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Abstract: Health surveillance can be viewed as an ongoing systematic collection, analysis, 

and interpretation of data for use in planning, implementation, and evaluation of a given 

health system, in potentially multiple spheres (ex: animal, human, environment). As we 

move into a sophisticated technologically advanced era, there is a need for cost-effective 

and efficient health surveillance methods and systems that will rapidly identify potential 

bioterrorism attacks and infectious disease outbreaks. The main objective of such methods 

and systems would be to reduce the impact of an outbreak by enabling appropriate officials 

to detect it quickly and implement timely and appropriate interventions. Identifying an 

outbreak and/or potential bioterrorism attack days to weeks earlier than traditional 

surveillance methods would potentially result in a reduction in morbidity, mortality, and 

outbreak associated economic consequences. Proposed here is a novel framework that 

takes into account the relationships between aberration detection algorithms and produces 

an unbiased confidence measure for identification of start of an outbreak. Such a 

framework would enable a user and/or a system to interpret the anomaly detection results 

generated via multiple algorithms with some indication of confidence.  
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1. Introduction 
 

Recent advances in technology have made it possible to gather, integrate, and analyze large 

amounts of data in real-time or near real-time. These new technologies have touched off a 

renaissance in public health surveillance. For the most part, the traditional purposes of health 

surveillance have been to monitor long-term trends in disease ecology and to guide policy 

decisions. With the introduction of real-time capabilities, data exchange now holds the 

promise of facilitating early event detection and to assist in day-to-day disease management. 

 

With the availability of dozens of different aberration detection algorithms, it is possible, if 

not probable, to get different results from different algorithms when executed on the same 

dataset. The results of the study in [1] suggest that commonly-used algorithms for disease 

surveillance often do not perform well in detecting aberrations other than large and rapid 

increases in daily counts relative to baseline levels. A new approach, denoted here as 

Confidence-based Aberration Interpretation Framework (CAIF), may help address this issue 

in disease surveillance by using a collective approach rather than algorithm specific 

approach. 

 

2. The problem statement 
 

Consider a system with multiple anomaly detection algorithms as illustrated in Figure 1. Due 

to differences in the implementation of the algorithms and parameters used (ex: thresholds, 

training periods and averaging windows), the outbreak decisions may vary significantly from 
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one algorithm to another. On the other hand, there is also a possibility that these decisions are 

very similar for some set of algorithms. These two extremes create a dilemma for decision 

makers in that there could be a situation where most of the algorithms in a system suggest an 

outbreak, however, not knowing the relationships between these algorithms can result in a 

biased decision. 

  

 
 

 Figure 1.    The Outbreak Detection Problem   

 

As illustrated, there are three main points of concern: 

  

• False Negative: Depending on the algorithm employed, there is a possibility of 

missing a real outbreak indicated as 1 in Figure 1. Obviously, this can be very 

damaging if the system were to make a decision based on that specific algorithm. 

False negatives can lead to potentially exponential damage within the general public 

due to delayed response to an outbreak. 

 

• False Positive: Some algorithms are susceptible to reporting false positives, that is, 

detect an anomaly during peace time (indicated as 2 in Figure 1). Most systems set 

their anomaly detection thresholds to be as sensitive as possible to minimize the risk 

of missing important events, producing frequent false alarms, which may be 

determined to be false positives by subsequent investigation. These systems face 

inherent trade-offs among sensitivity, timeliness and number of false positives. False 

positives have a negative impact on public health surveillance because they can lead 

to expensive resource utilization for further investigation and can cause undue 

concern among the general public. 

 

• Delayed Identification: During initial stages of an outbreak, the number of cases are 

on the rise and hence detecting an outbreak at this point could be very effective and 

potentially aid in minimizing the impact of a potential bioterrorist attack. However, 

depending on the algorithm(s) employed, a system may end up with some algorithms 

detecting outbreaks well beyond the actual start day (indicated as 3 in Figure 1). This, 

once again, can be very costly to public health community and impact it negatively for 

obvious reasons. 

