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Abstract 
The positioning of the anchoring points of a Parallel Kinematic Manipulator has an important 

impact on its later performance. This paper presents an optimization problem to deal with the 

reconfiguration of a Parallel Kinematic manipulator with four degrees of freedom and the 

corresponding algorithms to address such problem, with the subsequent test on an actual robot. 

The cost function minimizes the forces applied by the actuators along the trajectory and considers 

singular positions and the feasibility of the active generalized coordinates. Results are compared 

among different algorithms, including evolutionary, heuristics, multi-strategy and gradient-based 

optimizers. 
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1. Introduction 

Currently, there is a growing interest in robot trajectory planning (Dash, Chen, Yeo, & Yang, 

2005; Rubio, Llopis-Albert, Valero, & Suñer, 2016; Valero, Rubio, & Llopis-Albert, 2019). Different 

optimization approaches are being proposed for this kind of problems (Llopis-Albert, Rubio, & 
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Valero, 2018) including the notions, methods, and operations of mobile robots (Rubio, Valero, & 

Llopis-Albert, 2019). 

Particularly, Parallel Kinematic Manipulators (PKMs) has drawn special attention. Compared 

with serial robots, PKMs can manage higher velocity, accuracy and load capability. However, they 

exhibit more limited workspace and forward kinematics singularities (Arakelian, Briot, & Glazunov, 

2008; Gosselin & Angeles, 1990; Xianwen Kong & Gosselin, 2002), which entail a set of 

characteristics: a) at least one degree of freedom (DoF) turns uncontrollable; b) they cannot resist 

some exerted wrenches; c) they are not able to leave such singularity without external help; d) the 

forces in its joints tend to infinity; and e) it is likely that the manipulator adopts another assembly 

configuration. 

This problem can be tackled by a rigorous trajectory planning of the robot’s end-effector, which 

must consider the avoidance of singularities within the workspace and actuation demands. The 

reconfiguration of the PKM can help with this task (Patel & George, 2012). 

This paper addresses the geometrical redesign of a reconfigurable PKM (RPKM) meant for 

knee rehabilitation. The trajectories of the mobile platform of the RPKM depend on the patient’s 

rehabilitation procedure and cannot be easily adapted for singularity avoidance (Araujo-Gómez, 

Díaz-Rodríguez, Mata, & González-Estrada, 2019; Araujo-Gómez, Mata, Díaz-Rodríguez, Valera, & 

Page, 2017; Vallés et al., 2018). The reconfiguration is treated as a non-linear optimization problem 

where the design variables are the positions of the four limbs linked to the fixed and mobile platforms, 

whereas the objective function comprises the total active force needed to follow a defined trajectory 

subject to several constraints on the value of the determinant of the Forward Jacobian and on the 

limit values allowed for the active generalized coordinates. 

This optimization problem is solved by means of various approaches, including evolutionary 

algorithms, heuristics optimizers, multi-strategy algorithms and gradient-based optimizers (Yang, 

2017). Finally, the results can be compared despite the complexity that the assessment of these 

optimization algorithms imply (Beiranvand, Hare, & Lucet, 2017). 

This paper is organized as follows: Section 2 explains the kinematic and dynamic modeling of 

the 3UPS+RPU PKM, including the intrinsic forward singularities and the optimization approach. 
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Section 3 shows the application of the methodology to different cases, and Section 4 states the 

conclusions. 

 

2. Methodology 

2.1. Kinematic model and forward singularities 

This paper deals with the optimization of a PKM reconfiguration in order to avoid forward 

singularities when moving around its workspace. The analyzed PKM is a reconfigurable robot with 

four DoF (two translations and two rotations) for knee diagnosis and rehabilitation (Vallés et al., 

2018). This PKM is named 3UPS+RPU by its architecture, where the underlined letter is the actuated 

joint. The universal, prismatic, revolute and spherical joints are represented by U, P, R, and S 

respectively. In Fig. 1 is presented the kinematic modeling implemented for the 3UPS-RPU PKM 

with 3 identical external limbs and a central limb. In this PKM the actuated joints are the prismatic 

ones. The fixed reference system is denoted by  �𝑂𝑂𝑓𝑓 − 𝑋𝑋𝑓𝑓𝑌𝑌𝑓𝑓𝑍𝑍𝑓𝑓�, while the reference system attached 

to the mobile platform is given by {𝑂𝑂𝑚𝑚 − 𝑋𝑋𝑚𝑚𝑌𝑌𝑚𝑚𝑍𝑍𝑚𝑚}.  

