped to an output fixed symbol

(referred to as the predicted figure). Poly alphabetic encoding is

any substitution-based cipher using multiple substitution

characters. In the mono-alphabetic figure, after a key is selected

each alphabetical character of the plaintext is marked with a

unique alphabetic character of the cipher text. On the other hand,

in the poly alphabetic code, any alphabetical character of the

plaintext can be listed in the alphabetical letters '' m '' of a cipher

text. In mono alphabetic cipher, the relationship between a

plaintext character and characters in cipher text is one-to-one,

while in Poly alphabetic the relationship between a plaintext

character and characters in cipher text is one-to-many.

4.2. Creaser’s algorithm

A mono-alphabetical cipher is where each plaintext letter is

replaced by another letter to form cipher text. It is a simpler form

of replacement figure scheme. This cryptosystem is commonly

called Shift Cipher. The concept is to replace each letter of the

alphabet with another letter that has been "moved" with a fixed

number between 0 and 25. For this type of scheme, both the

sender and the receiver agree on a "secret shift number" for the

alphabet relocation. This number that is between 0 and 25

becomes the encryption key. Caesar Cipher is not a secure

cryptosystem because there are only 26 possible keys to try. An

attacker can perform an exhaustive search of keystrokes with

limited computing resources available.

4.3. Play fair Cipher

In the Play fair cipher, a master table is first created. The main

table is a 5 x 5 alphabet grid table that acts as the key to plaintext

encryption. Each of the 25 letters of the alphabet must be unique

and one alphabet (usually J) is removed from the table as we only

need 25 alphabets instead of 26. If simple writing contains J, then

it is replaced by I. The sender and receiver decide on a separate

key, and in a main table, the first characters (going left to right)

place the key, excluding the same letters. The rest of the table will

be filled with the remaining letters of the alphabet, in natural

order. It is also a replacement cipher and is difficult to break

compared to simple replacement cipher. Cryptanalysis is also

possible in the Play fair cipher; however, it would be possible to

replace 625 possible letter combinations (25x25 characters)

instead of 26 different characters. Play The Play fair cipher was

mainly used to protect important but not critical secrets, as it is

fast to use and requires no special equipment.

4.4. Vigenere Cipher

Vigenere Cipher was created by taking Caesar's standard cipher

to reduce the effectiveness of cryptanalysis in the cipher text and

to make a cryptosystem stronger. Certainly this is significantly

safer than an ordinary Caesar figure. In history, it was regularly

used to protect sensitive political and military information. It was

referred to as the unbreakable figure because of the difficulty it

posed to cryptanalysis.

 10

Vigenere encryption becomes a cryptosystem of perfect secrecy,

called One-Time-Pad. One-Time-Pad has several features:

 The word length is the same as the plaintext length.

 The keyword is a series of randomly generated

alphabets.

 The keyword is used only once.

Let's say we encrypt the name "point" with One-Time-Pad. It is a

5 letter text. To break the meticulous figure with brute force, you

have to try all the keys options and calculate for (26 x 26 x 26 x

26 x 26) = 265 = 11881376 times. This is for a message with 5

characters or characters. Thus, for a longer message the

computation increases exponentially for each additional letter.

This makes it logically impossible to break the cipher text with

brute force.

5. Conclusion

Cryptography encompasses various techniques and technologies

including algorithms, mathematics, information theory,

transmission, encryption, and more. Information security issues

are critical for individuals, institutions and companies worldwide.

Nowadays it is difficult to consider a computer system completely

secure without the encryption technology. Cryptographic figures

and algorithms are basic mechanisms for protecting data and

communications. In this paper we have analyzed cryptographic

algorithms, their cryptographic features, and created an

application where we can encrypt and decrypt various texts. Then

we showed each algorithm from an example and how that

algorithm works, and finally we compared some of the algorithms

in detail. Cryptographic technologies are advancing: new attack

techniques, designs and implementations of widely studied

algorithms. So it is important to analyze their structure, efficiency

and scalability metrics depending on what we need. New coding

paradigms that are significant in new systems and technologies

and have access to computational theory. There is a constant

contradiction between efficiency and computing power. For this

reason, we need to solve new difficult problems to provide better

cryptographic schemes.

References

1. Albahari, J., Albahari, B. (2012). C# 7.0 in a Nutshell:

ISBN: 1491987650 ISBN13: 9781491987650 ASIN:

1491987650.

2. Schneier B. (2006), Applied Cryptog-raphy, Second

Edition: Protocols, Algo-rithms, and Source Code in C

(cloth) ISBN: 0471128457, Publication 1996.

3. Alfred J. Menezes, Paul C. van Oorschot and Scott A.

Vanston. (1997). Handbook of Applied Cryptography,

ISBN: 0-8493-8523-7-1996.

4. Denning, Dorothy E, (1999). Information Warefare

and Security, Addison-Wesly, ISBN 0-201-43303-

6.Introduction to Cyber Information warfare.

5. Stallings, W. (2006), Cryptography and Network

Security Principles and Practices, Fourth Edition. Pub.

November 16, 2005 Print ISBN-10, 0-13-187316-4 Print

ISBN-13 978-0-13-187316-2.

6. Kelsey,J., Schneier,B., and Hall, C.

(1998),"Cryptanalytic Attacks on Pseu-dorandom Number

Generators. "Proceed-ings, Fast Software Encryption.

http://www.schneier.com/paper-prngs.htm

7. Oppliger, R., and Rytz, R. (2005), "Does Trusted

Computing Remedy Computer Se-curity Problems?" IEEE,

Security and Priva-cy, March/April 2005.

8. Biham, E., and Shamir, A. (2000)"Power Analysis of

the Key Scheduling of the AES Candidates" Proceedings,

Second AES Can-didate Conference, 24 October 2000.