 

 

These three concerns result in a trade-off situations between false positives, false negatives 

and detection time which are typically addressed by looking at sensitivity, specificity and time 

to detect parameters. 
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In summary, a framework needs to be implemented that would enable a user/system to 

interpret the anomaly detection results with some indication of confidence. That is, is there a 

potential start of an outbreak with twenty percent confidence or is it ninety percent 

confidence? A framework that takes into account the relationships between algorithms and 

produces an unbiased confidence measure for identification of start of an outbreak is 

presented. 

 

3. The proposed solution 
 

The proposed anomaly interpretation framework aims to enhance surveillance decision-

making by combining results of multiple aberration detection algorithms through the use of 

key result metrics. Figure 2 depicts the four steps of the proposed framework and the 

associated linkages between them. 

  

 
 

Figure 2.   The Confidence-based Aberration Interpretation Framework   
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Step 1: Specificity, Sensitivity and Time To Detect Evaluator 
 

Traditionally, specificity and sensitivity have been used for comparing various algorithms and 

their performances. In this study, these two parameters are key in helping identify a subset of 

algorithms (referred to as minimal set) that would be sufficient to deduce an overall decision 

to detect start of an outbreak. The hypothesis is that the system may not require all candidate 

algorithms to come up with a good decision as some of them may provide redundant 

information. 

 

Sensitivity of an algorithm for a given dataset is defined as the total number of outbreaks 

during which the algorithm flagged (at least once per outbreak) divided by the total number 

of outbreak periods in the dataset
1
. Specificity of an algorithm for a given dataset, on the 

other hand, is defined as the total number of non-outbreak days on which the method did not 

flag divided by the total number of non-outbreak days in that dataset [2]: 

 

  ))/((= OutbreaksofNumberTotalCountPositiveTrueySensitivit  

 

  ))/((= DaysOutbreakNoofNumberTotalCountNegativeTrueySpecificit  

 

In addition to specificity and sensitivity, a third parameter called time to detection (TTD) 

defined as the average number of days from the first day of an outbreak until it was flagged 

by the algorithm, plays a vital role in the forthcoming analysis. This is a very important 

parameter as it aids in segregating a set of algorithms into various groups (or classes) and 

provides a very clear differentiation between set of algorithms based on its interpretation. 

 

Figure 3 illustrates, in time, a progression of a sample outbreak over multiple days. Periods 

with no outbreaks are referred to as peace-time, while outbreak-mode refers to a time period 

with outbreak days. 

 
 

 Figure 3.  A sample outbreak   

 

 

The three parameters discussed in this section provide a wealth of insight into the goal of 

                                                 
1
A single outbreak usually lasts more than one day 
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identifying a minimal sub set of algorithms sufficient for generating an overall confidence 

value for an anomaly indicator. 

 

Step 2: Agreement Analyzer 
 

Agreement analyzer deals with quantifying the degree of agreement or relationship between 

any given two algorithms executed on the same data set. That is, are all candidate algorithms 

producing unique results? Or, is it that some algorithms yield similar results and thus provide 

no added value to the overall decision? This step of the framework exploits such relationship 

and/or agreement between any two algorithms using two quite different approaches: 

Correlation and Kappa Coefficient. 

 

Correlation 

 

Correlation is one of the most common and most useful statistics. A correlation, r, is a single 

number that describes the degree of linear relationship between two variables (also referred to 

as bivariate relationship). A positive relationship, in general terms, means that higher scores 

on one variable tend to be paired with higher scores on the other and that lower scores on one 

variable tend to be paired with lower scores on the other. 

 

The correlation between two variables, in this case the two algorithm values or decisions, can 

be obtained using [3]: 
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where x  and y  are the time series for daily counts, N  is the total number of days in the time 

series, xy  is the sum of products of paired counts, x  is the sum of counts from first 

algorithm in the pair, y  is the sum of counts from second algorithm in the pair, 
2x  is the 

sum of squared x  counts and 
2y  is the sum of squared y  counts. ncorrelatio , the agreement 

matrix based on correlation, is obtained using the above formula as follows: 
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where XYr  is the correlation value for algorithm X  against algorithm Y  and n  is the number 

of algorithms in the candidate set. 

