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Abstract 

This paper studies data mining techniques used in medical diagnosis, 

particularly for predicting chance of survival of a patient after undergoing thoracic 

surgery. We discuss models built using decision trees, naive Bayes and support 

vector machines and explore suitability of each of the algorithms to perform on such 

data. 
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1 Introduction 
 

A major clinical decision problem in thoracic surgery is selecting patients for 

surgery, taking into account possible risks and benefits for the patient. Among the 

factors considered are long-term, related to life expectancy and mortality 

prognosis in a time horizon one to five years, and short-term, related to 

post-operative complications.  

Traditional methods for decision support include standard statistical 

modelling, based on Kaplan–Meier survival curves, hierarchical statistical models, 

multivariable logistic regression, or Cox proportional hazards regression [1, 2, 3]. 

Other methods used to predict post-optative survival are risk-scoring systems [5], 

web-based applications [4] or statistical software packages. Zeiba et al. [1] also 

proposed boosted support vector machines for clinical diagnosis by using 

imbalanced datasets. 

Taking into account limitations of the predictive methods for post-operative 

life expectancy and the data used for that, we explore the usage and performance 

of several machine learning and data mining techniques by empirical analysis 
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based on a real-life dataset.  

The paper is organised as follows: In Section 2 we review the classification 

techniques and methods applied to predict life expectancy. In Section 3 we discuss 

the experimental results. Section 4 provides conclusions. 

 

2 Methods and Algorithms 
 

Support vector machines (SVM) are common machine learning techniques, used 

for classification or regression. Training data is a set of points of the form 
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where the ci is either 1 or -1, indicating the class to which the point xi belongs. 

During training, SVM constructs a p-1-dimensional hyperplane that separates the 

points into two classes (Figure 1). Any hyperplane can be represented by 

0=−⋅ bxw , where w is a normal vector. Among all possible hyperplanes that 

might classify the data, SVM selects one with maximal distance (margin) to the 

nearest data points (support vectors). Building a linear SVM classier is formally a 

constrained optimization problem (2). 
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In dual form, (2) can be represented by:  
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The resulting decision function  
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. Data points xi for 

which αi > 0  are called support vectors, 

as they uniquely define the 

maximum-margin hyperplane.  

The SVM’s major advantage lies with their 

ability to map variables onto an extremely 

high feature space. 

Bayesian classifiers operate by using the Bayes theorem, saying that: Let X be the 

data record (case) whose class label is unknown. Let H be some hypothesis, such 

as "data record X belongs to a specified class C." For classification, we want to 

determine P(H|X) - the probability that the hypothesis H holds, given the observed 

data record X. P(H|X) is the posterior probability of H conditioned on X. Similarly, 

P(X|H) is posterior probability of X conditioned on H. P(X) is the prior probability 

Figure 1. Hyperplane for a SVM 

trained with two classes. Samples 

on the margin are support vectors. 
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of X. Bayes theorem is useful in that it provides a way of calculating the posterior 

probability, P(H|X), from P(H), P(X), and P(X|H). The Bayes theorem is 

P(H | X) =
P(X | H )P(H )

P(X)
       (4) 

A difficulty arises when we have more than a few variables and classes - we 

would require an enormous number of records to estimate these probabilities. 

Naive Bayes (NB) classification gets around this problem by not requiring that we 

have lots of observations for each possible combination of the variables. In other 

words, NB classifiers assume that the effect of a variable value on a given class is 

independent of the values of other variable. Studies comparing classification 

algorithms have found the NB to be comparable in performance with 

classification trees and with neural network classifiers. They have also exhibited 

high accuracy and speed when applied to large databases. 

A decision tree (DT) is a formalism for expressing mappings between 

attributes and their classes. It is made up of nodes that are linked to two or more 

sub-trees, and leaves or end-nodes that are the ultimate decision. DT are praised 

for their transparency in decision making. A path from the root to a leaf node is 

essentially a decision rule, or classification rule. There are two stages to building a 

decision tree - growing and pruning. In the growing stage, the dataset is 

partitioned recursively until either every record that is associated with each leaf 

node has the same class, or else the record's cardinality is below a specific 

threshold value. Pruning the tree involves using a validation sample to essentially 

cut off the branches lower down in the tree. There are a number of recognised 

algorithms for building DT, among which ID3, and its upgrade, C4.5. Both have a 

statistical grounding. ID3 uses information gain to ensure that the best splitting is 

achieved. The information gain of an attribute can be formally defined as:   
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where Sν  is a subset of S; A has the value v, and S  is the size of S. Whichever 

attribute A gives the greatest gain is the attribute that should be used. The 

information gain can therefore be used as a ranking mechanism, where the 

attribute with the greatest gain not yet considered in the path through the decision 

tree is at each node. Decision trees, while extremely simple to understand, even to 

the untrained eye, remain very popular in data mining and classification for that 

very reason. 

