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Introduction:

In this assay it is tried to cover few essential
concepts related with role of “Biostatistics” in “Research in
Medical Sciences”, however one can choose to ignore/omit
few or do the 'rapid reading' as most of you are likely to be
familiar with these very basic things. Though of primary level,
these basic things are discussed because it is important to be
very clear about them. It is true and often said that “clinicians
are more sophisticated consumers of research information
and moreover they have a far better understanding of how to
find the best information and to judge its validity and
generalizability for themselves”. Fruitful use of the rapid,
almost daily, advancement in medical sciences can be made
up-to-date only by enabling one to critically read and
interpret the findings reported in medical literature such as
journals & the electronic media. For this, at least some
knowledge of biostatistics is vitally necessary as it helps
develop such ability so that one can apply research findings
judiciously in practice. Many clinicians are not actually
producers of studies involving statistics/biostatistics, but
almost all will be consumers. They must read the medical
literature to keep up-to-date and they generally find many
papers contain a good deal of statistical analysis. A good
analysis must be preceded by a good design. It is well
recognised that design deserves as much consideration as
analysis. A well designed study poorly analysed can be
rescued by a reanalysis but a poorly designed study is beyond
the redemption by even sophisticated statistics. Many
experimenters consult the biostatistician only at the end of
the study when the data have been collected. They believe
that the job of biostatistician is simply to analyse the data and
produce the final 'P' value. However, analysis is only part of a
biostatistician's job. A far more important task is to ensure
that the results are valid and generalizable, and so the study
design and execution are appropriate.

Before we overview few important methods in
biostatistics for utility in clinical studies, it may be pertinent
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to throw light on one very basic but vital fact that “looking for
clinical significance even when the results are statistically
significant is very important”. There are situations where a
result could be clinically important but is not statistically
significant. Consideration of these two possibilities leads to
two very useful yardsticks for interpreting an article(s) on
clinical studies/trials. These yardsticks are - (i) If the
difference is statistically significant, is it clinically significant
as well? and (ii) If the difference is not statistically
significant, was the trial big enough to show a clinically
important difference if it had occurred? (1). It is possible to
determine ahead of time, how big the study should be. But
most trials that reach negative conclusions either could not
or would not put enough patients in their trials to detect
clinically significant differences. That is, the errors (i.e. type
I errors) of such trials are very large and their power (= (1-)
100%) or sensitivity is very low. In one review with a long list
of trials that had reached “negative” conclusions, it is found
that most of them had too few patients to show risk
reductions of 25% or even 50%. In book on fundamentals of
'Biostatistics'(2) tables to find out the sample size, adequate
to detect 25% or 50% risk reduction are given. Few other
important aspects of quantitative reasoning are also
discussed in that book.

The word significant in common parlance is
understood to mean noteworthy, or important. Statistical
significance too may have the same connotation but it can
sometimes be at variance with medical significance. A
statistically significant result can be of no consequence in the
practice of medicine and a medically significant finding may
occasionally fail test of statistical significance. A small and
clinically unimportant difference can become statistically
significant if the sample size is large. For example, suppose it
is known that 70% of those with sore throat are automatically
relieved within a week without treatment due to self-
regulating mechanism in the body. A drug was tried on 800
patients and 584 (73%) cured in a week's time. Since P
(Probability of typeI error) is very small the null hypothesis
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is extremely unlikely to be true and is rejected. Statistical
significance is achieved and the conclusion of 73% cure rate
observed in the sample being really more than 70% seen
otherwise is reached. But, is this difference of 3% worth
pursuing the drug? Is it medically important to increase the
chances of relief from 70% to 73%? Perhaps not. Thus a
statistically significant result can be medically not significant.

Some cautions are required in interpreting
statistical non-significance as well. Consider the following
results (1) of a trial in which patients on regular tranquilizer
were randomly assigned to continued conventional
management and a tranquilizer support group.