 

Figure 1.  Kinematic modeling for 3UPS-RPU PKM. 
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The coordinates of the origin of the mobile reference system attached to the mobile platform 

are xm and zm. The angles rotated by the mobile platform regarding Ym and Zm are represented by θ 

and ψ, respectively. Note that ym and the angle rotated regarding Xm (𝜙𝜙) are always zero because of 

the PKM topology. The location of the connection points to the fixed platform is defined by the radius 

R, the angles βFD, βFI and the distance ds along the Xf. Regarding the mobile platform, the location 

of the vertices depend on Rm, βMD and βMI. Eventually, the geometric reconfiguration of the 3UPS-

RPU PKM to be minimized is based on 7 geometrical parameters (R, βFD, βFI, Rm, βMD, βMI and ds). 

This study uses these 7 geometrical parameters as the design variables. 

The modeling of the manipulator using Denavit-Hartenberg notation is developed by a set of 22 

generalized coordinates 𝑞𝑞𝑖𝑖𝑖𝑖 (Table 1). The subscript 𝑖𝑖 denotes the number of the limb and 𝑗𝑗 the 

coordinate within the limb, see Fig. 1. 

Table 1. General coordinates in Denavit-Hartenberg notation. 

Joint i  j αi ai   di    θi 
Universal 1,2,3  1 -π/2 0 0 qij 

1,2,3  2 π/2 0 0 qij 
Prismatic 1,2,3  3 0 0 qij 0 
Spherical 1,2,3  4 π/2 0 0 qij 
 1,2,3  5 π/2 0 0 qij 
 1,2,3  6 π/2 0 0 qij 
Revolute 4  1 -π/2 0 0 qij 
Prismatic 4  2 -π/2 0 qij π 
Universal 4  3 -π/2 0 0 qij 

4  4 0 0 0 qij 

The inverse kinematic problem can be posed as a set of explicit expressions in function of the 

actuated generalized coordinates q13, q23, q13, q42 and the design variables: 

https://doi.org/10.4995/muse.2020.13352
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(q13)2 =
R2 + �2 ∙ xm − 2 ∙ Cθ ∙ Cψ ∙ Rm� ∙ R + Rm

2 +
+�2 ∙ zm ∙ Sθ − 2 ∙ Cθ ∙ Cψ ∙ xm� ∙ Rm + xm2 + zm2

(q23)2 =
R2 − 2 ∙ R ∙ ��

Cθ ∙ Cψ ∙ CFD ∙ CMD − Sψ ∙ CFD ∙ SMD +
+Cψ ∙ SFD ∙ SMD + Cθ ∙ Sψ ∙ SFD ∙ CMD

� ∙ Rm + CFD ∙ xm� +

+Rm
2 − 2 ∙ Rm ∙ �Sθ ∙ CMD ∙ zm + Sψ ∙ SMD ∙ xm − Cθ ∙ Cψ ∙ CMD ∙ xm� +

+xm2 + zm2

(q33)2 =
R2 − 2 ∙ R ∙ ��

Cθ ∙ Cψ ∙ CFI ∙ CMI − Sψ ∙ CFI ∙ SMI +
+Cψ ∙ SFI ∙ SMI + Cθ ∙ Sψ ∙ SFI ∙ CMI

� ∙ Rm + CFI ∙ xm� +

+Rm
2 − 2 ∙ Rm ∙ �Sθ ∙ CMI ∙ zm + Sψ ∙ SMI ∙ xm − Cθ ∙ Cψ ∙ CMI ∙ xm�+

+xm2 + zm2
(q42)2 = ds2 − 2 ∙ ds ∙ xm + xm2 + zm2 ⎭

⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎫

  (1) 

 

where Cθ, Sθ, CFD, SFD denote cos(θ), sin(θ), cos(βFD), sin(βFD), respectively. 

The relation between actuated generalized velocities and the velocities of the mobile platform 

is determinate by time derivate of the equations (1). The velocity relations through a matrix 

expression is:  

Φ𝑎𝑎 ∙ �

𝑞̇𝑞13
𝑞̇𝑞23
𝑞̇𝑞33
𝑞̇𝑞42

� = Φ𝑥𝑥 ∙

⎣
⎢
⎢
⎡
𝑥̇𝑥𝑚𝑚
𝑧̇𝑧𝑚𝑚
𝜃̇𝜃
𝜓̇𝜓 ⎦
⎥
⎥
⎤
  (2) 

where Φ𝑎𝑎 is the Inverse Jacobian and Φ𝑥𝑥 the Forward Jacobian.  

