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Abstract

Hard-determinable property and balanced property of tautologies are specified as
important properties in the study of proof complexities formerly. In this paper hard-
determinable and balanced properties are studied together. It is shown that some
sequences of hard determinable balanced tautologies have polynomially bounded Frege
proofs.
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1. Introduction

One of the most fundamental problems in proof complexity theory is to find an efficient proof
system for classical propositional logic (CPL). There is a widespread understanding that
polynomial time computability is the correct mathematical model of feasible computation.
According to the opinion, a truly "effective” system should have a polynomial - size p(n) proof
for every tautology of size n. In [1] Cook and Reckhow named such a system a supersystem. They
showed that NP = coNP_iff there exists a supersystem. It is well known that many systems are
not super. This question about the Frege system, the most natural calculi for propositional logic,
is still open. In many papers, some specific sets of tautologies are introduced, and it is shown that
the question about polynomial bounded sizes for Frege proofs of all tautologies is reduced to an
analogous question for a set of specific tautologies. In particular the hard-determinable tautologies
and balanced tautologies are introduced in [2,3] as such sets of specific tautologies. In this paper,
the hard-determinable and balanced properties are studied together and it is shown that some
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sequences of hard-determinable balanced tautologies have polynomial bounded Frege proofs.
Using the notions and results of this paper and the results of [3-4] the above-mentioned statement
of Cook and Reckhow can be rephrased as follows: NP = coNP iff in some Frege system of CPL
the proofs for all hard-determinable balanced formulas are polynomially bounded.

2. Preliminaries

To prove our main result, we recall some notions and notation. We will use the current concepts
of the unit Boolean cube (E™), a propositional formula, a tautology, a proof system for CPL, and
proof complexity. The particular choice of a language for presenting propositional formulas is
immaterial in this consideration. However, because of some technical reasons we assume that the
language contains propositional variables, denoted by small Latin letters with indices. Logical
connectives -, &, Vv, D, and parentheses ( , ). Note that some parentheses can be omitted in
generally accepted cases.

2.1. Hard-determinable and Balanced Tautologies

Following the usual terminology we call the variables and negated variables literals.

The conjunct K (clause) can be represented simply as a set of literals (no conjunct contains a
variable and its negation simultaneously).

In [3] the following notion is introduced.
We call each of the following trivial identities for a propositional formula y a replacement-rule:

0&y =0, w&0=0, 1&y=vy, w&l =y, y&y =y, y&y=0, y&y =0,
OV v =y, wv 0=y, vy =1, wV1 =1, yVy =y, yV- y =1, ~yVy=1,
02y=1, y20=-y, 1oy =y, y21=1, yoy =1, Y2y = "y, W2 y =y,
-0=1,-1=0,--y=y.

Application of a replacement rule to certain word consists in replacing some its subwords, having
the form of the left-hand side of one of the above identities by the corresponding right-hand side.
Let ¢ be a propositional formula, let P = {p,, p,, ..., P} be the set of the variables of ¢, and let
P' ={p:,,pi,s -, Pi, } (1 £m < n) be some subset of P.

Definition 1: Given ¢ = {0y, 05, ..., 0,,,} € E™, the conjunct K° = {pl?‘ll,pl?‘zz, pg;”} is called ¢-
determinative if assigning o; (1 < j < m) to each p;; and successively using replacement rules
we obtain the value of ¢ (0 or 1) independently of the values of the remaining variables.

Definition 2: We call the minimal possible number of variables in a ¢-determinative conjunct
the determinative size of ¢ and denote it by ds(¢).

By | ¢| we denote the size of the formula ¢, defined as the number of all logical signs
entries in it. It is obvious that the full size of the formula, which is understood to be the number
of all symbols is bounded by some linear function in |¢ |.

Definition 3: For sufficiently large n the tautologies ¢,, are called hard-determinable if there is
some constant ¢ such that log,,, |ds(¢,) — ¢ forn — oo,

Definition 4: A formula ¢ is balanced if every propositional variable occurring in ¢ occurs
exactly twice, once positive and once negative.