 

A minimum agreement threshold based on correlation ncorrelatio

AT  needs to be defined that can 

be used in the next step of the framework to identify nearest neighbors for each algorithm 

based on the strength of the relationships. 
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Kappa Coefficient 

 

An alternative approach to correlation matrix is the computation of Kappa Coefficient, which 

is an index that compares the agreement against that which might be expected by chance. 

Kappa can be thought of as the chance-corrected proportional agreement, where possible 

values range from +1 (perfect agreement) via 0 (no agreement above that expected by 

chance) to -1 (complete disagreement). 

 

Cohen's kappa coefficient approach [4] can be used to generate kappa coefficient matrix. 

Consider a 2x2 table capturing decision outcomes by two different algorithms being 

compared as shown in Figure 4. 

 

  
 

 Figure 4.  Kappa coefficient: 2 by 2 table   

 

 

The following formula was used to compute the kappa coefficient between any two 

algorithms: 
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where oP  is the relative observed agreement and cP  is the probability that the agreement is 

due to chance. 

 

kappa , the agreement matrix based on kappa coefficients, is obtained using the above 

formulas as follows: 
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where XY  is the kappa coefficient for algorithm X  against algorithm Y  and n  is the 

number of algorithms in the candidate set. 

 

Once the kappa matrix has been computed, it is necessary to consider the significance of 

obtained agreement values between any pair of algorithms. Landis and Koch [5] give the 

following table for interpreting the significance of the   value. Although inexact, this table 

provides a useful benchmark on the significance of the above matrix. 

  

                    Interpretation  

 Negative        Poor agreement  

 0.0   0.20     Slight agreement  

 0.21   0.40   Fair agreement  

 0.41   0.60   Moderate agreement  

 0.61   0.80   Substantial agreement  

 0.81   1.00   Almost perfect agreement   

 

Based on the results and table above, the minimum agreement threshold based on kappa 
kappa

AT  can be deduced, which can be set to 0.5 based on the above table. This is the value that 

will be used in the next step of the framework to identify nearest neighbors for each 

algorithm based on the strength of the relationships. 

 

Step 3: Minimal Set Identifier 
 

Once the sensitivity, specificity and time to detect parameters are well established for each 

algorithm and the agreement levels between every possible algorithm pair is known, a 

minimal set of algorithms can be identified that would be sufficient to produce quantifiable 

confidence value for the overall decision. Figure 5 illustrates a five-step process developed to 

identify this minimal set based on results from the previous two steps of the proposed 

framework. 
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                Figure 5.  Minimal Set Identification Process   

  

• Task 1: This task is basically setting up the agreement matrix   generated from Step 

2 of the framework. That is, initialize   with computed ncorrelatio  or kappa  values. 

Note that only the upper triangle of the matrix needs to be analyzed to avoid any 

recursive relationships between two algorithms. That is, if A1 highly correlated to A2, 

then A2 is highly correlated with A1. 

 

• Task 2: The next task deals with setting up the closest relative matrix. A closest 

relative to a specific algorithm X  is algorithm Y  that has an agreement value of at 

least some minimum agreement threshold ( AT ) and has the highest agreement value 

with respect to X  against all other algorithms within the set. The idea is that for each 

algorithm in the set, a corresponding algorithm with highest agreement value must be 

identified. It is entirely possible that a specific algorithm will not have a closest 

relative. In that case, the algorithm would be considered as an independent and thus 

needs to be included for next filtration task. For example, in the illustrated figure, A2 

is closest relative to A1 as AN is to A3. However, algorithms A2 and AN are 

independent. 

 

• Task 3: This task simply formalizes the algorithms that were selected in the previous 

task by removing all the algorithms from the closest relative matrix that have relatives 

identified, that is, the non-independent algorithms. This produces a working set of 

algorithms identified as 1 in the 1xN matrix. 

