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Abstract

In this paper we show the usability of the Gray code with constant weight words
for computing linear combinations of codewords. This can lead to a big improvement
of the computation time for finding the minimum distance of a code.

We have also considered the usefulness of combinatorial 2-(¢, k, 1) designs when
there are memory limitations to the number of objects (linear codes in particular)
that can be tested for equivalence.
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1 Introduction

Binary linear codes and self-dual codes in particular are extensively studied for the
plethora of connections to communication, cryptography, combinatorial designs, among
many. When computing self-dual codes one should be aware that with the increase of the
code length the number of codes also rises exponentially.

The classification of binary self-dual codes begun in 1972 with [11] wherein all codes
of lengths n < 20 are classified. Later Pless, Conway and Sloane classify all codes for
n < 30 [7]. Next lengths: 32 is due to Bilous and Van Rees [2], 34 by Bilous [1], 36 by
Harada and Munemasa in [9]. Latest development in this area are for length 38 in [5] and
for n = 40 due to Bouyukliev, Dzumalieva-Stoeva and Monev in [4].
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As length of the code gets bigger the number of codewords rises exponentially and one
need efficient algorithms for computing the minimum distance of a linear code, and also
efficient ways to check codes for equivalence when there are memory limitations.

This paper is organized as follows: In Section 2 we outline an introduction to linear
codes, self-dual codes, combinatorial designs and Gray codes. Next, in Section 3, we
discuss how a reduction in computation time for minimum distance of linear code with
constant-weight Gray code can be achieved. In Section 4 we explain a method for reducing
the computation time for code equivalence by the use of combinatorial 2-designs. We
conclude in Section 5 with a few final notes.

2 Definitions and preliminaries

Let F, be the finite field of ¢ elements, for a prime power ¢. A linear [n,k], code C
is a k-dimensional subspace of Fy. The elements of C' are called codewords, and the
(Hamming) weight of a codeword v € C'is the number of the non-zero coordinates of v.
We use wt(v) to denote the weight of a codeword. The minimum weight d of C is the
minimum nonzero weight of any codeword in C' and the code is called an [n, k, d], code.
A matrix whose rows form a basis of C' is called a generator matriz of this code.

Let (u,v) € F, for u,v € F be an inner product in Fy. The dual code of an [n, k],
code C'is C*+ = {u € F! | (u,v) = 0 for all v € C'} and C* is a linear [n,n — k], code.
In the binary case the inner product is the standard one, namely, (u,v) = > ., wv;. If
C C O+, C is termed self-orthogonal, and if C = C+, C' is self-dual. We say that two
binary linear codes C' and C’ are equivalent if there is a permutation of coordinates which
sends C' to C'. In the above definition the code equivalence is an equivalence relation
is a binary relation that is reflexive, symmetric and transitive. Denote by Eq(a,b) some
function that checks for equivalence all pairs of elements in both sets of linear codes a
and b. For more information on codes we encourage the reader to [10].

When working with linear codes it is often needed for certain algorithm to pass
trough all (or part) of binary vectors of given length. One way to make the generation
efficient is to ensure that successive elements are generated such that they differ in a
small, pre-specified way. One of the earliest examples of such a process is the Gray code
generation. Introduced in a pulse code communication system in 1953 [8], Gray codes
now have applications in diverse areas: analogue-to-digital conversion, coding theory,
switching networks, and more. For the past 70 years Gray codes have been extensively
studied and currently there are many different types of Gray code.

A binary Gray code of order n is a list of all 2" vectors of length n such that exactly
one bit changes from one string to the next.

A t-(v, k, \) design D is a set X of v points together with a collection of k-subsets of X
(named blocks) such that every t-subset of X is contained exactly in A blocks. The block
intersection numbers of D are the cardinalities of the intersections of any two distinct
blocks.
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3 Reducing computation time for minimum distance
of linear code with constant-weight Gray code

Assume we have a linear binary [n, k| code C and we need to find its minimum distance
d. Denote by G the generator matrix of the code C with rows rq,...,r;. The obvious and
direct approach is to compute all codewords of C and find their weight. This means that
all 2% linear combinations of ¢ (1 < t < k) of the rows of G must be computed using
Algorithm 1.