An inverse singularity is presented when the determinant of Φ𝑎𝑎 becomes zero, and a forward 

singularity occurs with determinant of Φ𝑥𝑥 is equal to zero. For the PKM under study, the Φ𝑎𝑎 is equal 

to the identity matrix, which prevent the occurrence of inverse singularities. On the other hand, the 

Φ𝑥𝑥 is a function of the four DoF of the mobile platform (xm, zm, θ, ψ). In that case, the 3UPS+RPU 

PKM will undergo a forward singularity. 

 

 

https://doi.org/10.4995/muse.2020.13352


 
Multidisciplinary Journal for Education,                                             https://doi.org/10.4995/muse.2020.13352 
Social and Technological Sciences                                                                                         ISSN: 2341-2593 

 
 

 
 

                             Llopis-Albert et al. (2020) 
http://polipapers.upv.es/index.php/MUSE/   Mult. J. Edu. Soc & Tec. Sci.   Vol. 7 Nº 2 (2020):   113-127 | 118 
 

2.2. Dynamic model 

The dynamic model of the parallel manipulator can be obtained by applying the D’Alembert’s 

Principle and the Principle of Virtual Power (Tsai, 1999): 

−𝑄𝑄�⃗ 𝑖𝑖𝑖𝑖 +Φ𝑞𝑞
𝑇𝑇 ∙ 𝜆𝜆 = 𝑄𝑄�⃗ 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑄𝑄�⃗ 𝑒𝑒𝑒𝑒 + 𝑄𝑄�⃗ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑄𝑄�⃗ 𝑎𝑎𝑎𝑎𝑎𝑎

Φ𝑞𝑞 ∙ 𝑞⃗̈𝑞 = 𝑏𝑏�⃗                                 
  (3) 

Where:  

𝑄𝑄�⃗ 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 The gravitational generalized forces 

𝑄𝑄�⃗ 𝑖𝑖𝑖𝑖  The inertial generalized forces 

𝑄𝑄�⃗ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 The friction generalized forces 

𝑄𝑄�⃗ 𝑒𝑒𝑒𝑒 , The external generalized forces applied to the mobile platform 

𝑄𝑄�⃗ 𝑎𝑎𝑎𝑎𝑎𝑎 The active generalized forces exerted by the actuators  

Φ𝑞𝑞  The restriction Jacobian matrix  

𝜆𝜆   The vector of Lagrange multipliers  

𝑞⃗̈𝑞   The generalized accelerations and  

𝑏𝑏�⃗    The vector comprising the acceleration terms quadratic in velocities. 

The 𝑞⃗𝑞 is a set of generalized coordinates from the active (independent) and passive joints 

(secondary), organized as:  

𝑞⃗𝑞 = �
𝑞𝑞11,𝑞𝑞12,𝑞𝑞21,𝑞𝑞22,𝑞𝑞31,𝑞𝑞32,𝑞𝑞41,𝑥𝑥𝑚𝑚 , 𝑧𝑧𝑚𝑚 ,𝜃𝜃,𝜓𝜓��������������������������� 𝑞𝑞13,𝑞𝑞23,𝑞𝑞33,𝑞𝑞42�����������

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑞𝑞𝑠𝑠) 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 (𝑞𝑞𝑖𝑖)
�
𝑇𝑇

  (4) 

For the 3UPS+RPU PKM, the Φ𝑞𝑞 matrix is defined by deriving respect to 𝑞⃗𝑞 the subsequent 11 

constraint equations: 
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⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝐶𝐶11 ∙ 𝑆𝑆12 ∙ 𝑞𝑞13 − 𝑅𝑅 − 𝑥𝑥𝑚𝑚 + 𝑅𝑅𝑚𝑚 ∙ 𝐶𝐶𝜃𝜃 ∙ 𝐶𝐶𝜓𝜓                                                     
−𝐶𝐶12 ∙ 𝑞𝑞13 + 𝑅𝑅𝑚𝑚 ∙ 𝐶𝐶𝜃𝜃 ∙ 𝐶𝐶𝜓𝜓                                                                       

