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ABSTRACT 

We describe a computational population model with two risk factors and one outcome variable in 
which the prevalence (%) of all three variables, the association between each risk factor and the 
disease, as well as the association between the two risk factors is the input. We briefly describe three 
examples: retinopathy of prematurity, diabetes in Panama, and smoking and obesity as risk factors for 
diabetes. We describe and discuss the simulation results in these three scenarios including how the 
published information is used as input and how changes in risk factor prevalence changes outcome 
prevalence. 
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1. Introduction 

In epidemiology, the concept of multi-causality holds that the occurrence of any disease depends 
on a set of risk factors, not just one. The generation of virtual databases that reflect the properties 
of populations is called micro-simulation [1]. In their simplest form, such models require as input 
two risk factors and their association with one outcome variable. 

One example is SYNTHEA, a virtual population of individuals and their electronic health records 
(EHRs) [2]. The algorithm could simulate individuals with, say, three characteristics: a binary 
disease outcome (coded as yes/no) and two binary risk factors (yes/no). The algorithm uses as 
input parameters the population prevalence of the two risk factors and the outcome variable; the 
allocation of “yes” or “no” for each variable is done by applying a Monte-Carlo simulation that 
uses random numbers and the population prevalence as a threshold. This ensures that, for instance, 
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on average 37% of the virtual population will have a certain disease if the real population 
prevalence of that disease is 37% and the threshold for “disease = yes” is set at 0.37. 

These microsimulations have one particular disadvantage: if the presence or absence of each 
variable in the final database is based on separate yes/no attribution processes, the variables will 
be independent. This, of course, is highly unlikely in reality, because the very definition of a risk 
factor is that it is associated with the disease under investigation. Moreover, the two risk factors 
will be independent of each other, which is also rarely the case in real life situations. This way of 
performing microsimulations will lead to populations that look like their real-life counterparts only 
with regard to the population average of risk factors and outcome. However, these datasets cannot 
be utilized to simulate population-wide changes in risk factors with the goal to study population-
wide changes in the outcome (disease). Therefore, we wanted to design a model that requires as 
input the population prevalence of the outcome of interest and of two risk factors, as well their 
three associations (Figure 1). 

Figure 1. The associations among two non-independent risk factors and one outcome are 
quantified by three odds ratios. 

 

In what follows, we describe a population model with two risk factors and one outcome variable 
in which the prevalence (%) of all three variables, the association between each risk factor and the 
disease, as well as the association between the two risk factors is the input. We briefly describe 
three examples: (#1) retinopathy of prematurity; (#2) diabetes in Panama, and (#3) smoking and 
obesity as risk factors for diabetes. Next, we describe the simulation results in these three scenarios 
including how the published information is used as input (Step 1) and how changes in risk factor 
prevalence changes outcome prevalence (Step 2). 
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2. METHODS 

2.1 The Model 

Suppose we have a standard 2 x 2 table for an outcome against a risk factor (Figure 2). Label the 
cells A, B, C, D where A is the percent of the population for which both the risk factor and the 
outcome are positive, B is the percent where the risk factor is positive but the outcome is negative, 
C is the percent where the risk factor is negative but the outcome is positive, and D is the percent 
where both are negative. Then if RF is the percent of the population with positive risk factor and 
OUT is the percent of the population with positive outcome, we have 

(1) B = RF - A 
(2) C = OUT - A 
(3) D = 100 - A - B - C 

The equation for the odds ratio is based on the quantities depicted in Figure 2: 

(4) OR = AD/BC. 

We can substitute for B, C, and D using the first three equations, giving a quadratic equation for 
A with coefficients in terms of RF, OUT, and OR: 

(5) (OR-1)A2 + (100+(OR-1)(RF+OUT))A + OR • RF • OUT = 0 

Figure 2. Fourfold table depicting the four entities defined by the presence (+) or absence (-) of a 
binary risk factor and an outcome. 
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Solving this will give a 2 x 2 table that matches the given population values for RF and OUT and 
has the desired odds ratio. This much is calculated in "Step 1" in the JavaScript implementation of 
the model (available at http://www.cs.tufts.edu/~ablumer/PopStat.html). 

We can also use this equation to model the effect of keeping the odds ratio fixed and changing the 
percentage of the population that has the risk factor. 

This can be done by replacing A and RF in the above equation with r*A and r*RF and solving for 
the value of OUT that keeps the odds ratio constant. This assumes that relative percentages of the 
population with positive and negative outcome within positive risk factor (A relative to B) stay the 
same when the positive risk factor population is changed. Since we have two risk factors, we can 
do identical calculations relating risk factor 1 to the outcome and relating risk factor 2 to the 
outcome. Similarly, we can find the entries for the 2 x 2 table relating risk factor 1 to risk factor 2. 

