

J. Mechatron. Electr. Power Veh. Technol. 06 (2015) 75-82

Journal of Mechatronics, Electrical Power,
and Vehicular Technology

e-ISSN: 2088-6985
p-ISSN: 2087-3379

www.mevjournal.com

© 2015 RCEPM - LIPI All rights reserved. Open access under CC BY-NC-SA license. Accreditation Number: 633/AU/P2MI-LIPI/03/2015.
doi: 10.14203/j.mev.2015.v6.75-82

ALGORITHM OF 32-BIT DATA TRANSMISSION AMONG

MICROCONTROLLERS THROUGH AN 8-BIT PORT

Midriem Mirdanies *, Hendri Maja Saputra, Estiko Rijanto
Research Centre for Electrical Power and Mechatronics, Indonesian Institute of Sciences (LIPI)

Komp LIPI Bandung, Jl. Sangkuriang, Gd. 20. Lt. 2, Bandung 40135, Indonesia

Received 24 July 2015; received in revised form 13 October 2015; accepted 21 October 2015
Published online 30 December 2015

Abstract
This paper proposes an algorithm for 32-bit data transmission among microcontrollers through one 8-bit port.

This method was motivated by a need to overcome limitations of microcontroller I/O as well as to fulfill the
requirement of data transmission which is more than 10 bits. In this paper, the use of an 8-bit port has been
optimized for 32-bit data transmission using unsigned long integer, long integer, and float types. Thirty-two bit data
is extracted into binary number, then sent through a series of 8-bit ports by transmitter microcontroller. At receiver
microcontroller, the binary data received through 8-bit port is reconverted into 32 bits with the same data type. The
algorithm has been implemented and tested using C language in ATMega32A microcontroller. Experiments have
been done using two microcontrollers as well as four microcontrollers in the parallel, tree, and series connections.
Based on the experiments, it is known that the data transmitted can be accurately received without data loss.
Maximum transmission times among two microcontrollers for unsigned long integer, long integer, and float are 630
µs, 1,880 µs, and 7,830 µs, respectively. Maximum transmission times using four microcontrollers in parallel
connection are the same as those using two microcontrollers, while in series connection are 1,930 µs for unsigned
long integer, 5,640 µs for long integer, and 23,540 µs for float. The maximum transmission times of tree connection
is close to those of the parallel connection. These results prove that the algorithm works well.

Keywords: transmission algorithm; 32-bit data; data transmission; 8-bit port; microcontroller; C language.

I. INTRODUCTION
In a complex system, the use of multiple

microcontrollers is typically required to handle
each sub section. Therefore, a communication
among microcontrollers is needed [1, 2]. The
number of the microcontrollers that can be
connected and the number of data that can be sent
are very determines in the communication media
selection. The communications media on the
microcontroller is limited and data size that can
be sent is usually 8-10 bits.

Research that applied communication between
microcontrollers via UART using Zigbee
wireless have been carried out by Reddy [3] and
Thakur [4]. A similar thing has been done by
Saputra [1] using a YS-C20K type of wireless
module. In Leeman research [5], communication
between microcontrollers via UART was
performed using RS-232 cable, while Solanke [6]

using a wireless RF at frequency 433.92 MHz.
Data communication via UART / YS-C20K will
be troublesome if the communication is done
among many microcontrollers simultaneously.
Research that applied communication via the
CAN bus have been done by Prickett [7] and
Kutlu [8], however, communication using this
medium requires an additional interface.
Moreover, it is difficult to be implemented on an
8-bit microcontroller with the minimum system
which does not provide an embedded CAN
controller i.e. ATmega8/ ATmega8535.

Communication among the microcontrollers
also can be made using an 8-bit port. Research
that applied communication among the
microcontrollers through an 8 port have been
done by Saputra [1] and Mirdanies [2], however
the number of data are limited to 8 bits only (0-
255 decimal). Communication among the
microcontrollers through multiple 8-bit ports can
also be done by adding port expander [9], but this * Corresponding Author.Tel: +62-22-2503055

E-mail: midriem.mirdanies@lipi.go.id

http://dx.doi.org/10.14203/j.mev.2015.v6.75-82

 M. Mirdanies et al. / J. Mechatron. Electr. Power Veh. Technol. 06 (2015) 75-82 76

method is not optimal due to the addition of
several devices and coding is not practical.