𝑆𝑆11 ∙ 𝑆𝑆12 ∙ 𝑞𝑞13 − 𝑧𝑧𝑚𝑚 − 𝑅𝑅𝑚𝑚 ∙ 𝑆𝑆𝜃𝜃                                                                      
𝐶𝐶21 ∙ 𝑆𝑆22 ∙ 𝑞𝑞23 + 𝑅𝑅 ∙ 𝐶𝐶𝐹𝐹𝐹𝐹 − 𝑥𝑥𝑚𝑚 − 𝑅𝑅𝑚𝑚 ∙ 𝐶𝐶𝑀𝑀𝑀𝑀 ∙ 𝐶𝐶𝜃𝜃 ∙ 𝐶𝐶𝜓𝜓 + 𝑅𝑅𝑚𝑚 ∙ 𝑆𝑆𝑀𝑀𝑀𝑀 ∙ 𝑆𝑆𝜓𝜓
−𝐶𝐶22 ∙ 𝑞𝑞23 + 𝑅𝑅 ∙ 𝑆𝑆𝐹𝐹𝐹𝐹 − 𝑅𝑅𝑚𝑚 ∙ 𝐶𝐶𝑀𝑀𝑀𝑀 ∙ 𝐶𝐶𝜃𝜃 ∙ 𝑆𝑆𝜓𝜓 − 𝑅𝑅𝑚𝑚 ∙ 𝑆𝑆𝑀𝑀𝑀𝑀 ∙ 𝐶𝐶𝜓𝜓                
𝑆𝑆21 ∙ 𝑆𝑆22 ∙ 𝑞𝑞23 − 𝑧𝑧𝑚𝑚 + 𝑅𝑅𝑚𝑚 ∙ 𝐶𝐶𝑀𝑀𝑀𝑀 ∙ 𝑆𝑆𝜃𝜃                                                          
𝐶𝐶31 ∙ 𝑆𝑆32 ∙ 𝑞𝑞33 + 𝑅𝑅 ∙ 𝐶𝐶𝐹𝐹𝐹𝐹 − 𝑥𝑥𝑚𝑚 − 𝑅𝑅𝑚𝑚 ∙ 𝐶𝐶𝑀𝑀𝑀𝑀 ∙ 𝐶𝐶𝜃𝜃 ∙ 𝐶𝐶𝜓𝜓 − 𝑅𝑅𝑚𝑚 ∙ 𝑆𝑆𝑀𝑀𝑀𝑀 ∙ 𝑆𝑆𝜓𝜓   
−𝐶𝐶32 ∙ 𝑞𝑞33 − 𝑅𝑅 ∙ 𝑆𝑆𝐹𝐹𝐹𝐹 − 𝑅𝑅𝑚𝑚 ∙ 𝐶𝐶𝑀𝑀𝑀𝑀 ∙ 𝐶𝐶𝜃𝜃 ∙ 𝑆𝑆𝜓𝜓 + 𝑅𝑅𝑚𝑚 ∙ 𝑆𝑆𝑀𝑀𝑀𝑀 ∙ 𝐶𝐶𝜓𝜓                    
𝑆𝑆31 ∙ 𝑆𝑆32 ∙ 𝑞𝑞33 − 𝑧𝑧𝑚𝑚 + 𝑅𝑅𝑚𝑚 ∙ 𝐶𝐶𝑀𝑀𝑀𝑀 ∙ 𝑆𝑆𝜃𝜃                                                             
−𝑆𝑆41 ∙ 𝑞𝑞42 − 𝑥𝑥𝑚𝑚 + 𝑑𝑑𝑑𝑑                                                                                  
𝐶𝐶41 ∙ 𝑞𝑞42 − 𝑧𝑧𝑚𝑚                                                                                              ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= 0�⃗ 11𝑥𝑥1  (5) 

Grouping 𝑞⃗̈𝑞 and 𝜆𝜆  the Eq. (3) can be rewritten in matrix form, it can be expressed as follows: 

� 𝑀𝑀 �Φ𝑞𝑞�
𝑇𝑇

Φ𝑞𝑞 0
� ∙ �𝑞⃗̈𝑞

𝜆𝜆
� = �𝑄𝑄

�⃗ 𝑐𝑐𝑐𝑐 + 𝑄𝑄�⃗ 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑄𝑄�⃗ 𝑒𝑒𝑒𝑒 + 𝑄𝑄�⃗ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑄𝑄�⃗ 𝑎𝑎𝑎𝑎𝑎𝑎
𝑏𝑏�⃗

�  (6) 

where 𝑄𝑄�⃗ 𝑖𝑖𝑖𝑖 is divides in the mechanical system mass matrix (M), and the generalized forces related 

to Coriolis and Centrifugal accelerations (𝑄𝑄�⃗ 𝑐𝑐𝑐𝑐). In this case the 0 is an 11x11 null matrix.  

