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Abstract: Application of exponential infinite series gives highly accurate analytical solution contributing to 
the theory of linear sweep voltammetry for single scan experiments. We have calculated theoretical 
dimensionless current function (usually denoted as π1/2χ(bt)) at relevant potentials for irreversible charge 
transfer without a coupled chemical reaction. For this purpose several transformation techniques were used, 
which convert the derived infinite series into summable sequences. Since infinite series of further 
electrochemical mechanisms with irreversible electrode reaction have similar features (particularly those 
comprising preceding and catalytic chemical reaction), the same approach can be successfully applied also 
for further electrochemical mechanisms.   
The respective infinite series are divergent in the most important potential region at and after voltammetric 
peak therefore their transformation by Epsilon and Levin transform techniques was used. Necessary 
arbitrary precision arithmetic (APA) was implemented by UBASIC. The results were compared to the 
customary solution of Nicholson and Shain, who computed the current-potential curves by means of 
numerical solution of the integral equations but with a much lower precision. Our results were obtained in a 
broad potential range including the potential regions where the series are divergent. Obtained current 
functions are precise to 12 valid decimal numbers, which is utilizable for evaluation of the results achieved 
by various faster but less precise digital simulation techniques.   
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1. Introduction 

 
Mathematical description of current – potential curves, which create an essential 

analytical signal in linear sweep voltammetry, is complex end still not sufficiently 
treated in electrochemical literature, in spite of its value. The relevant calculations 
originate from a system of parabolic differential equations describing the 
concentrations of the reduced R and oxidized O forms of the studied electrochemical 
system as well as concentrations of further species eventually taking part in the overall 
electrochemical mechanism. Different mechanisms differ in the detailed composition 
of initial and boundary conditions. An effective way of calculation submitted 
Nicholson and Shain (NICHOLSON and SHAIN, 1964) who solved eight 
electrochemical mechanisms by converting the boundary value problem into integral 
equations, which may be further solved either by the derived infinite series or directly 
- using a numerical solution. Of them only the series solution is considered analytical 
from the mathematical point of view since it provides an arbitrary precise result in the 
region where the series converge. The main problem with the series solution is that 
they are generally not convergent in the most desired potential region close to the 
maximum current (peak), which is basic for quantitative analysis. Therefore very 
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many numerical ways of calculation have been described in electrochemical literature, 
mostly indicated as and belonging to digital simulation (BRITZ, 2005; BRITZ, 2009; 
RUDOLPH et al., 1994; MOCAK and FELDBERG, 1994). 

This work is focussed to the uncomplicated irreversible electrode reaction 
(mechanism II denoted by NICHOLSON and SHAIN (1964). Severe problems with 
the series convergence can be overcome (at least in a sufficient extent) by 
transformation of divergent series into summable sequences. 
  

2. Theory, problem formulation and tools  
 
2.1 Convergence acceleration and resummation  
 

In applied mathematics, natural and technical sciences, various methods are used 
for the convergence acceleration of slowly convergent sequences or series and for the 
summation of divergent series. Their basic idea is to extract hidden information 
contained in partial sums of a specific slowly convergent or divergent series, and to 
use that information in order to make a qualified estimate about new (usually higher-
order) partial sums which eventually converge to some limit. In many cases, this 
“qualified estimate” leads to spectacular numerical results which represent a drastic 
improvement over a term-by-term summation of the original series, even if the series 
is formally convergent. 

For further discussion it is useful to consider a sequence {{sn}} = {{s0, s1, . . .}} 
with elements  sn  or the terms  an = sn − sn−1 of an infinite series.    

Sequence transformations are important tools for the convergence acceleration 
of slowly convergent sequences or series and also for the summation of divergent 
series (BREZINSKI, 2000). The basic idea is to construct from a given sequence 
{{sn}} a new sequence {{s′n}} = T({{sn}}) where each s′n depends on a finite number 
of elements  sn1,    . . . , snm. Often, the  sn  are the partial sums of an infinite series. 
The aim is to find a transformation T such that {{s′n}} converges faster than sn or, after 
all, it is capable to sum {{sn}}. A common approach is to rewrite sn  as  

  sn = s + Rn                                                         (1) 

where s is the limit (or antilimit in the case of divergence) and Rn is the remainder. 
The aim then is to find a new sequence {{s′n}} such that 

 s′n = s + R′n ,    R′n /Rn → 0  for  n → ∞   (2) 

Thus, the sequence {{s′n}} converges faster to the limit s (or diverges less 
violently) than {{sn}}. 

 
2.2 Employed ways of series transformation 
 

A large number of mainly nonlinear sequence transformations for the acceleration 
of convergence and the summation of divergent series are discussed in review 
(BREZINSKI, 2000). Some of the sequence transformations are well established 
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in mathematical literature; among them Wynn’s epsilon algorithm (WYNN, 1956; 
WYNN, 1966) and Levin’s sequence transformations (LEVIN, 1973; SMITH and 
FORD, 1979; 1982), which were used in this work. 

