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Abstract

We consider the problem of constructing complete caps in affine geometry AG(n, 3)
of dimension n over the field F; of order three. We will take the elements of F; to be 0, 1
and 2. A cap is a set of points, no three of which are collinear. Using the concept of
P, —set, we give two new methods for constructing complete caps in affine
geometry AG(n,3). These methods lead to some new upper and lower bounds on the
possible minimal and maximal cardinality of complete caps in affine geometry AG (n, 3).
Keywords: Affine geometry, Projective geometry, Cap, Complete cap.

1. Introduction

A cap in an affine geometry AG (n, q) or in a projective geometry PG (n, q) over a finite field F,
is a set of points no three of which are collinear. A cap is called complete when it cannot be
extended to a large cap. The central problem in the theory of caps is to find the maximal and
minimal sizes of caps in the affine geometry AG (n, q) or in the projective geometry PG(n, q). In
this paper, s,, and s,, denote the size of the largest caps inAG(n,q) and PG(n,q),
respectively. Presently, only the following exact values are known: s, , = s;, = 2%, 55, =
Spq=q+1ifqisodd, s,q=5,,=q+2if qiseven and sz, =q*+ 1,534 = q* [1, 2].
Aside from these general results, the precise values are known only in the following cases: s, 3 =
Sg3 = 20[3], s53 = 56 [4], s53 = 45 [5], 544 = 41[6], s63 = 112 [7]. In the other cases, only
lower and upper bounds on the sizes of caps in AG(n,q) and PG(n,q) are known. Finding the
exact value for s, , and sy, 4 in the general case seems to be a very hard problem [8-10]. The
only complete cap in AG(n, 2) is the whole AG(n, 2). The trivial lower bound for the size of the

n-1
smallest complete cap in AG(n, q) is V2q z . For even q there exist complete caps in geometry

AG(n,q) with less than gz points. But for odd g complete caps in AG(n,q) with less than gz

56
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points are known to exist [11, 12] only forn = 0(mod 4), n = 2(mod 4). For more
information about complete caps, for small values n and q, we refer the reader to [10-13]. Note
that the problem of determining the minimum size of a complete cap in a given geometry is of
particular interest in Coding theory. Using the concept of a B,-set, which was introduced by the author
in 2015 [14], we give two new methods for constructing complete caps in the affine geometry
AG (n, 3). These methods yield some new upper and lower bounds on the possible minimal and maximal
sizes of complete caps in the affine geometry AG (n, 3).

2. Main Results

We will write the points of AG(n, q) in the following way: x = (x4, -+, x,,), and let us denote by
0 = (0,--, 0) the origin point of the geometry AG(n, 3). It is easy to check that if S is a cap in
AG(n,3), then ¢+ B +y # 0 (mod 3) for every triple of distinct points a, B,y € S. Let's
denote by B, = {a = (ay, -, a,)|a; = 1,2} and by B, the set of points of AG(n,3) satisfying
the following two conditions:

i) for any two distinct points a, B € B,, there exists i (1 < i < n) suchthat a; = ; = 0,

ii) forany triple of distinct points a, 8, ¥ € P,, ¢+ 8 + v # 0(mod 3).

We say B, to be complete when it cannot be extended to a larger one. We will define the
concatenation of the points of the sets in the following way. Let A c AG(n,3) and B c
AG(m,3). We form a new set AB c AG(n + m,3) consisting of all points a = (ay,-, ap,
Upst, ) Unsm), Where a® = (ay, -+, a,) € Aand a® = (@41, , Apsm) € B. In a similar
way, one can define the concatenation of the points for any number of sets.

Claim 1. Note that if x,y,z € F5, then x + y + z = 0 (inod 3) if and only if x = y = z or they
are pairwise distinct numbers.
The following two theorems, which we need, are proven in [16, 17].

Theorem 1: The following recurrence relation B, = B, B,,Bn, U B, By, By, U By Py, By, With
initial sets P, = {(0)}, P, = {(0,1),(0,2)}and n = ¥;?_, n;, yields a complete P, set.

Having the sets B, P, Pu,, Po, Prgs Po, @nd By, By, By, By,, By, By, let us form the
following ten sets, by concatenation of the points of the sets.