The velocity of the general coordinates (𝑞⃗̇𝑞), using coordinate partitioning method (Wehage, 

Wehage, & Ravani, 2015), can be express in function of the independent coordinates as: 

𝑞⃗̇𝑞 = �
𝑞̇𝑞��⃗
𝑠𝑠

𝑞̇𝑞��⃗
𝑖𝑖 � = �−�Φ𝑞𝑞

𝑠𝑠�−1 ∙ Φ𝑞𝑞
𝑖𝑖

1
� ∙ �𝑞̇𝑞��⃗

𝑖𝑖
� = 𝑅𝑅∗ ∙ �𝑞̇𝑞��⃗

𝑖𝑖
�  (7) 

in this case, Φ𝑞𝑞
𝑖𝑖  and Φ𝑞𝑞

𝑠𝑠  are parts of the restriction Jacobian matrix Φ𝑞𝑞 related to the independent and 

secondary generalized coordinates, respectively; 1 is a 4x4 identity matrix. 

Multiplying both sides of Eq. (6) by 𝑅𝑅∗ the equation of motion can be compactly written follows: 

(𝑅𝑅∗)𝐹𝐹×𝑁𝑁
𝑇𝑇 ∙ �𝑀𝑀𝑁𝑁×𝑁𝑁 ∙ 𝑞⃗̈𝑞𝑁𝑁×1 − 𝑄𝑄�⃗ 𝑐𝑐𝑐𝑐𝑁𝑁×1 − 𝑄𝑄�⃗ 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑁𝑁×1

− 𝑄𝑄�⃗ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑁𝑁×1
− 𝑄𝑄�⃗ 𝑒𝑒𝑒𝑒𝑁𝑁×1� =

= (𝑅𝑅∗)𝐹𝐹×𝑁𝑁
𝑇𝑇 ∙ 𝑄𝑄�⃗ 𝑎𝑎𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁1 = (𝑅𝑅∗)𝐹𝐹×𝑁𝑁

𝑇𝑇 ∙ (𝑄𝑄𝑎𝑎𝑎𝑎𝑁𝑁×𝐹𝐹 ∙ 𝐹⃗𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝐹𝐹×1)
  (8) 

where 𝑁𝑁 and 𝐹𝐹 are the number of generalized coordinates and the independent coordinates 

respectively. For this study, 𝑁𝑁 = 15 and 𝐹𝐹 = 4. 𝐹⃗𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝐹𝐹×1 are the forces belonging to the actuators on 
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the PKM. It is worth mentioning that the right-side term (𝑅𝑅∗)𝐹𝐹×𝑁𝑁
𝑇𝑇 ∙ 𝑄𝑄�⃗ 𝑎𝑎𝑎𝑎𝑁𝑁×𝐹𝐹 of Eq.  (8) is the identity 

matrix. 

The equation of motion can be further developed by considering friction force only in the 

prismatic actuators, thus only affecting the active generalized coordinates, hence: 

(𝑅𝑅∗)𝐹𝐹×𝑁𝑁
𝑇𝑇 ∙ �𝑀𝑀𝑁𝑁×𝑁𝑁 ∙ 𝑞⃗̈𝑞𝑁𝑁×1 + 𝑄𝑄�⃗ 𝑐𝑐𝑐𝑐𝑁𝑁×1 + 𝑄𝑄�⃗ 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑁𝑁×1

+ 𝑄𝑄�⃗ 𝑒𝑒𝑒𝑒𝑒𝑒𝑁𝑁×1�+ 𝐹⃗𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐹𝐹×1
= 𝐹⃗𝐹𝑎𝑎𝑎𝑎𝑎𝑎𝐹𝐹×1  (9) 

in which the friction force assigned to the generalized active coordinates is represented as:  

𝐹⃗𝐹𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =

⎣
⎢
⎢
⎡−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

(𝑞̇𝑞13) ∙ (𝜇𝜇𝑐𝑐 + 𝜇𝜇𝑣𝑣 ∙ |𝑞̇𝑞13|)
−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑞̇𝑞23) ∙ (𝜇𝜇𝑐𝑐 + 𝜇𝜇𝑣𝑣 ∙ |𝑞̇𝑞23|)
−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑞̇𝑞33) ∙ (𝜇𝜇𝑐𝑐 + 𝜇𝜇𝑣𝑣 ∙ |𝑞̇𝑞33|)
−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑞̇𝑞42) ∙ (𝜇𝜇𝑐𝑐 + 𝜇𝜇𝑣𝑣 ∙ |𝑞̇𝑞42|)⎦

⎥
⎥
⎤
  (10) 

where µv and µc are the viscous and Coulomb coefficients, respectively. 