This paper proposes a new algorithm for 32-
bit data transmission among microcontrollers
through one port which is consisted of 8 bits. The
data types used are long integer, unsigned long
integer, or float types [10]. This method is used
to overcome the limitations of the
microcontroller I/O for connectivity among
microcontrollers without the use of additional
interfaces, and requirement of data transmission
more than 10 bits. Communication can be done
among many microcontrollers simultaneously
using parallel, tree, or series connection.
Experiments have been done using four
ATMega32A microcontroller boards [11].

II. METHOD/MATERIAL
An example connection between two

microcontroller can be seen in Figure 1. Several
pins used on the port partialy functioned as
identifier while others as data. Pins configuration
for unsigned long integer, long integer, and float
types can be seen in Figure 2, Figure 3, and
Figure 4. Pins used as data in both unsigned long
integer and long integer data types are pin 0-4,
while in float data type are pin 0-3. In the second
block of data transmission, pin 0 in long integer
and float serves as an identifier that the data sent
is positive (0) or negative (1). Pin 4 on float
serves as the identifier that the data sent is an
integer (0) or fractions (1). Pin 5 in any data type

serves as the identifier from the transmitter
indicating that the data is ready to be read by the
receiver. Pin 6 as an identifier from the
transmitter indicating that the data sent is the last
data, and pin 7 serves as the identifier from the
receiver which indicates that the data has been
read/received.

Connection among microcontrollers described
in this paper is not limited for two
microcontroller, but can be used for
communication with many microcontrollers at
the same time in parallel, tree, or series
connections. An example of each connection type
used can be seen in Figures 5, 6, and 7.

Specifically in tree connection, an additional
confirmation step is required for sending data to a
specific microcontroller. This step to ensure that
the data transmitted to the microcontroller target
is correct. Therefore, the number of
microcontrollers that can be installed is limited to
2 ൌ 64 units. Pin configuration used in this step
can be seen in Figure 8. Pins 0-5 are used to store
data, while the pin 6 is the identifier from the
transmitter that the data is ready to be read and
pin 7 is the identifier from the receiver that the
data has been read.

A. Algorithm of 32-bit Data Transmission

Data transmission flowchart among
microcontrollers for unsigned long int, long int,
and float types can be seen in Figure 9, Figure 10,
and Figure 11.

Figure 1. Connection between two microcontrollers

Figure 2. Pins asignment for unsigned long integer type

·0
·1
·2
·3
·4
·5
·6
·7

data

identifier
data per block
last data
data has been received

Figure 3. Pins assignment for long integer type

Figure 4. Pins assignment for float type

·0
·1
·2
·3
·4
·5
·6
·7

data

identifier

negative/positive
(on the second block
 transmission)

data per block
last data
data has been received

·0
·1
·2
·3
·4
·5
·6
·7

data

identifier
data per block
last data
data has been received

negative/positive
(on the second block
 transmission)

integer or fraction

 M. Mirdanies et al. / J. Mechatron. Electr. Power Veh. Technol. 06 (2015) 75-82

77

At the transmitter microcontroller, the 32-bit
data is extracted into binary number using
equation 1 and equation 2, then it is sent through
a series of 8 bits.

ݎ݁ݐ݊ݑܥܾ݊݅ ൌ (1) 2	%	݁ݑ݈ܽݒ_ݐݑ݊݅

݁ݑ݈ܽݒ_ݐݑ݊݅ ൌ ݁ݑ݈ܽݒ_ݐݑ݊݅ 2⁄ (2)

where ܾ݅݊ݎ݁ݐ݊ݑܥ is a binary value that will be
stored on data pins. The equations is repeated
until ݅݊݁ݑ݈ܽݒ_ݐݑ ൌ 	0.