A. Chubaryan 63

Example 1. The tautologies ¢,, = p; 2 (p1 2 (p2 2 (P2 2 (... 2 (Pr D 1) --))))
are balanced. It is not difficult to see that ds(¢,,) = 1, hence ¢,, are not hard-determinable.

Example 2. The tautologies QHQ,, = Vosicn&i<jsn|Visk<i@ijk V Vicksn i, ji+1](n = 1), are
balanced. Put Q; ; = Vi<k<iGijk V Vick<nlr,jiv1(n =1, 0<i<n, 1 <j<n), thenQHQ, =
Vo<isn(Qi1&Qi2& ... &Q;& ... &Q;(n—1)&Q;n) and therefore ds(QHQy,). It is not difficult to see,

2
that |QHQ,,| = 21 _ 1 | hence QHQ,, are hard-determinable as well.

2.2. Proof Systems and Proof Complexities

Let us recall some notions from [1].
A Frege system F uses a denumerable set of propositional variables, a finite, complete set of

propositional connectives; F has a finite set of inference rules defined by a figure of the form
A1Ay.. A . . :
% (the rules of inference with zero hypotheses are the schemes of axioms); F must be

o Am :
— 5 every truth-value assignment,

satisfying 4,4, ... A,,, also satisfies B, and F must prove every tautology.

In the theory of proof complexity two main characteristics of the proof are: [ —
complexity to be the size of a proof (= the sum of all formulae sizes) and t — complexity to
be its length (= the total number of lines). The minimal [ — complexity (¢t — complexity) of a
formula ¢ in a proof system @ we denote by I (¢3).

. . AqA,.
sound and complete, i.e. for each rule of inference ——=

The polynomial equivalence (p — [ --equivalence, p —t --equivalence) of two proof
systems by some proof complexity measure means that the transformation of any proof in one
system into a proof in another system can be performed with no more than polynomial increase of
proof complexity measure.

It is well known that any two Frege systems are p — [ -equivalent (p — t -equivalent).
Let M be some set of tautologies.

Definition 5: We call the @-proofs of tautologies from the set M t -polynomially (I — poly-
nomially) bounded if there is a polynomial p() such that t7 < p(le) (15 < p(le])) forall ¢
from M.

2.3. Former Results

It was previously proven that

a) tautologies without hard-determinability condition have t -polynomially (I - polynomially)
bounded proofs in all systems of CPL [4],

b) hard-determinability condition is sufficient (but not necessary) to obtain exponential lower
bounds for both proof complexities of tautologies in “weak” proof systems of CPL (Cut-
free sequent, Resolution, Cutting planes etc.) [4],

c) hard-determinability condition is not sufficient for exponential lower bounds of proof
complexities in Frege systems: for some examples of hard-determinable formulas the t -
polynomially (I - polynomially) bounded Frege-proofs are given in [2].

Some proof systems of CPL (calculus of structures with deep inference rules), where the author
considers only formulas in negation normal form, are studied in [3], where among the rest of the
results it is proved that
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a) the set of above mentioned balanced formulas QH @,, have polynomially bounded proofs
in one of the studied system sKS,
b) the relations between the proof complexities in the system sKS and the Frege systems are
unknown for the present.
3. Main Result
Let F be some Frege system with inference rule modus ponens.

Theoreml: The F -proofs of tautologies QHQ,, (n = 1) are t-polynomially (t-polynomially)
bounded.