Tranquilizer Conventional
support group management group
Still taking tranquilizer 5 10
After 16 weeks
Stoppedtaking
tranquilizer 10 5
by 16 weeks
Total 15 15

Though the number of patients who stopped taking
tranquilizer is double in the support group than in the
conventional group yet the difference in not statistically
significant (> (with Yate's correction) = 2.13, P = 0.1441,
Fisher's exact P = 0.1431). There is a clear case of a trial on an
enlarged n. If the same type of result is found on n=30 in each
group then the difference would become statistically
significant. The conclusion that the evidence is not enough to
conclude presence of difference remains scientifically valid so
long as n remains 15 in each group. Following example (3)
will hopefully make it crystal clear.

Consider the example of a hypothetical intervention
that aims to improve children's IQ. Suppose a population of
children has a mean IQ of 100 with a standard deviation of 15.
An intervention is introduced to improve their IQ. Suppose 4
students undergo the intervention and 4 do not. Then, it can
be calculated that the intervention will be considered
statistically significant if the intervention produces at least a
20.6-point increase in the IQ (assuming a constant SD of 15).
Similarly, if 9 children are studied, the intervention should
produce a 12.3-point increase in IQ, if 100 children are
studied, the intervention should produce only 3.5-point
increase in IQ and if 900 children are studied, the
intervention should produce only 1-point increase in IQ. This
example illustrates the limitation of relying only on statistical
significance in making clinical decisions. Statistical tests in
inferential statistics are, in general, designed to answer the
question “How likely is the difference found in a sample due

to chance (when actually no such difference exists in the
population, the null-hypothesis)?”

Methods:

Let us discuss 'How biostatistics works?' in brief (in
hypothesis testing situation only). This (may appear simple,
but nevertheless should be absolutely clear i.e. there should
not be a slightest confusion about it and so) is illustrated with
one simple example. Consider a trial of “tossing of a fair
coin”. Since the coin is fair, probability of head coming up is
one-half. Suppose we perform 20 trials and keep a count of
heads coming up. About 10 heads are expected. Although 10
heads are expected, the actual number could be different. If
the number is 9, 8 or 7, (or large as 11, 12, 13) we are not
bothered. However, if the number is 6 or smaller (or larger
than 13), we doubt about 'fairness' of the coin. If the number
is very small like 0 or 1 (or very large like 19 or 20) we are
almost sure about 'un-fairness'. We can find the actual
probability of all possible events. These are calculated using
'binomial' distribution (3) and are displayed in table below

Tablel: Coin tossing experiment with n=20

Number of Heads Probability (Percentage)
0 0.00009
1 0.0002
2 0.018

3 0.109

4 0.462

5 1.479

6 3.696

7 7.393

8 12.013
9 16.018
10 17.620
11 16.018
12 12.013
13 7.393
14 3.696
15 1.479
16 0.462
17 0.109
18 0.018
19 0.0002
20 0.00009




This is called as 'sampling distribution'.
Statistics/Biostatistics helps to estimate such probabilities
easily in various situations (assuming that the variable
follows some relevant particular theoretical distribution).

Inter-sample variability has another type of
implication. If the mean decrease in cholesterol level after a
therapy in a sample of 60 subjects of age 40-49 years is 9
mg/dL and in a second sample of 25 subjects of age 50-59
years 13 mg/dL, can it be safely concluded that the average
decrease in the two groups is really different? Or is this
difference just occurred by chance in these samples?
Statistical methods help to take a decision one way or the
other on the basis of the probability of occurrence of such a
difference. When the conclusion is that the difference is very
likely to be real then the difference is called statistically
significant. In order to describe the concept of statistical
significance more fully, we briefly visit the methodology
followed in all empirical conclusions. This will also help in
understanding the concepts of null hypothesis and of P-
values which are so vital to the concept of statistical
significance. These concepts are intimately related to
Confidence Interval.

The concepts are best understood with the help of
an example (2) of a court decision in a crime case. Consider
the possibilities mentioned in following table. When a case is
presented before a court by prosecutor, the judge is supposed
to start with the presumption of innocence.