 

• Task 4: The next task is to categorize the algorithms from the working set into three 
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groups based on TTD value. The TTD was divided into three sets: close to zero days 

(TTD   0.1), less than one day (0.1   TTD   1.0) and greater than one day (TTD   

1.0). This categorization makes intuitive sense because typically one would be 

interested in TTD value of less than a day. Optimally, TTD should be as close to zero 

as possible, but realistically, public health individuals typically identify an outbreak 

more than a day later. 

 

• Task 5: Once the groups have been identified, the final task deals with identifying 

the minimal set of algorithms through one more stage of filtration using specificity 

and sensitivity values obtained from step one of the framework. This task scans 

through each of the groups and attempts to flag algorithms that have both highest 

sensitivity and highest specificity when compared to other algorithms in the same 

group. If one algorithm has higher sensitivity but some other algorithm has higher 

specificity, then both the algorithms need to be considered. 

 

This step of the framework yields a minimal subset of candidate algorithms that have 

minimal relation with each other and thus, form close to an independent minimal set that 

would be sufficient to deduce a confidence measure for an outbreak decision for a given day. 

 

Step 4: Point-based Confidence Evaluator 
 

The final step of the proposed framework deals with pulling together the findings from the 

first three steps and working out a scheme that produces a value that corresponds to overall 

confidence. There are three main parameters that need to be investigated. 

 

Parameters of Interest: Rise Rate 

 

The first parameter is the rate of change (referred to as rise rate) of actual daily count values 

over a specific time period, which provides some basic knowledge of the positive or negative 

trend over the last few days and also yields the speed with which the change is occurring. 

  

 
 

 Figure 6.  Rise rate analysis   

 

Figure 6 illustrates a typical snapshot from daily counts data where the y-axis represents daily 

raw count and the x-axis represents the day with )(D  representing the current day. The rate 

of change ( ) is computed using basic linear regression method [6] to define a line that fits 

the daily count values in best possible manner: 
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where n  is the number of points being considered, x  is the day and y  is the count. 

 

To be effective, the computation of rate is limited to a specific time frame referred to as an 

epidemiologically significant window, , which is defined in number of days. 

 

Parameters of Interest: Count Delta 

 

Next parameter of interest is analyzing the importance of the current day's count with respect 

to  . That is, does today's count follow a typical trend identified by the linear regression or is 

it drastically different and thus deserves special attention. As shown in Figure 7, there could 

be a scenario where past (  - 1) values yield a negative direction, however current day's 

value ( h ) is very high but cannot influence the linear regression formula to produce a 

positive slope which is more accurate in this case. 

 

            
 

  Figure 7.  Count delta   

 

For such cases, the framework takes into account a second parameter of interest called count 

delta ( ). This value is simply the ratio between current day value, h , and the average value 

over  . 
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where I  is the current day and iX  is the time series for daily counts. 

 

Parameters of Interest: Outbreak Decisions 

 

Based on the output of step three of the framework, the individual outbreak decision flags 

need to be considered. These provide the third parameter of interest, i , where i  refers to the 

algorithms in the minimal set. Each i  can have one of two values: true representing an 

outbreak has been detected by algorithm i  and false representing no outbreak decision by 

algorithm i . 
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Point System: Rules 

 

The overall objective of the framework is to produce a set of algorithms, that is as minimal as 

possible, to evaluate an aberration decision for any given day with some confidence value. 

Due to availability of multiple algorithms, a system that facilitates incremental confidence 

building based on contributions from various algorithms needs to be developed. A bimodal 

approach to confidence evaluation is proposed to address this issue as shown in Figure 8. 

 

This bimodal approach is based on the concept of contribution to positive and negative 

confidence of a decision. The fundamental premise of the proposed scheme is a rule set, 

which is defined as the set of rules that collectively contribute to either positive or negative 

confidence. Positive confidence is a measure of collective strength of rules that contribute to 

a decision that supports identification of start of an outbreak. On the other hand, negative 

confidence is a measure of collective strength of rules that contribute to a decision that is 

against the decision of start of an outbreak. Rule sets are made of weighted combination of 

identified parameters of interest. Further discussion on details of rule sets will follow shortly. 