 

3 Results and Discussion 
 

For the purposes of data pre-processing, model building, and analysis, we used 

tools such as R, Keel, and Weka. The primary source for model estimation is the 

confusion matrix (a.k.a. contingency table), illustrated in Figure 2. 

Results from experiments were summarized in four categories: true positives 

(TP), true negatives (TN), false positives (FP), and false negatives (FN). The 
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numbers along the primary diagonal in the 

matrix represent correct predictions, as 

long as those outside the diagonal represent 

the errors. 

Table 1 summarises experiment results 

and reveals that the three algorithms 

perform differently predicting the cases. 

Using these summations, a number of 

measures can be derived, namely precision, 

recall, specificity, and accuracy. Summary 

of the results are presented in Table 2. The 

precision is the percentage of positive 

predictions that are correct, i.e. 

TP/(TP+FP). The precision of the DT classifier is 58.333%, SVM provides 78.3% 

precision, but NB precision is 0% - the it performs very poorly having no true 

positives.  
 

 

 

 

 

 

 

 

 
 

Recall (a.k.a. sensitivity) is TP/(TP+FN), and shows how good the classifier 

is at picking out instances of a particular class. Once again, the SVM has the best 

recall rate of 62%, whilst the NB performs poorly once again. The DT has a 

moderare recall rate of 36.22%. However, as the number of negative samples 

heavily outweighs the number of positive samples to begin with, the next measure, 

specificity, may actually give a better indication of how well each classifier is 

performing. Specificity, which is TN/(TN+FP) is in fact the inverse of the recall. 

In this measure, the NB outperforms both of the other classifiers. Accuracy is 

probably the most intuitive of all of the performance measures, it uses all of the 

values in the confusion matrix: (TP+TN)/(TP+TN+FP+FN). In this case, the NB 

has once again finished bottom of the three, with an accuracy of 62.1%. The DT, 

whilst slightly better than the NB, still has a relatively poor accuracy rate. While 

67% may seem decent to some, if one considers a concerned patient presenting 

with symptoms and about to undergo thoracic surgery, 67% certainty is not 

confident enough. On the other hand, the SVM has good accuracy of 79.4%. 

In conclusion, it is evident that the SVM classifier was the most consistent 

throughout, scoring very well on three of the metrics and acceptable on the fourth. 

DT was the next best, as even though it has poor recall and fairly poor precision, it 

at least had figures for these two metrics, unlike NB.  

Table 1. Confusion matrix 

values - summary. 

Classifier Precision Recall Specificity Accuracy 

DT 58.33% 36.22% 84.67% 66.67% 

NB n.a. n.a. 97.99% 62.10% 

SVM 78.30% 62.00% 89.78% 79.40% 

Classifier TP FN FP TN 

DT 21 37 15 83 

NB 0 57 2 97 

SVM 36 22 10 88 

Table 2. Performance metrics - summary. 

  True Class 

  Positive Negative 

P
o
si

ti
v
e True 

Positive 

Count (TP) 

False 

Positive 

Count (FP) 

P
re

d
ic

te
d
 C

la
ss

 

N
eg

at
iv

e 

False 

Negative 

Count (FN) 

True 

Negative 

Count (TN) 

 
Figure 2. Confusion matrix. 
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4 Conclusion 
 

The goal of this research was to analyse several data mining techniques in search 

of discovering their strengths and weaknesses, dealing with an imbalanced dataset 

of thoracic surgery patient details. We aimed to identify a method that would 

perform with a high degree of accuracy in order to provide basis for future work 

on improving the model performance and tweak it to be transferable to similar 

datasets. Three very different classifiers were explored in detail: naive Bayes, 

decision trees, and support vector machines. Each of them manifested specific 

benefits and drawbacks. The SVM was deemed to be most suited, but its nature 

implies that changing any one of the input criteria can cause a big change. The 

imbalance in the classes does no allow it to obtain good margins in the 

hyper-plane; however, further pre-processing or expansion of the algorithm would 

improve the overall classification performance. While neither naive Bayes nor 

decision trees proved up to the task of classifying this particular dataset with a 

high accuracy, it is also probable that with further algorithmic expansion, their 

accuracy could be improved. 
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