Table ll: Errors in various settings - Court setting

Decision Assumption of innocence
True False

Pronounced guilty Serious error \/

Pronounced not guilty \/ Error

In a court of law, it is up to the prosecutor to put-up sufficient
evidence against the innocence of the person and changes the
initial opinion of the judge. Guilt should prove beyond
reasonable doubt. If the evidence is not sufficient, the person
is acquitted whether the crime was committed or not.
Sometimes the circumstantial evidence is strong and an
innocent person is wrongly pronounced guilty. This is
considered a very serious error. Special caution is exercised to
guard against this type of error even at the cost of acquitting
some criminals!

Diagnostic Journey (2): In the process of diagnosis a
healthy individual may be wrongly classified as ill (false
positive - misdiagnosis) and some really ill person may fail the
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detection procedure (false negative - missed diagnosis).
Diagnostic journey always starts with the presumption of “no
diagnosis” with respect to a particular disease. To rule out or
to confirm the presence, a thorough clinical examination
and/or some diagnostic test is used. But since the whole
procedure is not full proof, the above two types of errors
(misdiagnosis and missed-diagnosis) are possible.

Table lll: Errors in various settings - Diagnosis setting

Diagnosis Actual condition

Disease absent Disease present

Disease present Misdiagnosed \/

Disease absent \/ Missed diagnosed

In the process of hypothesis testing, two types of errors are
possible to be committed. The error committed when a true
null hypothesis is rejected (i.e. conclusion of significant
difference where in fact there is no real difference) is called
“Type 1 error”. Probability of committing type I error is
generally denoted by ". The error committed when a false null
hypothesis is not rejected (i.e. conclusion of not significant
difference in presence of true difference) is called “Type II
error”. Probability of committing type II error is generally
denoted by ". The complement of type II error, '1-' (i.e.
rejecting H,whenever H, is false) is called as Power.

In case of empirical decisions, the initial assumption
is that there is no difference between the groups. This is
equivalent to the presumption of innocence in the court
setting and is called the null hypothesis. The notation used
forthisis H,,.

Table IV: Errorsin various settings - Empirical setting

Decision Null hypothesis

True False
Rejected Type | error \/
Not rejected \/ Type Il error

The sample observations serve as evidence.
Depending upon this evidence, the H,, is either rejected or not
rejected. In empirical set-up, the H, is never accepted. The
conclusion reached is that the evidence is not enough to
reject H,. This may mean two things, - (i) carry out further
investigations and collect more evidence, and (ii) continue to
accept the present knowledge as though, this investigation
was never done. The ‘truth’ remains unchanged.
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Consider the claim of a manufacturer that his drug is
superior to the existing ACE inhibitors in improving insulin
sensitivity in diabetic hypertensives. In a trial (3) on matched
cases, the improvement was seen in suppose 4 out of 10
patients on the new drug compared to 3 out of 10 on the
existing drug. The sample size n = 10 in each group is too
small and the difference is small to provide sufficient
evidence to reject the H, of no difference between the drugs.
If so, the claim of superiority is not tenable. The manufacturer
needs to withdraw the claim forever or till such time that
more evidence is available for scrutiny. The hypothesis of
equality of two drugs is called as null hypothesis because it
nullifies the effect which we want to prove. It is not always
that null hypothesis is the statement, which nullifies the
effect but it is the statement under which there exits only one
condition. That's why for a given null hypothesis there is only
one " value but number of " values because under the
alternative hypothesis there exist many possibilities, and for
each possibility there is one " value. In test of hypothesis we
make " value (type I error which is in fact significance level)
small but we generally exercise no control over " value (type II
€erTor).