Ay = By Py, Bn Bn, B Fog s Ay = By Py, B, P, Bng B,

Az = By, Bn, Py By P By, Ay = By By, P, P, Bn By

As = Bp, By Py Bn PP, Ag = By, Py,By, Py, Py B,

A7 = By, By, Bn,Bn, Py Py, Ag = Py, By, Bn, P, Fos By

Ag = P, By By Py, B Py, Ayo = Py, Py, Py, By, Bn. By,
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Theorem 2: The following recurrence relation B, = U}2, 4;, with initial sets P, = {(0)}, P, =
{(0, 1),(0,2)}and n = X2_, n; yields a complete P, set.

Claim 2. Note that from the construction of B, in both theorems it follows that for every i (1 <
i <n), if the point p = (py,..,0s ..., Pn) EP, and p; # 0, then, also, the point p =
(P1, -, 07 % -, D) € By, Where p;t is the additive inverse of p; in the field F;.

The following two main theorems without proofs were first presented at CSIT 2015 in a weak
form [14], that they yield caps. But at CSIT 2017 they were presented with a strong conclusion
that they yield complete caps [15]. In this paper, we give their complete proofs.

Theorem 3: If B, and B,, are constructed either by Theorem 1 or by Theorem 2, then for the
given natural numbers n and m, the set S = P,B,, U B, B,, is a complete cap in the geometry
AG(n+m,3).

Proof. First of all we will prove that the set S = B,B,, U B, P,, IS a cap. Suppose, to the contrary,
that S is not a cap. Then there is a triple of distinct points a, 8,y € S, such that a + g+ y =
0(mod 3). Let's represent the points a, B,y as a@ = aWa®, g = BDR2 and y = yDy2),
respectively, where a® = (ay, -, a,), @® = (@ni1, ", Anym), B = By, -, Br), BP =
Brr1r s Bnrm)s ¥V =1, v) and ¥® = (Ypiq, -, ¥nem). Thus, we obtain a® +
BY +yD = 0(mod 3) and a® + B® + y@ = 0(mod 3). If all three points a, B,y € P,B,,,
then it follows that a®, BV, yM € P, and a®, BP®,y@ € B,,. The definition of the set P,
implies that a® = B = y) and Claim 1 implies that a® = B? = y@_ Therefore, a =
B = v, which contradicts that &, B and y are pairwise distinct points. In the same manner, one
can prove the case, when all three points &, 8,y € B, P, is impossible. Now let us assume that
two of these points belong to one set (say &, € B, B,,) and the third point y belongs to the other
set (say y € B,P,). By definition of B, there is i, 1 <i <mn, so that a; = 5; = 0. But, by
definition of B,,, y; = 1 or 2. Hence, a; + B; + v; # 0(mod 3), which contradicts that a + 8 +
¥ = 0(mod 3). In a similar way, one can prove the case when two points belong to B, B,, and
the third one belongs to B, B,, is impossible. Therefore, S is a cap.

We will prove the completeness of S again by contradiction. Suppose that there is a point a =
(al, ey Oy Qg1 | ...,an+m), such that e ¢ S and S U {a} is a cap. Let’s represent the point a as
a=aVa® where a® = (a;,, a,), a® = (a1, Anim). The following two cases are
possible.

Case 1. At least one of the sets P, U {a™} or P,, U {a®} satisfies the condition i). Assume that
the set B, U {a(l)} satisfies the condition i). If «® € P,, then we can choose two points x, y €
By, in the following way. If a; = 0, then we will assume that x; = 1 and y; = 2, otherwise x; =
y;=a;, n+1<i<n+m. Therefore, a® ¢ B,,, since « ¢ S and a® € P,. Hence, a'®, x
and y are pairwise distinct points. It is not difficult to see that a®@x, aVy € P,B,,. Claim 1
implies that a®a® + a®x + a®y = 0(mod 3), which contradicts the assumption that S U
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{a} is a cap. If a™ ¢ P,, then the completeness of the P, implies that there are two distinct
points B, y € B,, such that a + B + ¥ = 0(mod 3). Now, as described above, we will choose
two points x,y € B,, in the following way. If «; = 0, then we will take x; = 1and y; = 2,
otherwise x; = y; = a;, n+ 1 <i <n+m. The choice of the points x,y implies that x,y €
B, and a® +x+y=0(mod3). Therefore, a®a® + Bx +yy = 0(mod3), which
contradicts the assumption that S U {a} is a cap. Similarly, one can prove the case, when the set
P, U {a'®} satisfies the condition i), is impossible.