2.2 Examples 

2.2.1 Example #1: Retinopathy of prematurity 

We previously analyzed a data set of 617 very preterm newborns [3]. In that project, we found that 
47% of all babies developed retinopathy of prematurity (ROP), a serious eye disorder among 
extremely preterm infants [4]. Systemic inflammation [5] and oxygen exposure data [6] are 
competing pathogenetic mechanisms that interfere with normal vasculogenesis [7]. The capability 
to simulate interventions on one or both of these pathomechanisms in order to study changes in 
ROP occurrence would be a groundbreaking step towards the prevention. 

In our data analysis, we also found that 32% of the infants had sepsis and 75% had been exposed 
to high levels of oxygen. The association between sepsis and oxygen on the one hand and ROP on 
the other (measured as an odds ratio, OR) were 2.8 and 3.6, respectively. The OR for the 
association between sepsis and oxygen was 2.6. In Figure 3 we clarify how these data were then 
entered into the model. 

2.2.2 Example #2: Diabetes in Panama 

A second example is a study on diabetes in Panama (5.4%) [8] with female sex (RF1: 60%) and 
age 50+ years (RF2: 31%) as risk factor exemplars. Female sex was associated with diabetes with 
an OR=1.4, age 50+ had an OR=5.1. The OR for the association between female sex and age 50+ 
was 0.85 (see Figure 4). 

Obviously, in this case, the risk factors are not to be modified to simulate a population intervention 
as in the previous example. Instead, we are interested in the effect on diabetes prevalence due to 
the discrepancy between the observed age distribution described in [8] (50+ years = 31%) 
compared to national data published by the United Nations (20%) [9]. 
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Figure 3. Simulation results of Step 1 in example #1, retinopathy of prematurity. 

 

 

  

 

 

 

 

 

 

2.2.3 Example #3: Smoking, BMI, and Diabetes 

A randomized controlled trial (RCT) of estrogen plus progestin (EP) versus placebo was conducted 
in the 1990s to explore the effect of EP on subsequent development of coronary heart disease 
(CHD) in postmenopausal women [10]. We wanted to use the publicly available data from this 
RCT to explore the influence of smoking and body mass on diabetes, and use these data as input 
for a simulation of the effect of two interventions, smoking cessation weight reduction, on diabetes 
occurrence. 

3. Results 

3.1 Example #1 

In Step 1, we entered the population percentages for both risk factors and the outcome, as well as 
the three associations among them. The estimated four-fold tables provided by the model are 
depicted in Figure 3. 

In Step 2, we proceeded to the simulation of risk factor modification. 

First, we reduced RF1 incrementally down from 32% to 0% (Table 1). This resulted in a drop of 
RF2 from 75% down to 70% and a reduction in outcome occurrence from 47% down to 39%. 
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Table 1. Example #1. Risk factor (RF)2 and outcome (OUT) changes when RF1 declines (%). 

RF1 
(Sepsis) 

RF2 
(Oxygen) 

Outcome 
(Retinopathy of Prematurity) 

32 75 47 
30 75 46 
25 74 45 
20 73 44 
15 72 43 
10 72 41 
5 71 40 
0 70 39 

Second, we reduced RF2 incrementally down from 75% to 0%. This resulted in a drop of RF1 
from 32% down to 18% and a reduction in outcome occurrence from 47% down to 25%. 

Third, we calculated that even if both RF were reduced to 0, we are still left with a 21% outcome 
rate, which is probably attributable to other risk factors. 

It is also possible that the odds ratios change as the population statistics approach the extremes. 

3.2 Example #2 

The estimated four-fold tables provided by the model after Step 1 are depicted in Figure 4. 

3.3 Example #3 

In the publicly available HERS dataset (http://www.biostat.ucsf.edu/vgsm/data.html), we looked 
at diabetes (on oral medication or insulin) as the outcome, and at smoking and overweight/obesity 
as risk factors (Table 3). In an exploratory data analysis we found that in this cohort of 
postmenopausal women with an average age of 67 years, 26% had diabetes, 13% were smokers, 
and 34% were obese (defined as a BMI ≥30). Smoking was associated with a reduced risk for 
diabetes (OR 0.5, 95%CI 0.4, 0.7), obesity with a strong risk increase (3.3; 2.7, 3.9), and smoking 
had an inverse association with obesity (0.6; 0.4, 0.7)(Table 3). 
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Figure 4. Simulation results of Step 1 in example #2, diabetes in Panama. 