 

2.3. Objective function and optimization constraints 

The reconfigurations process, based on previous works (Araujo-Gómez et al., 2019; Vallés et 

al., 2018), looks for the optimal set of geometric parameters of the PKM for a specific mobile 

platform trajectory. The reconfiguration of the 3UPS+RPU (i) prevents Forward singularities inside 

the workspace (determinant of the Φ𝑥𝑥 different from zero), and (ii) avoids large control actions in 

the vicinity of the singular configurations.  

The physical bounds of the seven design variables of the PKM (R, βFD, βFI, Rm, βMD, βMI and ds) 

showed in Fig. 1 are: 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

0.30 𝑚𝑚 ≤ 𝑅𝑅 ≤ 0.50 𝑚𝑚
0.10 𝑚𝑚 ≤ 𝑅𝑅𝑚𝑚 ≤ 0.30 𝑚𝑚
−0.15 𝑚𝑚 ≤ 𝑑𝑑𝑑𝑑 ≤ 0.15 𝑚𝑚
0.10 𝑟𝑟𝑟𝑟𝑟𝑟 ≤ 𝛽𝛽𝐹𝐹𝐹𝐹 ≤

𝜋𝜋
2

 𝑟𝑟𝑟𝑟𝑟𝑟

0.10 𝑟𝑟𝑟𝑟𝑟𝑟 ≤ 𝛽𝛽𝐹𝐹𝐹𝐹 ≤
𝜋𝜋
2

 𝑟𝑟𝑟𝑟𝑟𝑟

0.10 𝑟𝑟𝑟𝑟𝑟𝑟 ≤ 𝛽𝛽𝑀𝑀𝑀𝑀 ≤
𝜋𝜋
2

 𝑟𝑟𝑟𝑟𝑟𝑟

0.10 𝑟𝑟𝑟𝑟𝑟𝑟 ≤ 𝛽𝛽𝑀𝑀𝑀𝑀 ≤
𝜋𝜋
2

 𝑟𝑟𝑟𝑟𝑟𝑟

  (11) 
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The set of rehabilitation trajectories are discretized into a n number of passing through points. 

At these points we solve the inverse dynamics of the 3UPS+RPU PKM, then we define the objective 

function as the sum of the square of the active generalized forces (𝐹⃗𝐹𝑎𝑎𝑎𝑎𝑎𝑎):  

𝑓𝑓(𝑅𝑅,𝑅𝑅𝑚𝑚 ,𝑑𝑑𝑑𝑑,𝛽𝛽𝐹𝐹𝐹𝐹 ,𝛽𝛽𝐹𝐹𝐹𝐹 ,𝛽𝛽𝑀𝑀𝑀𝑀 ,𝛽𝛽𝑀𝑀𝑀𝑀) = ∑ ∑ �𝐹𝐹𝑖𝑖𝑖𝑖�
24

𝑗𝑗=1
𝑛𝑛
𝑖𝑖=1   (12) 

To ensure that the ‖Φ𝑥𝑥‖ ≠ 0 for all configurations part of the rehabilitation trajectory, the next 

constraints must be met:  

�‖Φ𝑥𝑥‖𝑟𝑟𝑟𝑟𝑟𝑟 − ‖Φ𝑥𝑥‖𝑖𝑖� < �‖Φ𝑥𝑥‖𝑟𝑟𝑟𝑟𝑟𝑟�;  𝑖𝑖 = 1,2 … , 𝑛𝑛  (13) 

with: 

‖Φ𝑥𝑥‖𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑚𝑚𝑚𝑚𝑚𝑚(‖Φ𝑥𝑥‖𝑖𝑖);  𝑖𝑖 = 1,2 … , 𝑛𝑛  (14) 

If both sides of the constraint (13) are squared, it can be rewritten as: 

2 ∙ ‖Φ𝑥𝑥‖𝑟𝑟𝑟𝑟𝑟𝑟 ∙ ‖Φ𝑥𝑥‖𝑖𝑖 − ‖Φ𝑥𝑥‖2
𝑖𝑖 > 0;  𝑖𝑖 = 1,2 … , 𝑛𝑛  (15) 

The final optimization constraint is referring to the length of each actuator. The length of the 

actuated joints must be between the minimum (𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚) and maximum (𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚) length of each limb. 

𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑞𝑞𝑖𝑖3 ≤ 𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚; 𝑖𝑖 = 1,2,3
𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑞𝑞𝑖𝑖2 ≤ 𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚 ; 𝑖𝑖 = 4         (16) 

The minimization of the penalty function (12) subjected to non-linear constraints (15) and (16) 

represents a non-linear optimization problem.  In this study, the optimization problem is solved by 

several approaches, which covers evolutionary algorithms, heuristics optimizers, multi-strategy 

algorithms and gradient-based optimizers. 

 

2.4. Optimization approaches comparison 

Optimization techniques can be classified as either local (commonly gradient-based) or global 

(commonly non-gradient based or evolutionary) algorithms. However, it is worth mentioning the 

difficulties in comparing the performance of several optimization algorithms (Beiranvand et al., 
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2017). Therefore, we have carried out the optimization algorithm comparison following the 

recommendations of those authors. 

Our research team used these optimization algorithms: 

a) Evolutionary algorithms (EA), which use mechanisms inspired by biological evolution. 

b) Heuristic methods use a heuristic function to solve the problem. 

c) Multi-strategy algorithms combine the strengths of different approaches. 
d) Gradient-Based are iterative methods using the gradient information. 

Using the model FRONTIER framework (www.esteco.com) all these optimization approaches 

are compared. There is an exhaustive explanation about this optimization algorithm in (Yang, 2017). 

 

3. Case studies 

A set of 8 trajectories have been tested for knee rehabilitation. All of them are non-feasible in 

terms of forward singularities and actuators out of range, so they require a reconfiguration. In Table 

2, the characteristics of those trajectories are featured, regarding the motion of the mobile platform 

as well as the difficulties found during the execution.  

Table 2. Test trajectories. (1) Forward singularities, (2) Actuators out of range. 

Trajectory Horizontal Vertical Inclined straight line Ellipse 
Constant Orientation Tr1 (1) Tr3 (2) Tr5 (2) Tr7 (1) and (2) 
Variable Orientation Tr2 (1) Tr4 (1) Tr6 (1) and (2) Tr8 (1) and (2) 

 

The reconfiguration involves 7 design variables, but only 4 are optimized (𝑅𝑅,𝑑𝑑𝑑𝑑,𝛽𝛽𝐹𝐹𝐹𝐹 ,𝛽𝛽𝐹𝐹𝐹𝐹), 

while the other 3 are kept constant (𝑅𝑅𝑚𝑚 ,𝛽𝛽𝑀𝑀𝑀𝑀 ,𝛽𝛽𝑀𝑀𝑀𝑀). The initial parameters of the manipulator are 

defined in Eq. (17) and are intended to avoid a trivial singular configuration. The physical bounds of 

the optimized design variables are those presented in Eq. (11). Moreover, the actuator angles must 

be less than 0.7854 rad and their lengths must lie between 0.575 and 0.775 m. 
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⎩
⎪⎪
⎨

⎪⎪
⎧
𝑅𝑅 = 43 𝑐𝑐𝑐𝑐
𝑅𝑅𝑚𝑚 = 23 𝑐𝑐𝑐𝑐
𝑑𝑑𝑑𝑑 = 5 𝑐𝑐𝑐𝑐
𝛽𝛽𝐹𝐹𝐹𝐹 = 45𝑜𝑜
𝛽𝛽𝐹𝐹𝐹𝐹 = 48𝑜𝑜
𝛽𝛽𝑀𝑀𝑀𝑀 = 90𝑜𝑜
𝛽𝛽𝑀𝑀𝑀𝑀 = 100𝑜𝑜

          (17) 

Table 3 summarizes the results obtained when applying the different optimization strategies for 

trajectory 2. The optimized design variables avoid forward singularities, which is shown by the fact 

that the minimum value of Eq. (15) is greater than zero (Table 3). The PilOPT algorithm presents the 

best performance. However, results greatly depend on the tuning of the specific parameters of each 

algorithm, e.g., the stopping conditions, population size or step sizes (Beiranvand et al., 2017). In 

fact, the main reason why the PilOPT algorithm outperforms the rest is that it only requires one 

parameter, which is the number of design evaluations determining when the algorithm stops, 

occurring when no improvement in the Pareto efficiency is observed. 

Table 3. Optimized design variables for trajectory 2. 

