
12

Mathematical and Software Engineering, Vol. 1, No. 1 (2015), 12-17

Varεpsilon Ltd, http://varepsilon.com

Online Math Tasks Generator

Julia Dimitrova, Eleonora Pavlova,

Kosyo Nikolov, and Aleksander Bonin

High School of Mathematics “D-r Petar Beron”, Varna, Bulgaria

Abstract

This article presents “Math for all” – a web application that generates various

algebraic equations and inequalities. We discuss algorithms and methods that are

implemented in building the library that generates all the expressions, and some

problems that are solved in the process of our work.

Subject Codes (ACM): G.4, H.3.5.

Keywords: online generator, algebraic expressions, equations and inequalities,

restrictions for answers and quotients.

1 Introduction

This article presents “Math for all” – a web application that generates various

algebraic equations and inequalities. The generator can be used by Math teachers

and everyone who wants to better their skills in this particular part of

mathematics.

One of the main advantages of “Math for all” is the Bulgarian interface. The

application is very easy to use and provides various settings through which the

user can change the type of the equations and inequalities. The user can set the

difficulty of the problem, the type of visualization of the answer, the number and

the names of the variables, the power of the polynomials or roots, the overall

complexity, and also they can choose the type of the answer. The program can

generate a number of similar tasks. It solves every generated task and visualizes

the result.

13

The application can be used online and is freely available. The intuitive user

interface allows our application to be used even by people who are not

experienced computer users. The most complex and interesting part of this

application is the so-called “core” – a library which generates algebraic

expressions, equations and inequalities. The description of the “core” is the main

feature of this article.

2 Methods and Algorithms

The application program was created by two 10th grade students at High School

of Mathematics who have in-depth knowledge of programming. KN is an active

participant in C/C ++ programming competitions and AB is a contestant in

various IT competitions.

The description of used data structures

The core of the application generates and calculates algebraic expressions. It is

written in C ++. A hierarchy of classes is created for the implementation of the

algorithms - classes ranging from simple monomials (e.g. x
2
) to complex

expressions and for specific tasks (Equation - equation, Inequation - inequality).

STL (Standard Template Library) [5] -containers vector and map are used too.

Algorithms

Many of the algorithms used in calculations were created by the authors with the

help of [1-4]. Optimizations were made to improve the speed of calculation. For

example, the operation “multiplication of polynomials” is optimized into quick

sorting, which shortens the computation time. Therefore, the maximum

complexity is О(N
2
.logN).

Generating tasks is easier after a shaping algebraic basis. Appropriate methods are

provided for this in class Polynomial. The "heavy lifting", so to say, is done by

the class named Polynomial. It provides essential functions, such as addition,

subtraction, multiplication and exponentiation of algebraic expressions.

Computing (4x+3/2y)*(23y+x)-(x+3)^2 in a single line of code greatly decreases

the difficulty of doing more advanced operations like the generation of math

problems. Polynomial uses a lot of smaller classes to avoid the clustering of code

that is too complex to understand. The hierarchy looks like this: Number ->

Simple -> Monomial -> Polynomial.

The Number class is exactly what it sounds like - a number. It is the

implementation of the coefficients we use in Algebra. Primitive number types

cannot provide the functionality needed for the program, such as fractions.

Floating point types would give an estimate, but Number keeps the fractions

14

intact, so 2/3 will not become 0.66667. In addition, Number can be upgraded to

provide even more features, such as irrational coefficients (roots, logarithms and

so on). This is not hard to do, as every other class uses Number by default (with

some minor exceptions), so all the changes required would be within Number

itself.

Simple is a class that denotes a letter with a power attached to it, for example x^2.

Its most important feature is that it can be compared in a fashion similar to a letter.

Monomial is a class for manipulating monomials (such as 5/3x^2y^3). It contains

a vector of Simples and a Number coefficient. Monomials can also be compared.

This is done by a method you would normally use in a string, i.e. going from left

to right and comparing each letter - in this case, every Simple. This feature of

Monomial is crucial for the fast operation of Polynomial.

As you may have guessed, Polynomial contains a vector of Monomials. Those

monomials are always sorted. Let's look into some of the operations we can

perform:

Addition: we use a modified version of the algorithm for the merging of two

sorted arrays. We start with 2 indexes, both at the first monomial of the two

polynomials. Then we advance 1 position at a time: if the monomials at the

respective indexes are the same, we add up their coefficients. If one is greater, we

only advance the other index. We repeat this until we have used all the

monomials. This gives us an O(N) performance. If the program were to use non-

sorted vectors, it would have been O(N
2
). Subtraction is done the same way.