Wynn's epsilon algorithm or Epsilon (ε-) transformation is the nonlinear recursive 
scheme utilising the partial sums of the original series (0)

0ε = s0, (1)
0ε = s1, …, ( )

0
nε = sn, 

and defined by the following equations (WYNN, 1956): 
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Wynn found out that only the elements of the ε  table with even subscripts (2n) are 
applicable for the results calculation (they give so-called Shanks transformation) 
whereas the elements of the ε  table with odd subscripts (2n+1) are only auxiliary 
quantities. Each calculation element has a rhombus structure containing four terms and 
a recursive calculation using a single 1-dimensional array is possible (WYNN, 1965). 
Epsilon algorithm allows a simple and efficient series transformation and stimulated 
an enormous amount of research in this field.  

Transformations T({{sn}}, {{Rn}}) that depend not only on the sequence elements 
or partial sums  sn  but also on an auxiliary sequence containing the estimates of the 
remainder Rn  are of Levin-type if they are linear in the  sn, and nonlinear in the Rn. 
Remainder estimates are usually denoted  ωn  and provide an easy-to-use possibility to 
utilize asymptotic information on the problem sequence for the construction of highly 
efficient sequence transformations. Levin transformations are based on the ratio of two 
series. The first series (in numerator) is a function of sn values of the original sentence 
divided by ωn, the second series (in denominator) depends on 1/ωn (Figure 1). Several 
variants of Levin transformation differ in the way how ωn is estimated. In this work 
two variants were found most useful, particularly Levin u and Levin d transformations. 
They all can be solved recursively by using only a 3-term recurrence formulas, which 
are separately expressed for numerator as well as denominator and the final result is 
achieved as the ratio of the lastly calculated numerator and denominator terms. 
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Fig. 1. General calculation scheme of Levin transformations; remainder estimates ωn = (n+1)an   
and  ωn = an+1  for the  u  and  d  transformations, respectively. 
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2.3 Solved problems and corresponding series 
 

Investigated irreversible electrochemical reaction is identical to the mechanisms II 
defined by Nicholson and Shain (NICHOLSON and SHAIN, 1964) where all 
employed symbols, common in voltammetry, are defined. The corresponding reaction 
scheme and the derived series are:  

 R – z e−
k

⇒   O                                                  (6, 7) 

( )
( )
( )

1 00
II

=1

* ( ) 1 exp ln
1

( ) ( )
j

j a

j a s

D bj n F RTI bt E E
RT n F kj

π πβπ χ
β

∞
+ ⎡ ⎤

= = − − +⎢ ⎥
− ⎢ ⎥⎣ ⎦

∑
!

 
The summation of the series was performed by Epsilon and Levin u 

transformations (more suitable at larger potential values). Computer program for 
recursive calculation of this mechanism was written in UBASIC programming 
language, which allows implementation of arbitrary precision arithmetic (APA) and 
uses all numbers with very many decimal places (KOYAMA, 2000).  

The potential scale utilized by Nicholson and Shain and their successors is defined 
as: 
 E*(N-S) = (E – E0)αza + (RT/F) ln [(πDO b)1/2/ ks ] (8) 

However, Oldham and coworkers in several important papers concerning 
irreversible electrode reaction used a simpler potential scale (e.g. in DALRYMPLE-
ALFORD, 1977) where π1/2 was omitted from the argument of logarithm: 

 E*(Oldh) = (E – E0)αza + (RT/F) ln [(DO b)1/2/ ks ] (9) 

so that this scale is shifted by (RT/F) ln(π)1/2 = 14.705546966777 mV or by 
0.572364943 when the dimensionless potential scale is used as another alternative, 
frequently utilized in electrochemistry. 
 

3. Results and discussion 
 
3.1 Current – potential dependence for irreversible electrode reaction 

using real unit potential scale 
 

For the sake of space the obtained results are demonstrated in a tabulated form. 
Table 1 brings the calculated values of the current function π1/2χ(bt) designated here 
also as the dimensionless current I*, which was used in our previous papers (MOCAK, 
2002; MOCAK and BOND, 2004) and in the pioneer works of Reinmuth. Potential 
scales of Nicholson-Shain (N-S) as well as Oldham (Oldh) are implemented using real 
millivolt units. 

Our precise values located in the third and seventh column (using N-S scale) 
can be compared to the values shown in the columns two and six, which were 
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calculated numerically 45 years ago by NICHOLSON and SHAIN (1964). One should 
highly appreciate them (especially considering the computer level that time) since the 
deviation on the third rounded decimal place is observed only in four cases 
(emphasized in italics). It is surprising that the results of SIVAKUMAR and BASHA 
(2005), who investigated the same problem and used four decimal figures for the 
tabulated current function, were less precise behind the peak potential than the results 
of Nicholson and Shain and their potential range was even smaller than that of 
Nicholson and Shain. 

 
Table 1. Calculated dimensionless current for irreversible electrode oxidation using Nicholson-Shain and 
Oldham potential scales expressed in real millivolt units.  