Case 2. Both sets P, U {a™¥} and P,, U {a'®} do not satisfy the condition i). Therefore, the
condition i) for the set P, U {a(V} follows that there is a point g € P,, such that if a; = 0, then
Bi # 0 and if §; = 0, then a; # 0,1 < i < n. We will choose the point x € B, in the following
way. If a; =0, then x; = g7 and if B; = 0, then x; = a; *, otherwise, using Claim 2, we can
assume that x; = B; = a;, 1 < i < n. By the same reason, the condition i) for the set P,, U {a®}
implies that there is a point y € B, so that if ¢; = 0, then y; # 0 and if y; = 0, then «; #
0,n+ 1 <i<n+m. Inthe same manner, we will choose the point y € B,,. If a; = 0, then
y; =y tandif y; = 0, then y; = a; *, otherwise, by Claim 2, we can assume that y; = y; = a;,
n+1<i<n+m).ltisobviousthat By € P,B,, and xy € B, B,,. The choice of the points x, y
implies that a® + B + x = 0(mod 3) and a® + y +y = 0(mod 3). Therefore, aPa® +
By + xy = 0(mod 3), which again contradicts the assumption that S U {a} is a cap.

[]

Corollary 1: For the given natural numbers nand m, ;413 = | ||Bp| + | By |1Pyl.
Corollary 2: For every natural number n, s,13 = 2|P,| + |By|.

Theorem 4: If B, and B, are constructed by Theorem 1 or by Theorem 2, then for the given
natural numbers nand m, S = B,P,{0} U P,B,,{1} U B, P,{1} U B,..n{2} is a complete cap in
the geometry AG(n + m + 1, 3).

Proof. First we will prove that the set S = B,B,{0} U P,B,,{1} + B,,Pn{1} + B, {2} is a cap
by  contradiction.  Assume that there are three distinct points «a =
(“1: v Ay A1, o) Ay an+m+1)! B= (:811 s B Brs1, s Brtmo :Bn+m+1)! Y=
(V1) 0 Yo Yns1, <o Yasmo Ynems1) €S, such that a + B +y = 0(mod 3). Therefore, a™® +
BY +y® =0(mod 3), a® + B@ +y@ = 0(mod 3) and anims1 + Prsmer + Vnamer =
0(mod 3), where a® = (ay,,a,), a® = (aniy,, Anym), B = (B, Bn), BP =
Brstr = Brem)y ¥ =1, 7)) and ¥® = (i1, Vam). Claim 1 implies  that

Anim+1 = Bnim+1 = Yname1 OF @nymets Brims1 AN Ynymyq are pairwise distinct numbers.
Hence, the following four cases are possible.

Case 1. Apime1 = Prime1r = Ynsme1= 0. Therefore, a, B,y € P,P,{0}, aV), B,y € P, and
a®,B® y2 e p,.. From the definition of P, and P,, and the two relations a® + g +
y® = 0(mod 3), a® + B® +y@® = 0(mod 3) it follows that a® = gD =y@D and
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a® = 2 =y@ Hence, @« =B =7y, which contradicts the assumption that a, B,y are
pairwise distinct points.

Case 2. apims1 = Brnems1 = Ynems1=1. Assume that a,B,y € P,B,{1}. Then
a®, Wy e p and a®,BP®,y? € B,,. The definition of P, implies that a® = g =
¥, since a® + D + y( = 0(mod 3). Because a® + 3? + y@ = 0(mod 3), Claim 1
implies that a® = g® =y®@_  Therefore,a = B = y, which, again contradicts the
assumption that a, 8,y are pairwise distinct points. Similarly, one can prove that the case is
impossible, when a, B,y € B, P,{1}. Therefore, two points, say a,f € P,B,,{1} and y €
B,P,{1}. The definition of B, implies that there is i, such that a; = §; = 0,1 <i <n, . But by
the definition of B,, y; = 1 or 2. Hence, a; + B; + y; # 0(mod 3), which contradicts that a +
B + vy = 0(mod 3). In a similar manner, one can prove that the case is impossible, when two
points from &, B and y belong to B, B,, and the third one belongs to B,B,,. Therefore, S is a cap.