The claim made is called the 'Alternative hypothesis'
or 'Research hypothesis'. This is denoted by H,. In the above
example, the claim is that of superiority of the new drug. This
is the alternative hypothesis, H,, in this case. This is a one-
sided alternative because only superiority is claimed and
inferiority is ruled out. One sided alternative can be
considered as saying that one group is 'at least as good as' or
'worse' than the other, and two-sided as saying that one group
is 'either better or worse' than the other group. Sometimes it is
not possible to claim that one group is better than the other
but the only claim is that they are different. In the case of peak
expiratory flow rate (PEFR) in factory workers exposed to
different pollutants, there may not be any a priori reason to
assert that it would be more in one than the other. Then the
alternative is that the PEFRs are unequal. This is called two-
sided alternative. The null is that they are equal in the two
groups. The values observed in the sample serve as evidence
against H,. But these values are subject to sampling
fluctuations and may or may not lead to a correct conclusion.
The error of rejecting a true null hypothesis is similar to
punishing an innocent. This is more serious and is called Type
I error. This is popularly referred to as P-value. Thus P-value is
the probability that a true null hypothesis is wrongly rejected.
This is the probability that the conclusion of presence of
difference is reached when actually there is no difference. In a
clinical trial setup, this is the probability that the drug is
declared effective or better when actually it is not. This wrong
conclusion can allow an ineffective drug to be marketed as
being effective. This clearly is unacceptable and need to be
guarded against. For this reason, P-value is kept at a low level,
mostly less than 5%, or P<0.05. The maximum P-value
allowed in a problem is called the 'level of significance' or
sometimes as -level. When P-value is this small or smaller, it is

generally considered safe to conclude that the groups are
indeed different.

The second type of error is failing to reject a H, when
it is false. The probability of this error is denoted by ". In a
clinical trial setup, this is equivalent to declaring a drug
ineffective when it actually is effective. A drug which could
possibly provide better relief to hundreds of patients is denied
entry into the market. If the manufacturer believes that the
drug is really effective, the company will carry out further
trials and collect further evidence. Thus, the introduction of
the drug is delayed but not denied. Let us suppose (2) that
treatment 'A' produces 30% cure and treatment 'B' produces
55% cure. Now let us conduct a study, taking a pair of samples
of size 30 each and administering treatment 'A' to one group
and treatment 'B' to another group. Use the test of
significance with the Type I error of 5% and judge whether
there is any significant difference between the treatments
based on these samples. Suppose that we have repeated such
studies a large number of times and have judged that there is
significant difference between the treatments only in 40 per
cent of the studies. This means that in 60% of the pairs of
samples we have failed to detect a difference that is large
enough to reject the null hypothesis. We call this 60% as Type
I error. The magnitude of risk of this error is related to the
actual difference between the populations.

Every investigator is anxious to keep both Type I and
Type Il errors at the lowest but it is not possible to reduce both
the errors simultaneously. For a given sample size, if one is
reduced, the other automatically increases. Usually the Type I
error is fixed at a tolerable limit and the Type II error is
minimized. After fixing the Type I error, Type II error can be
decreased by increasing the size of the sample. There is
another useful concept closely associated with Type II error.
If the Type II error is 60%, its complement i.e., 40% is known
as the 'power' of the test. The power is a numerical value
indicating the sensitivity of a test. Thus, power of a test is the
probability of rejecting a H, when it is false. This depends on
the magnitude of the difference between the observed and the
real value present in the target population. The power of a test
is high if it is able to detect small difference and reject H,,
Suppose the mean PEFR in workers of tyre manufacturing
industry is 296 liters per minute and that in workers of paint-
varnish industry 307 liters per minute. The mean difference is
11 liters per minute. This difference seems small relative to
the PEFR values. A test with high power is needed to detect
this difference and to call it significant. A low power test will
not be able to reject H, of equality and will give conclusion
that the difference is likely to have arisen due to chance in the
samples studied.

Power becomes especially important consideration
when the investigator does not want to miss a specified
difference.