E*, 
mV 

π1/2χ(bt) 
(N-S) 

I*  
(N-S) 

I*  
(Oldh) 

E*, 
mV 

 π1/2χ(bt) 
(N-S) 

I*  
(N-S) 

I*  
(Oldh) 

-300  0.00001505 0.00000849 -10 0.462 0.46201793 0.37464546 
-250  0.00010536 0.00005944 -5 0.480 0.48053005 0.40852572 
-200  0.00073716 0.00041603 0 0.492 0.49178853 0.43859990 
-160 0.003 0.00348738 0.00197054 5 0.496 0.49574697 0.46329925 
-150  0.00513823 0.00290546 10 0.493 0.49301358 0.48139777 
-140 0.008 0.00756454 0.00428200 15 0.485 0.48470520 0.49222092 
-120 0.016 0.01632951 0.00927948 20 0.472 0.47221381 0.49576253 
-110 0.024 0.02391140 0.01363423 25 0.457 0.45696130 0.49266598 
-100 0.035 0.03488516 0.01999080 30 0.441 0.44020946 0.48407130 
-90 0.050 0.05062198 0.02922079 35 0.423 0.42295691 0.47137873 
-80 0.073 0.07288591 0.04252075 40 0.406 0.40591713 0.45600522 
-70 0.104 0.10376342 0.06146949 45  0.38955001 0.43919904 
-60 0.145 0.14535833 0.08802158 50 0.374 0.37411700 0.42194196 
-50 0.199 0.19905868 0.12433319 60  0.34644141 0.38861355 
-45  0.23037469 0.14676318 70 0.323 0.32294382 0.35892542 
-40 0.264 0.26422510 0.17225545 80  0.30310390 0.33350738 
-35 0.300 0.29992874 0.20082435 100  0.27192236 0.29386329 
-30 0.337 0.33648220 0.23230306 120  0.24872422 0.26514046 
-25 0.372 0.37256762 0.26628454 150  0.22320466 0.23462457 
-20 0.406 0.40661969 0.30206924 200  0.19446262 0.20168254 
-15 0.437 0.43696362 0.33863453 250  0.17485343 0.17997456 

 
3.2 Current – potential dependence for irreversible electrode reaction 

using dimensionless potential scale 
 

In principle the same calculation approach was used for obtaining the 
dimensionless current  I*  related to the dimensionless potential  E*  defined again in 
two potential scales, those introduced by Nicholson-Shain (N-S) and Oldham (Oldh), 
respectively. Tabulated results are exhibited in Table 2. Assuming T = 298.15 K, one 
dimensionless potential unit corresponds to the value RT / F = 25.692606 mV 
(MOCAK, 2002).  

It is worth mentioning that assuming temperature T = 298.15 K, one dimensionless 
potential unit corresponds to the value RT / F = 25.692606 mV (MOCAK, 2002). 
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Table 2. Calculated dimensionless current for irreversible electrode oxidation using dimensionless 
Nicholson-Shain and Oldham potential scales.  

E* I* (Oldh) I* (N-S) E* I* (Oldh) I* (N-S) 
-10.0 0.00004540 0.00008046 0.5 0.48846716 0.48888145 
-9.0 0.00012339 0.00021869 1.0 0.49177335 0.45470458 
-8.0 0.00033535 0.00059424 1.5 0.46069675 0.37002530 
-7.0 0.00091105 0.00161366 2.0 0.41718128 0.30856070 
-6.0 0.00247262 0.00437423 3.0 0.34050384 0.26830872 
-5.0 0.00669276 0.01180127 4.0 0.28933513 0.24060300 
-4.0 0.01798448 0.03143348 5.0 0.25529883 0.22028455 
-3.0 0.04739313 0.08092026 6.0 0.23121011 0.20457946 
-2.0 0.11864417 0.19088973 7.0 0.21311328 0.19194529 
-1.0 0.26145051 0.36765286 8.0 0.19886406 0.18147266 
-0.5 0.35430163 0.44848739 9.0 0.18724114 0.17259233 
 0.0 0.43859990 0.49178853 10.0 0.17750549 0.17750549 

 
4. Conclusions 

 
The infinite series solution represents at present time the only alternative of 

analytical solution (from mathematical standpoint) of the corresponding set of 
differential equations pertinent to irreversible charge transfer (6) in stationary 
electrode voltammetry and facilitates very precise calculation of voltammetric current 
even in the potential region far after the peak. Even though the corresponding infinite 
series (7) behaves very badly at large positive potentials, Levin transformations and 
the use of arbitrary precision arithmetic prevents catastrophic loss of precision in 
calculation and enables very accurate calculation even at 250 mV (using N-S scale). In 
the indicated potential region all calculated dimensionless current values were precise 
at minimum to 12 decimal places even though the tables exhibited above contain only 
the numbers with 8 decimal places to be sufficiently lucid. For practical comparison 
with the calculations obtained in other mathematical ways even a smaller number of 
decimal places is needed. In any case, the resulting current – potential data obtained in 
this work may serve as the standard values utilizable for precision assessment of other, 
perhaps faster computational tools like digital simulation.  
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