Algorithm 1: The direct approach
for (i1 = 1; il <= k-t+1; i1++) {
for (i2 = il+1; i2 <= k-t+2; i2++) {
for (i3 = i2+1; i3 <= k-t+3; i3++) {

for (it = itml+1l; it <= k; it++) {bodyl}... }}

Then for each of the (’z) combination we need to compute t cycles and essentially ¢
operations. Furthermore, in the body of this algorithm we need to find the codeword ¢ € C

which is a linear combination of those rows of the generator matrix G that are chosen for
t

the current combination, i.e. ¢ = Y r; , which will be represented by ¢ “exclusive or”
s=1
(xor) operations c =r;, 71y, B ... DTy,

Our approach is to use Gray code for generating combinations in such a way that each
successive combination is generated by the previous one with only two xor operations.
Two xor operations are the absolute minimum since, if we have to switch from one
combination of ¢ elements to another, one xor will add or remove a position making a
t+1orat— 1 combination. In [12] it was proved that the set of (f)—vectors of weight
t, when chained according to the ordering on the Gray code G, has a Hamming distance
of exactly two between every pair of adjacent code vectors. Also in [12] an algorithm for
generating the constant-weight code vectors on a Gray code was given. Later in [3] a
more efficient recursive algorithm was introduced (Algorithm 2).

What we want to do is to find in Gray code Gy those k-tuples that have the same weight
t, for example when k = 4 for t = 1 we have: 0000—0001—0011—0010—0110—0111
—0101—-0100—1100—1101—1111—1110—1010—1011—1001—1000 and similarly, for
t = 2 we have: 0000—0001—0011—0010—0110—0111—0101—0100—1100—1101—
1111—1110—1010 —1011— 1001—1000. Note that Algorithm 2 starts with the word
10*~* and finishes with 0¥—*1%.

Example 1: If we need to find all triples in Gg we have a total of 20 triples. We start
with 000111 and from Gray code we have the following sequence of positions to change

So the sequence of triples is as follows

{1,2,3},{1,3,4},{2,3,4},{1,2,4},{1,4,5},{2,4,5}, {3,4,5},{1,3,5},{2,3,5},{1,2, 5},
{1,5,6},{2,5,6},{3,5,6},{4,5,6},{1,4,6},{2, 4,6}, {3,4,6}, {1,3,6},{2,3,6},{1,2,6}.
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Algorithm 2: Constant t-weight (0 < ¢ < k) Gray code G; [3]

. gjzl
forj—ltotdo{Tj:j+1

forj:t+1tok+1do{ 9, =0

Tj:j+1
s=k
lel{?—l-l
1=0
(output (gx, gx—1---,91)
1 =T
™ — T;
if s # 0 then g, =7,
if g; = 1 then else ;1 =7, 4
s=s54+1
if s # 1 then g;_1 =7, ;4
while i<k+1 do else else g;_1 =7,
s=s—1
9i =0,
if s=i1—1lors=0
then s=s+1
§=8—0i1
Ti-1=T;
clse if s=0thenr=7—-1
else m =i+1

Usually, when we need to compute the minimum weight of a binary code C, we start
with the initializing 1 @ - - - &7y, then we need the pair of position that should be changed
to obtain the next ¢-tiple and so on. Since for given i(1 < i < 2) it is easy to find the
i-th t-weight vector and begin with the linear combination generated by it, the algorithm
can be parallelized to accommodate its use on multiple CPU cores.

4 Reducing computation time for code equivalence
with combinatorial 2-designs

What can be done when there are more linear codes that the equivalence algorithm can
accommodate in the allowed memory. We consider the case when all codes have the same
weight enumerator and also the same order of their automorphism group. This means
that all other options for reducing the number of codes we are considering are exhausted.

The question then is: How can we efficiently ensure that the algorithm will check
every pair of codes. If we have s € N times more codes that that algorithm can check,
we can split this into 2s halves of sets of codes and then check all (%) = s(2s — 1) pairs
for equivalence. This is not very efficient since this has the quadratic O(s?) efficiency.
The more efficient way is to use 2-(v, k, 1) combinatorial design, which ensures that every
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pair of points (sets of codes in our case) appear exactly in one block and is checked for
equivalence only once. Such designs exists, for example, when A = 1 and v = k?, we have
a projective plane: X is the point set of the plane and the blocks are the lines [13].

For example, consider the case of 7 sets i1, ..., 47 of binary self-dual codes. If we use
the standard approach we should do the tests Eq(;,145), 1 < 4, < 4; < 7 for all (;) =21
pairs of sets. Now, consider using the combinatorial design approach, viz. the Fano plane
(see [6]) illustrated in Fig. 1. It is well known that the Fano plane is a combinatorial
2-(7,3,1)-design [6]. This means that every pair of sets (i;,45), 1 <i; < i, <7 appear in
exactly one of the 7 blocks (the blocks of Fano plane are the 6 lines and the circle), so if
a code is present in different sets it is reduced to only one copy.