Once the rule set has been identified, appropriate weights (or points) are assigned to the 

members of the rule set contributing to either side. A set of rules that contribute to positive 

confidence by collective summation of all of their respective points ( p ) are referred to as the 

R set. On the contrary, a set of rules that contribute to negative confidence by collective 

summation of all of their respective points ( n ) are referred to as the L set. That is, each side 

adds its collective contribution followed by )( np   to come up with overall confidence with 

0 as the no decision point. 

  

 
 

 Figure 8.  Point assignment scheme   

 

The following rules contribute to incremental positive confidence (R side rules): 
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where d  is the current day and K  is the number of algorithms in the minimal set. That is, 

there are 2K  rules that contribute to positive confidence with each rule having a point 

magnitude of kp , where k   (K+2). 

 

The following rules contribute to incremental negative confidence (L side rules): 
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where d  is the current day and K  is the number of algorithms in the minimal set. That is, 

there are 2K  rules that contribute to positive confidence with each rule having a point 

magnitude of kp , where k   (K+2). 

 

The use of   and   requires introduction of some threshold value that defines the decision 

points in both the upward and downward directions. Thus, the scheme makes use of uT  

parameter for the positive (or upside) threshold value and dT  for the negative (or downside) 

threshold value. Both of these values can be computed using sophisticated approaches like 

neural networks, however, a simple intuitive approach using hysteresis (Figure 9) was 

adopted. That is,   and   would contribute to positive confidence if the current day values 

were at least uT  times bigger than the previous day values. However, they would only 

contribute to negative confidence if the current day values were less than dT  times previous 

day values. This approach assists in identifying abrupt rises and falls in the count values with 

respect to immediate history. The proposed rule of thumb is to use du TT *3 . 

  

 
 

 Figure 9.  Threshold hysteresis   

 

To summarize, there are total of 2)2(= KZ  rules that define a specific rule set i  for a 

given point assignment i . In an attempt to simply the representation of rules and associated 

point assignments for L and R rules, a concise convention was designed as follows: 
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where numbers 1 to V represent the V 2)(= K  rules, pVL  is the point assignment for the 
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Vth Left rule and pVR  is the point assignment for the Vth Right rule. 

With 
2

Z
 possible rules on each side, the most obvious choice is a balanced system with the 

maximum number of points for negative confidence and the maximum number of points for 

positive confidence to equal multiple of 
2

Z
. That is, if both sides matched in their outcomes, 

then the overall confidence value would equate to 0, an indecisive line. To facilitate wider 

base of different points and associated effects on overall decision, a system that exercises the 

point assignment with an unbiased (random) allocation of points is necessary. However, 

before such a system can be developed, the value of maximum points for each side ( M ) 

needs to be established. This can be achieved as follows: 

 

  Mpi

Z

i

=
1=

  

where ip  represents point allocation for thi  rule. 

  

 
 

  Figure 10.  Maximum number of points   

 

In Figure 10, x-axis represents M  and y-axis represents the total number of point assignment 

possibilities for Z  = 12 (that is, K  = 6). In this specific case, M  = 12 seems reasonable as it 

is located at the knee of the rising curve and provides 6188 assignment possibilities, a number 

that is quite reasonable for simulation purposes. 

 

Now that the rules and point assignment method have been designed, there is a need for 

devising a system that interprets outcomes of the application of identified rules and 

associated points and yields an optimal point assignment that produces desired outcome. The 

proposed approach is to group sensitivty and specificity values obatined using numerous 

random point assignments into clusters of interest as shown in Figure 11. The idea is to 

identify specific areas of interest (AOI) on this scatter plot that produce outcome that is 

superior when compared to any single algorithm. That is, three AOIs are identified as 

follows: high specificity (left top); high sensitivity (bottom right) and maximum 

sensitivity/specificity (knee). 
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 Figure 11.  Clusters   

 

Any of the commonly used clustering techniques may be used to identify AOIs. The 

proposed approach utilizes k-means clustering [7] technique as it allows identification of 

initial centroids of desired clusters, which is attractive since, as discussed above, typically 

one would like to look at very specific clusters that provide, for instance, high specificity and 

high sensitivity - that is, AOI(3). 