Algorithm 𝜷𝜷𝑭𝑭𝑭𝑭 
(º) 

𝜷𝜷𝑭𝑭𝑭𝑭 
(º) 

R 
(cm) 

ds 
(cm) 

Objective 
Function (N2) 

Minimum value 
of Eq. (15)  

Evolutionary algorithms       
          NSGA-II 180 48 40 15 154,547.26 1.64·10-4 
          MOGA-II 174 60  42 15 149,220.00 2.22·10-4 
          ARMOGA 84 168 32 9 143,290.00 1.82·10-4 
          Evolution Strategies 180 48 32 -1  129,375.02 2.18·10-4 
Heuristics optimizers       
          MOSA 84 156 32 13 147,530.00 9.39·10-5 
          MOPSO 67 21 22 -15 106,449.01 3.21·10-4 
Multi-strategy algorithms       
          HYBRID 174 60 42 13 150,060.00 2.11·10-4 
          PilOPT 66 18 22 -15 104,010.00 1.99·10-4 
          FAST 177 173 40 15 193,527.55 1.32·10-4 
          MEGO 63  21 20 -15 110,761.44 1.55·10-4 
Gradient-based optimizers       
          MIPSQP 132 138 30 15 212,920.00 3.20·10-5 

 

After solving the optimization problem using the PilOPT algorithm, several results are 

presented. Fig. 2 shows the geometrical robot reconfiguration from the original robot design for the 

second trajectory and for both the fixed base (left) and the mobile platform (right). 
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Figure 2. Geometrical robot reconfiguration from the original robot design for the second trajectory and for 

both the fixed base (left) and the mobile platform (right). The yellow dots correspond to the original 
configuration of the PKM, while the red lines lead to the final configuration. 

 

Bearing in mind that the PilOPT algorithm leads to the best results, the 8 non-feasible 

trajectories are solved using this optimization technique. Table 4 illustrates the optimal 

reconfiguration design variables of the robot using the PilOPT algorithm. The robot reconfiguration 

prevents high values of generalized forces and the problem of a direct singularity.  

Table 4. Optimized design variables for the 8 non-feasible trajectories. 

Trajectory 𝜷𝜷𝑭𝑭𝑭𝑭 (º) 𝜷𝜷𝑭𝑭𝑭𝑭 (º) R (cm) ds (cm) Objective Function (N2) 
1 18 30 28 -7 101,130.00 
2 66 18 22 -15 104,010.00 
3 60 12 30 9 79,627.00 
4 60 18 36 15 58,168.00 
5 72 30 26 -9 109,410.00 
6 48 6 30 1 65,622.00 
7 90  25 35 15 83,526.00 
8 48 114 32 15 248,780.00 

 
 

Results show that there is not the best optimization for all types of optimization problems, 

because each algorithm has its advantages and disadvantages. In general, local algorithms are better 

when design variables are greater than 50, with high computational cost, with a little significance 

numerical noise, when local minima are not a problem and when gradients are easily available. 

Inversely, global algorithms are recommended with less than 50 design variables, with significance 
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numerical noise, where gradients do not exist, when global optimum is needed and when there are 

discontinuous objective or constraint functions. 

Eventually, global methods should be used only in cases where efficient local search is not 

feasible. 

 

4. Conclusions 

In order to apply the required movements for diagnosis and rehabilitation tasks of anterior 

cruciate ligament of human knee, a PKM robot with 4 DoF comprised of 3UPS-RPU was designed, 

and the kinematics and dynamics modeling has been presented. During the execution of certain 

rehabilitation trajectories, the forward Jacobian becomes singular, so in order to prevent control 

problems a geometrical and kinematical reconfiguration of the manipulator has been considered. This 

leads to the achievement of the generalized coordinates that were initially outside range of prismatic 

actuators.  

As it is not possible to modify the rehabilitation trajectories because they are prescribed by the 

physical therapist, the robot reconfiguration raises as the only solution of such problem. Thus, it is 

needed to modify the points of insertion of the limbs on both the mobile and fixed robot platforms. 

A non-linear optimization solver has been proposed to approach the reconfiguration problem. 

The penalty function to be minimized sums the square of the active generalized forced. The 

constraints include the imposition of the robot actuated joints to lie within an admissible range, and 

the non-singularity of the forward Jacobian. 

Using D'Alembert's dynamics inverse model of the PKM and the Principle of Virtual Power the 

optimal redesign problem of the robot has been tackled. We have used different optimization 

strategies to solve it. The rehabilitation therapies cover a set of 8 non-feasible trajectories. The second 

non-feasible trajectory was optimized by using different optimization techniques to find the best one. 

Results clearly show that the PilOPT algorithm outperforms the other algorithms for the problem in 

hand.   
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The rest of non-feasible trajectories were optimized using PilOPT and the results show that the 

forces required to carry out these trajectories are much lower than those of the initial configuration 

of the robot and that the active generalized coordinates fall within the physical ranges of the actuators. 
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