For example, a hypotensive drug may be considered
useful if it reduces diastolic BP by an average at least of 5
mmHg after use for one week. A sufficiently powerful
statistical test would be needed to detect this kind of
difference. (1-) is an important consideration in this setup.
However, one would like that the difference (5 mmHg) in this
case is chosen with some objective basis. Increasing the size
of the sample, beside by choosing an appropriate design of the
study can increase power of a test. When the observed
probability of Type I error, B, is less than a low threshold such
as 0.05, the null hypothesis is rejected and the result is said to
be statistically significant. The exact form of test criterion for
obtaining P-value depends mostly on (i) the nature of the data
(qualitative or quantitative), (ii) the form of the distribution
if the data are quantitative (Gaussian or non-Gaussian), (iii)
the number of groups to be compared (two or more than two),
(iv) the parameter to be compared (can be mean, median,
correlation coefficient, etc., in case of quantitative data, it
always is proportion or a ratio or frequencies in case of
quantitative data), (v) the size of sample (small or large), and
(vi) the number of variables considered together (one, two or
more).

Results from a single sample are subject to statistical
uncertainty, which is strongly related to the size of the
sample. These quantities (value of any measure) will be
imprecise estimates of the values in the overall population,
but fortunately the imprecision can itself be estimated (role of
'statistics' science!) and incorporated into the findings. When
an average value or a proportion (or any other quantity such
as ratio) is calculated from the sample drawn by the method
of random sampling, we can estimate the range within which
the corresponding population parameter is expected to lie
with a given degree of probability. This probability is called
confidence and the range so obtained is called a confidence
interval (CI). The standard deviation and standard error of
the mean measures two very different things. The standard
error of the mean tells not about variability in the original
population, as the standard deviation does, but about the
certainty with which a sample mean estimates the true
population mean. Since the certainty with which we can
estimate the mean increases as the sample size increases, the
standard error of the mean decreases as the sample size
increases. Conversely, the more variability in the original
population, the more variability will appears in possible mean
values of samples. Therefore, the standard error of the mean
increases as the population standard deviation increases (as
S.E. yew = (SD/n) where n is the sample size).

Most medical investigators summarize their data
with the standard error of the mean because it is always
smaller than the standards deviation. It makes their data look
better. However, unlike the standard deviation, which
quantifies the variability in the population, the standard error
of the mean quantifies uncertainty in the estimate of the
mean. Since readers are generally interested in knowing
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about the population, data should never be summarized with
the standard error of the mean. To understand the difference
between the standard deviation and standard error of the
mean and why one ought to summarize data using the
standard deviation, consider the following example (4).

Suppose that: Average duration of gestation period
in 100 women was found to be 280 days with standard
deviation of 5 days. Because the sample size is 100, the
standard error is 0.5 and the 95 per cent confidence interval
for average gestation period of the entire population is 279 to
281. These values describe the range, which, with about 95
per cent confidence, contains the average gestation period of
the entire population from which the sample of 100 women
was drawn. This is not the interval that contains gestation
period of 95% of the women. If we want that interval, then we
should use standard deviation and not the standard error. So
the interval which contains gestation period of 95 per cent of
the women (assuming 'normal' distribution) is 280 2 (5) =
270t0290. Such interval is called "tolerance interval" and the
end points of such interval are called "tolerance limits."

Consider one more example: suppose that in a
sample of 25 patients an investigator reports that the mean
cardiac output was 5L/min with a standard deviation of 1
L/min. Since about 95 per cent of all population members fall
within about 2 standard deviations of the mean, this report
will tell you that (assuming that the population of interest
followed a normal distribution) it would be unusual to
observe a cardiac output below about 3 or above about 7
L/min. Thus, you have a quick summary of the population
described in the paper and a range against which to compare
specific patients you examine. Unfortunately, it is unlikely
that these numbers would be reported, the investigator being
more likely to say that the cardiac output was 5.0 £ 0.20
L/Min. If you confuse the standard error of the mean with the
standard deviation, you would believe the range of most of
the population was narrow indeed (4.6 to 5.4 L/min). These
values describe the range, which, with about 95 per cent
confidence, contains the mean cardiac output of the entire
population from which the sample of 25 patients was drawn.
In practice, one generally wants to compare specific patient's
cardiac output not only with the population mean but with
the spread in the population taken as a whole.