Multiplication uses the long multiplication algorithm, which has a complexity of

O(N
2
) for numbers. There are algorithms with better performance; however, one

should note that they only perform better in practice for a very large number of

digits (in our case, monomials). No one would need a polynomial with 5000

monomials and this is why the simplest algorithm is used. Determining the

asymptotic complexity of this algorithm is hard, though it is fast enough to output

25 expressions long and can sometimes fill a normal screen in under a second.

Exponentiation uses the fast method employing powers of 2. The multiplications

for a given power K is O(log K).

Description of the generation algorithm:

1. The user fills in a Descriptor from the website (currently there are three

types - Equation, Inequation and Experssion)

2. Depending on the type of problem selected, a function is called in

Interface.hpp. Every such function has the same format: an input of the

corresponding Descriptor and a number of problems to generate, and an

output consisting of two strings, for the problem and the answers

respectively.

15

Furthermore, let's discuss the generation of an equation. First, we need some

parameters. Those are supplied by EquationDescriptor and regulate various

aspects of the result – coefficients, power of the equation, number of solutions,

complexity and more. In the beginning, the program builds a "base" equation. For

example, if we have power=3, the program will end up with something like this:

(x+1)(x+2)(x-4)=0. Then it would compute the expression, so the answers aren't

obvious. It would then proceed to "obfuscate" the equation by adding additional

components. For instance, if we have x^2-4 = 0 at some step, after adding such a

component it will become 2x^2-6x+5=(x-3)^2. The number of times this step is

repeated is controlled by the descriptor. In the end, the program balances the

resulting expression in such a way, that an approximately equal amount of

characters is on either side of the symbol for equality. For inequations, the only

difference is that we use a different sign.

Here is a method of the Inequation class:

16

Here is the algorithm which generates equivalent expressions:

1. Initially, create two empty expressions (Expression), answer and solution

respectively.

2. First we determine the number of components to add. This is controlled by

the minTerms and maxTerms members of the descriptor.

3. Then we decide how many brackets the component should have.

4. Generate polynomials to fill in the brackets.

5. All of the polynomials generated are multiplied together in a separate

polynomial. By doing this, we have two expressions that are equal to each

other - one of them is in the bracket format, the other one is computed.

6. In the end, the same component is added to both expressions. We added to

one of the expressions it in bracket format, and to the other – in computed

format.

3 Results and Discussion

The application consists of several parts, the main ones being the core and the user

interface.

The relationship between the core and the site ("Web UI") is carried out by

LuaJIT [6] and uWSGI [7], to be as fast as possible, and because there LuaJIT

FFI (Foreign function interface), which allows it to connect the core with the web

server. ReactJS library [8] is used to create the user interface which made the

creation of the design considerably easier. We implemented json, because it is a

modern industry standard, and it is very easy to use.

The connection with the site, Figure 1, is accomplished in the following way: the

library receives the task type and its describer from the site.

Figure 1

17

The library returns two strings – the first one is for the problem and second – for

the answer. These strings are rendered beautifully by KaTeX JavaScript library

which is the fastest drawing of LaTeX. Our web application is available at

http://math4all-scholars.rhcloud.com/.

4 Conclusion

In conclusion, we created an interactive web application which is used by math

teachers and students. They think that this is functional and useful and teachers

often generate worksheets for classes and exercises with “Math for all”. Our goal

is to help both teachers and students by giving them a powerful tool to design

expressions and equations with particular properties and features. In the future we

intend to expand our work in order to add more functions to the generator so as to

create some power inequalities.

Acknowledgements

This work is partially supported by Net Create which provided free access to their

web servers.

References

[1] S. Nakov, P. Dobrikov, Programming = ++ Algorithms, 2nd edition, TopTeam

Co., Sofia 2003.
[2] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms,

2nd Ed., 2001.
[3] J.M.de Koninck, A. Mercier, 1001 Problems in Classical Number Theory,

American Mathematical Society, 2007.

[4] S. Petkova, J. Ninova, S. Matakieva, Mathematics for 7th grade, Prosveta

Publishing, 2013.
[5] https://www.sgi.com/tech/stl/index.html
[6] http://luajit.org/
[7] http://uwsgi-docs.readthedocs.org/en/latest/Lua.html
[8] https://facebook.github.io/react/

Copyright © 2015 Julia Dimitrova, Eleonora Pavlova, Kosyo Nikolov and

Aleksander Bonin. This is an open access article distributed under the Creative

Commons Attribution License (http://creativecommons.org/licenses/by/4.0/).

http://math4all-scholars.rhcloud.com/