Case 3. Apims1 = Brimsi = VYnems1 = 2. Therefore a, B,y € B, m{2}. Hence, a®a®,
BUBD yVy@D e B . and aPa® + gMWEA2) +yMy2) = 0(mod 3). Claim 1 implies
that aWa® = LB =yMy@) This yields @ = B = y, which, again contradicts the
assumption that «, B, y are pairwise distinct points.

Case apim+1r Brnrm+1 and ynim41 are pairwise distinct numbers. Without loss of generality,
let us assume that @, 1me1 =0, Brime1 =1 and y,41me1 = 2. Therefore, a € P, P,{0}, B €
P,B,{1} or B € B,P,{1} and y € B,.,{2}. If B € P,B,,{1}, then a™, BV € P,. Hence, the
definition of B, implies that there is i, such that a; = §; = 0, 1 < i < n. But, by the definition of
B,,vi =1 or 2. Therefore, a; + f; +¥; # 0(mod 3), which contradicts that a® + g1 +
¥ = 0(mod 3). The last relation, in turn, implies that & + g + ¥ # 0(mod 3). In a similar
manner, one can prove the case when g € B, P, {1} is impossible. Hence, S is a cap.

Now we will prove the completeness of S also by contradiction. Let us assume that there is a
point & = (aq, ..., An, Apsty o r Angms Anams1), SUCh that ¢ € S and S U {a} is a cap. The
following three cases are possible.

Case a,1ms1 = 2. Since a & S, we have (aq, ..., X, Aptqy s Apym) € Bpim. We can choose
two points x, y € B, »{2}, such that, if a; = 0 then x; = 2 and y; = 1, otherwise x; =y; =
a;, 1 <i<n+m. Itis obvious that x{2}, y{2} € B,.n{2} and «a, x{2}, y{2} are pairwise
distinct points. Claim 1 implies that x{2} + y{2} + a = 0(mmod 3), which contradicts the
assumption that S U {a} is a cap.

Case @nyim+1 = 1. Let’s represent the point a as @ = aa®{1}, where a®® = (ay, -, a,)
and a® = (a1, , Ap4m). Assume that at least one of the sets B, U {aV} or P, U {a®}
satisfies the condition i), say P, U {a™}. First, suppose that a™ & P,. Then the completeness
of the set P, follows that there are two points B, y € P,, such that 8 + ¥ + a¥ = 0(mod 3).
We will choose two points x, y € B, in the following way. If a; = 0, then x; = 1and y; = 2,
otherwise x; = y; = a;, n+ 1 < i < n+ m. From the choice of the points x,y it follows that
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x,yEB, and a® +x+y=0(mod3). Therefore,aa®{1}+ Bx{1}+yy{1}=
0(mod 3), which contradicts the assumption that S U {a} is a cap. Otherwise, if ¥ € P,, then
a® ¢ B, because a & S. Then it is easy to see that aWa®{1} + aWx{1} + aVy{1} =
0(mod 3), which, again contradicts the assumption that S U {a} is a cap. Similarly, one can
prove the case, when the set B,, U {a(z)} satisfies the condition i) is impossible. Therefore, both
sets P, U {a™M} and P,, U {a®} do not satisfy the condition i). Hence, there is a point 8 € P,,
(respectively, y € B,,), such that if a; =0, then §; # 0 and if 8; =0, then ¢; # 0,1 <i<n
(respectively, if a; = 0,theny; # 0and ify; = 0,thena; # 0,n+ 1 <i <n+m). First, let’s
choose the point x € B,, in the following way. If a; =0, then x; = ;7 *and if g; = 0, then
x; = a;*, otherwise, by Claim 2, we can assume that x; = §; = a;, 1 <i < n. In the same
manner, we will choose the point y € B,,,. If a; =0, then y;, =y;'and if y; =0, then y; =
a; ', otherwise, using Claim 2, we can assume that y; =y; = a;, n+1<i<n+m). The
choice of the points x and y implies that a®a®{1} + By{1} + xy{1} = 0(mod 3), which
again contradicts the assumption that S U {a} is a cap.