 

In Step 2, risk factor modification simulation for Age 50+ from the observed 31% down to the 
20% estimated by the UN in a population prevalence decrease for diabetes from 5.4% to 4.4% 
(data not shown). 

Table 2. Example #1. Risk factor (RF)1 and outcome (OUT) changes when RF2 declines (%). 

RF1 
(Sepsis) 

RF2 
(Oxygen) 

Outcome 
(Retinopathy of Prematurity) 

32 75 47 
31 70 46 
29 60 43 
27 50 40 
26 40 37 
24 30 34 
22 20 31 
20 10 28 
18 0 25 
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Table 3. Diabetes among 2758 postmenopausal women, the association between risk factors 
(smoking and overweight/obese) and diabetes, and the association between risk factors. These data 
served as input for example #3. 

  Diabetes   
  YES NO OR (95%C.I.) 
N (row %) 728 (26) 2030 (74)   
Smoking, N (col %) 60 (8) 299 (15) 0.5 (0.4, 0.7) 
Obese, N (col %) 397 (55) 545 (27) 3.3 (2.7, 3.9) 
Association RF1/RF2 Smoking   
N (row %) 
Obese (BMI ≥30), N (col %) 

YES 
359 

85 (24) 

NO 
2399 

857 (36) 

0.6 (0.4, 0.7) 

We then simulated two interventions, smoking cessation and weight reduction. We have to keep 
in mind that while obesity is associated with a risk increase, smoking is associated with a 
decreased risk for diabetes. The fact that the two risk factors are negatively associated (less obesity 
among smokers) might explain this “protective effect of smoking”. 

Reducing smoking to zero in this population led to a minuscule increase of diabetes occurrence 
from 18 to 19%, which we confirmed in a stratified analysis excluding smokers (Table 4). Among 
non-smokers, diabetes prevalence was 19.2%. 

Reducing obesity was associated with a prominent risk reduction for diabetes, from 18% down to 
10%. At the same time, smoking increased from 13 to 17% (Table 5). 

Table 4. Example #3. Risk factor (RF)2 and outcome (OUT) changes when RF1 declines (%), 
simulating smoking cessation intervention. 

RF1 
(Smoking) 

RF2 
(Overweight/Obesity) 

Outcome 
(Diabetes) 

13 56 18 
10 57 18 
8 57 18 
6 57 19 
4 58 19 
2 58 19 
0 58 19 
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Table 5. Example #3. Risk factor (RF)1 and outcome (OUT) changes when RF2 declines (%), 
simulating weight reduction intervention. 

RF1 
(Smoking) 

RF2 
(Overweight/Obesity) 

Outcome 
(Diabetes) 

13 56 18 
13 50 17 
14 40 16 
15 30 14 
16 20 13 
17 10 11 
17 0 10 

5. DISCUSSION 

5.1 Advantages 

Our model has three prominent advantages. First, it is novel. To our knowledge, no other 
population model exists that appreciates the association between risk factors. Second, the model 
is relatively simple. With only one outcome and two risk factors, the complexity of inputs is limited 
to their population prevalence and associations between each other. We are currently developing 
a tool is that includes a third risk factor and that can be used for microsimulations, i.e., it outputs 
a data file of a virtual population, which can be used in further simulations. Third, the model is 
freely available online for the community to use and explore. 

5.2 Drawbacks 

The model is currently limited to two-level exposures and outcomes. It is also limited to only two 
risk factors. We are currently developing a similar model for three predictors and their inter-
relations. 

Perhaps the most prominent limitation of the model is that it is causally naïve and rigid. Much of 
the complex methodology toolbox of modern epidemiology is geared towards the identification of 
causal risk factors [11]. Our model is not helpful in this regard. The association between risk 
factors and outcomes is modeled as odds ratios, which are simple measures of strength of 
association without implying causality or causal direction. The model is also rigid in that the input 
is reduced to population prevalence and association measures (odds ratios). Within the constraints 
of these values, the output is not probabilistic, but determined. However, the model can be run 
multiple times with different values for odds ratios as input that come from within the range of 
odds ratios defined by the observed confidence interval. 
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5.3. Conclusion 

In this paper, we present a simple model of disease occurrence in populations. Based on the 
prevalence of a disease and of two risk factors, and of their association with the disease and 
between each other, the model calculates fourfold tables for these associations (Step 1). Thereafter, 
the population prevalence of either risk factor can be modified to simulate population risk factor 
increases or decreases, and changes in disease occurrence can be observed (Step 2). We will now 
develop this model further to include three risk factors and microsimulation capabilities. In the 
meantime, we hope it will be helpful to others and would appreciate feedback, preferably in the 
form of constructive criticism. 
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