 

The objective of k-means approach is to minimize total intra-cluster variance, or, the squared 

error function: 
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where there are k  clusters kiSi ( ), jx  is the sensitivity/specificity pair on the scatter plot 

corresponding to i  and i  is the centroid or mean point of all the points within cluster i . 

 

Application of clustering methodology yields a multitude of rule sets i  each of which 

produce a sensitivty/specificity pair 
i

  yielding: 

 

    ki
i

k ,=   

 

Once k  has been figured out, the idea is to then pick an appropriate rule set in a given 

cluster k  that falls in the desired AOI and use it for computing the overall confidence value. 

Note that one could develop an algorithm to identify an optimal point assignment within a 

cluster. 

 

4. Nomenclature 

 
The proposed CAIF framework utilizes a number of variables as follows: 

  

     • N  is the number of algorithms in the candidate set.  

     •   is the agreement matrix between all pairs of algorithms within the candidate set.  

     • AT  is the minimum agreement threshold used to identify nearest neighbors.  

     • K  is the number of algorithms in the minimal set.  
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     • Z  is the total number of positive and negative rules.  

     • M  is the maximum number of points typically a multiple of 
2

Z
.  

     • uT  is the positive (or upside) threshold value for point assignment scheme.  

     • dT  is the negative (or downside) threshold value for point assignment scheme.  

     •   is the epidemiologically significant window in days.  

     •   is the rate of change of actual daily count values over a specific time period  .  

     •   is the relation of the current day's count with respect to  .  

  • j  is the individual algorithm's outbreak decision flag based for a specific 

algorithm j  within the minimal set.  

     • i  is the rule set based on minimal set and specific point assignment i .  

     • 
i

  is the sensitivity/specificity pair computed for a specific rule set i .  

  • k  is a set of sensitivity/specificity pairs computed for all point assignments within 

a cluster k .  

 

Based on this list, the following set, referred to as CAIF Parameters, needs to be populated 

using various steps of the framework: 

 

   ,,,,,,,= duA TTZKTNVariablesCAIF   

with following parameters: 

 

   jParametersCAIF  ,,=  

and following output values: 

 

   k
i

iOutputsCAIF   ,,=  

 

Using the above nomenclature, the proposed four-step framework can be outlined as follows: 

 

 Step 1: 

   (a) Identify outbreak data set(s)  

   (b) Initialize candidate algorithm set 

          Define N  

   (c) Compute sensitivity, specificity and time-to-detect for each algorithm  

 

Step 2: 

   Compute agreement analyzer      ( ncorrelatio  or kappa ) 

      Define   and AT  

 

Step 3: 

   Execute Minimal set identification process 

      Define K , Z  and M  

 

Step 4: 

   (a) Setup inputs to point assignment scheme: 

          Define uT , dT ,   



A confidence-based aberration interpretation framework for outbreak conciliation 

 

16 
Online Journal of Public Health Informatics * ISSN 1947-2579 * http://ojphi.org * Vol.2, No. 1, 2010 

   (b) Compute  ,   and j  

   (c) Execute randomized strategy to obtain i  

          Compute specificity/sensitivity pairs 
i

  

   (d) Apply clustering technique(s) to generate k  

   (e) Compute overall confidence value utilizing one of the rules sets in k   

  

5. Simulation results 
 

A simulation environment was setup that comprised of custom simulator for some aspects of 

the proposed approach as well as an open source package (R [8]) to compute various 

statistical and epidemiological parameters used in the proposed approach. The data for 

simulation were obtained from CDC [2]. 

 

Nine candidate algorithms were selected based on literature review of most commonly used 

aberration detection algorithms: 3-day (MA3), 5-day (MA5) and 7-day (MA7) moving 

average, weighted moving average (WMA), exponentially weighted moving average 

(EWMA), cumulative sum (CUSUM) and early aberration reporting system C1-C3 [9]. The 

epidemiological parameters (sensitivity, specificity and time to detect) were computed using 

the simulation environment. A minimal set using Step 3 of the proposed framework was 

identified as [WMA, CUSUM, C1, C3]. 