To prove, we use the method of [2] for description of some polynomially bounded proof of
QHQ,, direct in F by reducing it to F -proofs of well-known tautologies

PHP, = &o<icnVi<jnPij 2 Vosi<ksnVisj<n(Pij&Prj)(n = 1)

presenting the Pigeonhole Principle . It is proved in [5] that the set of these formulas is t-
polynomially (- polynomially) bounded.
The following two auxiliary statements will be of use:

Lemma 1: Given arbitrary formulas a, g, v, a;, B;, a;; and B;;, the F-proofs of the following
tautologies are t-polynomially (I-polynomially) bounded:

1) avVa,

2) (@2p)>((B>7)>(a>y)

3) B 20)>(a>p)

4) a12 (022 (... D (kD a1 &z &-+-&oaw)...)) (K> 2),

5) aVa DPLV---V PV V B+l V--- V Bk+r Vo V fk+r+l V--- V fk+r+t
k>1,r>1,t>1),

6) 1(Vici<k&1<jem@®ij) D &i<i<kVicjem@ij (k= 1,m = 1)
7) &i<i<k(B1iVB2i) D T (Vicisk (B1:&P2:)) (k = 1).

The proof is obvious.

Lemma 2: Let Q;; and Qi (0 < i<k <n,1 < j < n) be the above denoted subformulas of
QHQy, then F-proofs of the formulas Q;; v Q; be t-polynomially (I-polynomially) bounded.

The proof follows from the fact of existence of some sand m (1 <s <n,1 <m < n) such that
Q;; contains g, and Qy; contains -qs;,,, and also from 1) and 5) of Lemma 1.
From 6) of Lemma 1 we infer for the formula @, = Vo<i<n&1<j<nQij -

Condition 1: The F-proofs of the formulas
TQHQy D &o<i<nVi<j<n Q)

are t-polynomially (I-polynomially) bounded.
Put

PHP, = &o<i<nVi<jenT1Qij 2 VosicksnVi<jsn(Qi;&Qk)) (1)
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The formulas (1) are obtained from the PH P, by the corresponding substitutions. Hence,

Condition 2: The F-proofs of the formulas (1) are t-polynomially (I-polynomially) bounded.
Let

Ap = Vosi<kan15jsn(_'Qij& _'ij)-
Using conditions (1), (2), and item 2) of Lemma 1, we obtain

Condition 3: The F-proofs of the formulas = QHQ,, © A,, are t-polynomially (I-polynomially)
bounded.

From Lemma 2 and item 4) of Lemma 1 we have

Condition 4: The F-proofs of the formulas
B, = &Osi<k5n&1sj5n(QijVij)

are t-polynomially (I-polynomially) bounded, and from item 7) of Lemma 1 it follows that the F-
proofs of the formulas -4,, ,,, are t-polynomially (I-polynomially) bounded as well.

From the conditions (3), (4), and item 3) of Lemma 1 we have a t-polynomial (I-polynomial)
bound for the F-proofs of Q,, .

Corollaryl: There are hard-determinable balanced formulas the F-proofs of which are t-
polynomially (I-polynomially) bounded.

4. Conclusion

Using the polynomial equivalence of different Frege systems [1], the above mentioned result of
Cook and Reckhow can be rephrased as follows: NP = coNP iff in some Frege system of CPL the
proofs for all hard-determinable balanced formulas are polynomially bounded.
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AnHoTtamus

Panee CBOWCTBO TPYyIHO-OMPEETSIEMOCTH M CBOWCTBO OaJaHCHPOBAHHOCTH TaBTOJOTHUMN
OBLITM BBIJUICHBI KaK Ba)KHBIE CBOWMCTBA B MCCIEAOBAHUSAX CIOXKHOCTEH BBIBOJIOB. B HacTosmeit
CTaTbe CBOWCTBAa TPYIHO-ONPEIEISIEMOCTH U OallaHCUPOBAHHOCTH M3Y4alOTCS COBMECTHO.
JloxazaHa NOJIMHOMHUANIbHAS OTPAaHMYEHHOCTh BBIBOJOB B cucTemax ®dpere st HEKOTOPOIO
KJ1acca TpyJIHO-ONpeaeNIIeMbIX O0alaHCHPOBAHHBIX (DOPMYII.
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