Case a,.m+1 = 0. Assume that at least one of the sets P, U {a®} or P, U {a®} does not
satisfy the condition i), say the set P, U {a™}. Therefore, the condition i) implies that there is a
point B € B, such that, if a; = 0, then §; # 0 and if 8; =0, then ; # 0,1 < i < n. We will
choose the points z™M € B, and z®, y € B,, in the following way. First let’s choose z(V. If
a; = 0,then z; = 7 1and if B; = 0, then z; = a; ', otherwise, using Claim 2, we will assume
that z; = B; = a;, 1 < i < n. Now we will choose the points z®), y € B,, in the following way.
If a; = 0, then we will assume that z; = 1 and y; = 2, otherwise z; = y; = a;,n+1<i<n+
m. It is easy to see that By{1} € P,B,,{1},z(Mz®{2} € B, ,,,{2}. The choice of the points
zM, z® and y imply that a®a®{0} + By{1} + zWzP {2} = 0(mod 3), which contradicts
the assumption that S U {a} is a cap. Similarly, one can prove the case is impossible, when the
set P, U{a®} does not satisfy the condition i). Therefore, both sets P, U {aV} and PB,, U
{a®} are satisfying the condition i). Since a & S, therefore either a® ¢ P, or a® ¢ PB,,. If
aV ¢ P, and a® € P, then the completeness of P, follows that there are two points x,y €
P,, so that x + y + ™ = 0(mod 3). Since x,y € P, and a® € P,,, we have xa®, ya® €
PP, and xa®{0} + ya®{0} + aPa®{0} = 0(mod 3), which contradicts the assumption
that SU {a} is a cap. The case, when a® ¢ P, and a®™ € P, is analogous to the above
described one and therefore is impossible. Hence, ™ ¢ P, and a® ¢ P,,. Therefore, from the
completeness of B, and P,, it follows that there are points 8,y € B, and 6,0 € P, so that 8 +
y+a® =0(mod3) and 6§+ 6+ a® = 0(mod 3). The last two relations imply that
aMa®{0} + B&{0} + y6{0} = 0(mod 3), which contradicts the assumption that S U {a} is a
cap.

]
Corollary 3: For the given natural numbers n and m, s, 4m+13 = |B|1Bn| +
| Bl 1By |+ | B || B |+ | By |-

Corollary 4: s5 3 > 42.
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By definition P,={(0)}. From Theorem 1 it follows that P; = P;,;,, = P,P;B; U

P,B,P; U B,P,P, ={(0,0,1),(0,0,2),(0,1,0),(0,2,0),(1,0,0),(2,0,0)}. It is easy to see that
|B,| = 2™. Therefore,ss 3 = |Ps||Py| + |P3||B1| + |B3||P1| + |Bs] =6 X1+ 6 Xx2+8 X1+
16 = 42.

[

3. Conclusion

Notice that the cardinality of B, obtained by Theorem 1 (Theorem 2) [16, 17], essentially
depends on the representation of n as the sum of three (six) natural numbers. Presenting the
natural numbers as the sum of six natural numbers and applying Theorem 2, for some n > 6 in
some cases, one can obtain larger complete P, sets than those, which are constructed by Theorem
1. It is easy to check that |P;| =1, |P,| = 2, and |Py1141| = 6. |Pyy141]l = 12, |P34141] = 32,
IPir1+1+141+1] = 80, |P7| = [P3yzqq] = 168, |Pg| = |Pryyp1414143] = 400, |Po| = [P3yz43] =
864... It is not difficult to see that the maximal size |B,| > 2", if n > 5. Therefore, to construct
large complete caps it is convenient to use Corollary 2, but for small complete caps one can use
Theorem 4.
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ITonusie manku B ahp¢uuHOM reomerpuu AG(n, 3)
Kapen Y. Kapanersan

HucruTyT npo6iem undopmaruku u aBToMarusanuu HAH PA
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AHHOTANUA

PaccmarpuBaercs 3amaya IOCTpOEHUs IONHBIX IIANMOK B adpPuHHON reomerpuu
AG (n, 3) pasmeproctu n Hag noneMm F; = {0, 1, 2}. Illanka — 510 HAGOP TOYEK, HUKAKUE TPU
13 KOTOPBIX He KoJutnHeapHsl. C MOMOLIBIO IOHATHS MHOXeCTBa P, pa3paboTaHb!I [Be HOBBIE
KOHCTPYKIIUH IIOCTPOEHUS [TOIHBIX IIATIOK.

KiroueBble ciioBa: a(l)(l)I/IHHa}I reoMeTpusd, IIPpOEKTHUBHAA I'€eOMETpHdA, TOYKH, NIIAIIKH,
IIOJTHBIE IIAITKH.