 

The CAIF variable list was found to be:  

 

   7=12,=0.5,=1.15,=6,=4,=0.5,=,=9,= MTTZKTN duAkappa  

 

The CAIF simulator was setup to perform numerous iterations to produce a large variety of 

point assignment using randomized point assignment strategy where only unique 

combinations of points for each set were allowed. This produced a scatter plot of specificity 

against sensitivity, over which k-means clustering was applied to identify points that lie 

within the desired AOIs (Figure 12). 

  

 
 Figure 12.  Identified areas of interest   
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From Table 1, the three clusters of interest representing the AOIs were 2, 5 and 10 with the 

following centroids (98.35, 53.42), (66.50, 94.63) and (86.89, 94.41). For AOI(1), none of the 

point assignments provided a better result than simply running WMA algorithm which 

yielded (99.17, 52.12) as the specificity and sensitivity values. Thus, the conclusion was that 

the proposed framework does not provide any benefit in cases when highest possible 

specificity is desired. On the other hand, for AOI(2), the identified centroid of (66.50, 94.63) 

provided a cluster with about 125 point assignments some of which provided better results 

than any single algorithm. 

 

Table 1.  Cluster centres  

 

Cluster Specificity (%) Sensitivity (%) 

1 92.94 88.15 

2 98.35 53.42 

3 84.93 92.50 

4 90.15 87.38 

5 66.50 94.63 

6 88.28 90.78 

7 94.52 54.74 

8 89.10 54.39 

9 81.46 95.92 

10 86.89 94.41 

 

 

For AOI(3), the identified centroid of (86.89, 94.41) is quite close to the result produced by 

EARS C3 algorithm. However, this cluster has over 200 point assignments some of which 

yield higher sensitivity and specificity values than EARS C3 which provides the best pair 

from all algorithms in the candidate set. For example, the following rule set yields (86.39, 

95.50): 

 

  2

1

5

3

3

0

2

1

0

6

0

1 ,6,5,4,3,21  

 

which translates to positive confidence associated with the following rules, 

 

  













































pointsT

pointsT

pointstrue

pointstrue

pointsNA

pointsNA

ddd

R

dud

R

C

R

WMA

R

R

R

2*>:6

5*>:5

3=:4

2=:3

0:2

0:1

1

1

1









 

 

Negative confidence points associated with the following rules, 
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











































pointT

pointsT

pointsNA

pointfalse

pointsfalse

pointfalse

dddL

dudL

L

WMAL

CL

CUSUML

1*<:6

3*<:5

0:4

1=:3

6=:2

1=:1

1

1

3











 

 

Note that each side of the rule set contributes a maximum of 12=M  points providing an 

overall confidence measure ranging from -12 (100% negative confidence) to +12 (100% 

positive confidence). 

 

Next, one of the rule sets from the AOI(3) cluster were applied to a sample outbreak within 

the simulated data sets and confirm its effectiveness. (Figure 13) illustrates a snapshot that 

superimposes daily counts during outbreak mode along with computed confidence measure 

using the above rule set. 

 

 
  

 Figure 13. Simulated outbreak analysis   

As shown, the framework suggests an outbreak day with confidence measure of +1 (
12

1
 or 

8.33% positive confidence) on day 6, a day before an outbreak is going to start (point A). 

Although a false positive decision, it is a weak false positive that aids in planning for the 

following day which will have a strong positive confidence measure of +7 translating to 
12

7
 

or 58.3% positive confidence (point B). This is exactly what the aim of this framework was 

set to be, that is, identify start of an outbreak with some level of confidence measure at an 

early stage. Further to note, as the outbreak progresses, the confidence seems to drop to 

negative values. This is because the framework is intended to monitor initial start of an 

outbreak. As the values stabilize during an outbreak, the confidence measure of start of an 
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outbreak will diminish as expected. 

 

A detailed step by step simulation results for the proposed framework have been provided in 

[10]. 