There are generally many assumptions made while
constructing a test (deriving mathematically the sampling
distribution of test statistic / estimation method). We either
do not know (study it to that extent) or do not bother to verify
that they are fulfilled in given situation. However, they are
underlying and one should be aware of them (to apply
appropriate/most applicable method because otherwise it is
likely produce lot of bias in the study/results). For example,
many sample size ('n')formulas assume 'simple random
sampling' and when any other sampling scheme is used we
have to multiply this sample size by “design effect” (5). In this
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context it is essential to be aware of other assumptions (6)
made while applying any sample size formulas/estimation
methods. When the required conditions are not fulfilled,
usual methods may fail. To illustrate failure of usual
procedure (condition: extreme proportion) consider an
example (7). Suppose a particular surgeon has done 10
operations without a single complication. His observed
complication rate p is 0/10 = 0 percent for the 10 specific
patients he operated on. This is impressive but it is unlikely
that the surgeon will continue operating forever without a
complication. Therefore the fact that p = 0 probably reflects
good luck in the randomly selected patients who happened to
be operated on during the period in question. To obtain a
better estimate of p, the surgeon's true complication rate, we
will compute the 95 per cent confidence interval for 'p'. Usual
procedure yields SE as zero and so the CI is from 0 to 0. This
result does not make sense. Obviously, the approximation
breaks down. Exact confidence intervals for proportions
corresponding to the observed 'p' is indicated and for 95%
confidence which is from 0% to 31%. In other words, we can
be 95 percent confident that his true complication rate, based
on the 10 cases we happened to observe, is somewhere
between 0 and 31 percent.

Nearly all information in medicine is empirical in
nature and is gathered from samples of subjects studied from
time to time. Besides all other sources of uncertainty, the
samples themselves tend to differ from one another. For
instance, there is no reason that the 10 year survival rate of
cases of carcinoma breast in two groups of women of 100 each
the first group born on odd days of any month and the second
group on even days of any month, is different, but there is a
high likelihood that this would be different. This happens
because of sampling error or sampling fluctuation. This
depends on two things - i)the sample size 'n', and ii) the
intrinsic inter-individual variability in the subjects. The
former is fully under control of the investigator. The latter is
not under human control, yet its influence on medical
decisions can be minimized by choosing an appropriate
design and by using appropriate methods of sampling. It must
be clearly kept in mind that tests of statistical significance and
confidence intervals evaluate only the role of chance as an
alternative explanation of an observed association between
an exposure and disease. While an examination of the P value
and or confidence interval may lead to the conclusion that
chance is an unlikely explanation for the findings, this
provides absolutely no information concerning the possibility
that the observed association is due to the effects of
uncontrolled bias or confounding. All three possible
alternative explanations (chance, bias, confounding) must
always be considered in the interpretation of the results of
every study (8). Any study has two main aspects -
generalizability (sometimes called as External Validity) &
validity (or sometimes prefix internal is used). By using a big
sample, only generalizability aspect is insured but by no
means the important validity aspect. Therefore, sample size is

not everything because if the study (and so the results) is/are
less valid, what is the use of generalizability? It is well known
that increasing sample size decreases the standard error as it
is inversely proportional to sample size. However, reduction
in sampling error can be achieved by using the appropriate
sampling (or study) design instead.

It is all most impossible to even overview all the
aspects of methods in biostatistics useful for clinical studies,
however, let us discuss one more very important aspect
namely 'bias' A dictionary definition of 'bias' is 'a one-sided
inclination of the mind. In statistics, 'bias' is 'systematic error'
that can produce results that depart from the true values.
That is, bias is a trend in the design, collection, analysis,
interpretation, publication, or review of data that can lead to
conclusions that are systematically different from the truth.
Medical research results many times become inconclusive
because some bias is detected after the results are available.
Therefore, it is important that all sources of bias are
considered at the time of planning a study, and all efforts are
made to control them. Other type of error is 'random error'.
Random variation can never be eliminated totally; however,
one can reduce the role of chance by proper design, adequate
sample size, and appropriate analyses. Chance should always
be considered when assessing the results of clinical
observations. But it is very important to note that these two
sources of error — bias and chance — are not mutually
exclusive. It is well known that 'bias' can produce dramatic
change in study results. Few such dramatic effects of bias are
shown in an excellent article by Sackett (9) on 'biases in
analytic research'.