Figure 1: Fano plane

Using the ordering of the sets i; < i5 iff 7 < s, we can use the following sequence for
automorphism testing:

Eq(ilai%ii’))’ Eq(illai4’i5)v Eq(illa iﬁa Z‘7)7 Eq(i/% ii;, 2/6>7 EQ(iIQv ig, Z/7)7 Eq(iéa ZZ, Z/7/)7 EQ(iév igv 2/6/)7

where ; means that the interval i; is purged of the codes that are equivalent to codes from
preceding sets, 7 means that the interval ¢} is purged of the codes that are equivalent to
codes from preceding sets, and so on. As a result the reduced inequivalent set of codes
will be the union ¢} U, Uiy U} Uil Uidg Uir'.

5 Conclusions

In the present research we have considered the usability of the Gray code with constant
weight words for computing linear combinations of codewords. We have shown that, in
this way, a big improvement of the computation time for finding the minimum distance
of a code can be achieved.

We have also considered the usefulness of combinatorial 2-(¢, k, 1) designs when there
are memory limitations to the number of objects (linear codes in particular) that can
be tested for equivalence. In our example we have shown that using the Fano plane one
can achieve complete classification with as much as half of the computation time needed
otherwise. It remains to find efficient designs for different number of sets to be checked
for equivalence.

22



Acknowledgement

The authors express their gratitude to prof. Borislav Stoyanov for the invitation to
publish in this journal. This work was supported by European Regional Development
Fund and the Operational Program “Science and Education for Smart Growth” under
contract UNITe No BG0O5M20P001-1.001-0004-C01(2018-2023).

References

1]

2]

=)

[10]

[11]

[12]

[13]

R.T. Bilous (2006) Enumeration of the binary self-dual codes of length 34, Journal
of Combinatorial Mathematics and Combinatorial Computing, 59, 173-211.

R.T. Bilous, G.H.J Van Rees (2002) An enumeration of binary self-dual codes of
length 32, Designs, Codes and Cryptography, 26, 61-86.

J.R. Bitner, G. Ehrlich, E.M. Reingold (1975) Efficient Generation of the Binary
Reflected Gray Code and Its Applications, Commun. ACM, 19(9), 517-521.

I. Bouyukliev, M. Dzhumalieva-Stoeva, V. Monev (2015) Classification of Binary
Self-Dual Codes of Length 40, IEEE Transactions on Information Theory, 61(8),
4253-4258.

S. Bouyuklieva, I. Bouyukliev (2012) An Algorithm for Classification of Binary
Self-Dual Codes, IEEE Transactions on Information Theory, 58(6), 3933-3940.

C.J. Colbourn, J.H. Dinitz, Handbook of Combinatorial Designs, 2nd ed., CRC Press,
2010, ISBN 978-1-5848-8-5061.

J.H Conway, V. Pless, N.J.A. Sloane (1992) The binary self-dual codes of length up
to 32: A revised enumeration, Journal of Combinatorial Theory, Series A, 60(2),
183-195.

F. Gray (1953) Pulse code communication, U.S. Patent 2,632,058, March 17, 1953

M. Harada, A. Munemasa (2010) Classification of self-dual codes of length 36,
Advances in Mathematics of Communications, 2, 229-235.

W.C. Huffman, V.S. Pless (2003) Fundamentals of Error-Correcting Codes,
Cambridge University Press, ISBN 978-0-5211-3-1704.

V. Pless (1972) A classification of self-orthogonal codes over GF(2), Discrete
Mathematics, 3(1-3), 209-246.

D.T. Tang, C.N. Liu (1973) Distance-2 cyclic chaining of constant-weight codes,
IEEFE Transactions on Computers, 2, 176-180.

V. Tonchev (2017) On resolvable Steiner 2-designs and maximal arcs in projective
planes, Designs, Codes and Cryptography, 84(1-2), pp 165-172.

Copyright (© 2018 Nikolay Yankov and Krassimir Enev. This is an open access article distributed

under the Creative Commons Attribution License, which permits unrestricted use, distribution, and

reproduction in any medium, provided the original work is properly cited.

23



	Introduction
	Definitions and preliminaries
	Reducing computation time for minimum distance of linear code with constant-weight Gray code
	Reducing computation time for code equivalence with combinatorial 2-designs
	Conclusions