 

6. Real scenario 
 

The rule set for AOI (3) from previous section was applied to a subset of real emergency 

room visit data from the Canadian Early Warning System (CEWS). 

 

As shown in Figure 14, one of the key observations is that the indication that an outbreak is 

going to occur in the next few days was identified by a higher confidence value on Day 8, 

which was most likely the first day of an outbreak curve with peak on Day 11. Further, the 

confidence measure was computed based on a minimal set identified by the proposed 

framework and not the entire set of nine algorithms. That is, the minimal set identified by the 

proposed framework was sufficient to detect the start of an event a few days earlier than it 

was actually detected. 

 

The following is some analysis of some of the days with interesting observations. 

 

 Day 8: Three of nine algorithms suggest an outbreak out of which two are from the 

identified minimal set. Looking at this at face value would produce a biased decision 

that we had no signs of start of an outbreak on day 8. However, considering only the 

minimal set, there is a split decision, and using the proposed point assignment system 

a confidence measure of +5 translating to 5/12 or 41.7% positive confidence is 

produced. Thus, there were clear signs for start of an outbreak on that day as 

suggested by a strong confidence value. 

 

 Day 9: The confidence value drops drastically to just above the 0 or no decision line. 

This is due to the actual count staying at similar level as the count for previous day 

thus the λ and ω values did not change much and did not contribute to the overall 

confidence value as strongly as they did on the previous day. However, the 

confidence value still stayed above zero point indicating some level of activity. 

 

 Day 11: This is the day when the counts of cases during an outbreak are the highest. 

All four algorithms of the minimal set declare an outbreak, however, the framework 

produces confidence measure of only +5. This is because the framework is monitoring 

start of an outbreak and not necessarily the peak. At the peak, both λ and ω do not 

contribute their portion to the overall confidence measure since neither the recent 

most count nor the count delta satisfy the rules as defined in the positive set. 

 

Using the proposed framework, the identification with significant confidence would have 

been detected on Day 8 and initial start of some activity instead of delayed identification 

which most likely occurred on Day 11. 
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 FIGURE 14. Application of CIAF to Real Scenario   

 

 

7. Limitations 
 

The following list highlights some limitations of the proposed framework and thus potential 

areas for future research: 

 

1. Identification of Optimal Rule: The proposed framework employs basic techniques for 

clustering and point identification. Use of more sophisticated clustering techniques as 

well as optimal point identification systems to come up with best rule to use within a 

given area of interest. 

2. Further Generalization: It would be useful to implement of other versions of 

exponential smoothing schemes which include seasonality corrected approach and 

apply to the overall framework. 
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3. Time Effect: Taking into account time of day, day of week, week of month and month 

of year within the framework and use it to deduce further redundancy between various 

algorithms. 

4. Data Labeling: A feedback mechanism for public health specialists to close the loop 

for labeling outbreaks and no-outbreak decisions. This will extend the framework to 

allow for other techniques for evaluation purposes. 

5. Invariant Minimal Set: There is no question that some algorithms are better than 

others when looking at different disease outbreaks. Applying a variety of outbreak 

types to the data (beyond log normal, daily spikes, etc) will help in figuring out if the 

minimal set produced by the framework is invariant. 

 

8. Conclusion 
 

A novel aberration interpretation framework has been proposed for producing a confidence 

based system decision focusing on high confidence values at the start of an outbreak. The 

framework comprises of multiple steps to allow identification of a subset of algorithms as 

well as a dynamic point assignment scheme for computing a balanced decision. 

 

The proposed framework provides a multitude of benefits: 

  

• Savings in the computation effort by identifying only a smaller subset of algorithms that are 

necessary and sufficient for a sound system decision.  

• Provides a mechanism to derive confidence value based on dynamic point assignment 

system.  

• Produces a superior overall system decision within desired AOI when compared to any 

single algorithm.  

• Provides a framework for future research to investigate optimal point allocation systems as 

well as analysis of new algorithms and their effects on the overall decision.  

 

The proposed framework is also adaptable or extensible. It captures the essential elements of 

a confidence based decision process. 
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