Randomization in randomized controlled trials
(RCTs) involves more than generation of a random sequence
by which to assign subjects. For randomization to be
successfully implemented, the randomization sequence must
be adequately protected (concealed) so that investigators,
involved health care providers, and subjects are not aware of
the upcoming assignment. The absence of adequate
allocation concealment can lead to selection bias, one of the
very problems that randomization was supposed to
eliminate. Authors of reports of randomized trials should
provide enough details on how allocation concealment was
achieved so the reader can determine the likelihood of
success. Fortunately, a plan of allocation concealment can
always be incorporated into the design of a randomized trial.
Keeping knowledge of subjects' assignment after allocation
from subjects, investigators/health care providers, or those
assessing outcomes is referred to as masking (also known as
blinding). The goal of masking is to prevent ascertainment
bias. In contrast to allocation concealment, masking cannot
always be incorporated into a randomized controlled trial.

Both allocation concealment and masking add to
the elimination of bias in randomized controlled trials.



Sackett (9) identified 56 possible biases that may
arise in any analytic research of which over two-thirds are
related to aspects of study design and execution.
Methodologically inferior trials might produce bias in both
directions, thereby causing greater variability in estimates of
treatment effects. Bias may also lead to fallacious
interpretation of study/trial results. In few books (2) a
complete chapter devoted to 'statistical fallacies' enumerate
indirectly the effect of many such biases. Wrong choice may
produce lot of bias. Though many instances can be quoted of
wrong choice of methodology of data analyses, quoting one
common example should suffice to highlight the relevance. In
several types of studies we may want to examine the
consistency of an observed relation across two or more
subgroups of the individuals studied. For example, in a
clinical trial we might want to know if the observed treatment
difference is the same for young and old patients or for
different stages of disease at presentation. In such cases we
are interested in examining whether one effect is modified by
the value of another variable. This may be viewed as the
examination of the heterogeneity of an observed effect such
as treatment benefit across subsets of individuals. The
statistical term for heterogeneity of this type is
“interaction” (8). The medical concept of “synergy” is the
same thing (opposition in physiological action is
“antagonism”). The statistical term interaction relates to the
non-independence of the effects of two variables on the
outcome of interest. It is advised very strongly (with
reasoning) in the literature that to conclude presence of
interaction always “compare effect sizes and not the P
values”, comparing 'P' values alone can be misleading.
Comparing confidence intervals is less likely to mislead.
However, the best approach is to compare directly the effect
sizes using “test of interaction” (8). Still one can often see the
practice of comparing 'P' values alone in such situations.

It may be noted that most of the 'biases' fall into one of three
broad categories:

1. Selection Bias (occurs when comparisons are made
between groups of patients that differ in determinants of
outcome other than the one under study).

2. Measurement Bias (occurs when the methods of
measurements are dissimilar among groups of patients).

3. Confounding Bias (occurs when two factors are
associated i.e. travel together and the effect of one is
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confused with or distorted by the effect of the other).

Some steps are suggested for minimizing bias after
giving a list of newer biases elsewhere (8). Note that if a study
is planned, designed, executed, analyzed, interpreted, etc.,
properly then occurrences of any type of 'biases' are less likely.
Remember that statistical significance and non-significance
are equally important. Further ask 'can there be non-causal
explanations of the results? Are there any confounding
factors that have been missed? Whether chance or sampling
error could be an explanation?'. Such consideration will help
you to develop proper design, and to conduct the study in an
upright manner. Discussion regarding specific issues like
newer designs including equivalence/non-inferiority trials,
adaptive allocations, new indexes of safety, clinical
agreement/disagreement, evaluation of diagnostic/screening
tests, interpretation of diagnostic test results, measures of
clinical significance, comparison of paired proportions,
RIDIT analysis, and time-to-event or survival analysis -
clinical life table are not covered for requirement of lot of
space (but are described well elsewhere (8).
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