At the receiver microcontroller, the binary
data received through 8-bit port is reconverted
into 32 bits with the same data type. This
algorithm has an acknowledgment or an identifier
that ensures the data has been received so errors
can be avoided. The waiting process for this
acknowledgement is 100 ms, if no
acknowledgement arrived, then process will be
stop and system will return to 0 value (that means
an error/mistake occured).

There are differences in the phases of data
transfer in each type as shown in Figure 9, Figure
10 and Figure 11. Unsigned long int consists of
two phases: transmission of the identifier of data
type and data/value. Long int consists of three
phases: transmission of the identifier of data type,
identifier of positive or negative sign, and
data/value. Whereas float consists of five phases:
transmission of the identifier of data type,
identifier of positive or negative sign, decimal
value, number of zero value behind the comma,
and fractional value.

Figure 5. Series connection

Figure 6. Parallel connection

Figure 7. Tree connection

Figure 8. Confirmation step for sending data to a specific
microcontroller in tree connection type

·0
·1
·2
·3
·4
·5
·6
·7

data

identifier
data is ready to read
data has been received

Figure 9. Flowchart of unsigned long int data transmission

Initialization

Set identifier: data to be
transmitted is unsigned
long int (pin 1 = 1) and
set identifier: data is
ready to read (pin 5 = 0)

Transmitter Receiver

Initialization

Read identifier, call
procedure to read
unsigned long int, and set
identifier: data has been
read (pin 7 = 0)

Set identifier: data isn't
ready to read (pin 5 = 1)

Set identifier: data hasn't
been read (pin 7 = 1)

Set pins 0-4 = 0, set
identifier: data is ready to
read, and set identifier:
now is last block (pin 6 =
0)

Read data and set
identifier: data has been
read

Set identifier: data isn't
ready to read and set
identifier: now isn't last
block (pin 6 = 1)

Set identifier: data hasn't
been read

Convert input_value to
binary:
 binCounter = input_value % 2
 input_value = input_value / 2
enter each bit of
binCounter to pins 0-4
and set identifier: data is
ready to read

Read data (pin 0-4), and
set identifier: data has
been read

Set identifier: data isn't
ready to read

Set identifier: data hasn't
been read

.

.

.

Enter bit in the last block
of binCounter to pins 0-4,
set identifier: data is
ready to read, and set
identifier: now is last
block

Read data, merge, and
change to decimal, then
set identifier: data has
been read

Set identifier: data isn't
ready to read and set
identifier: now isn't last
block

Set identifier: data hasn't
been read

If input_value = 0 then

Else then

.

.

.

.

.

.

 M. Mirdanies et al. / J. Mechatron. Electr. Power Veh. Technol. 06 (2015) 75-82 78

There are an additional steps in tree
connection before sending data, i.e. unsigned
long integer, long integer, or float types, that can
be seen in Figure 12. Input_value mentioned in
Figure 12 is a number of specific microcontroller
(0-63). Afterwards, the next process is the same
as in Figure 9, Figure 10, or Figure 11.

B. Data Transmitter/Receiver Procedures

In order to implement the algorithm, a
program has been created using C language with
CodeVision Advanced AVR v3.10 IDE. Four
functions have been created for data transmission,
those are

int dataSend_unsigned_long_int(unsigned
 long int input_value)
int dataSend_long_int(long int
 input_value)
int dataSend_float(float input_value)
int dataSend_MikroKe(int micro)

Figure 10. Flowchart of long int data transmission

Set identifier: data to be
transmitted is long int
(pin 0 = 1) and identifier:
data is ready to read (pin
5 = 0)

Read identifier, call
procedure to read long
int, and set identifier:
data has been read (pin
7 = 0)

Set identifier: data isn't
ready to read (pin 5 = 1)

Set identifier: data hasn't
been read (pin 7 = 1)

.

.

.

Enter each value of
binCounter to pins 0-4,
and set identifier: data is
ready to read

Read data (pin 0-4), and
set identifier: data has
been read

Initialization

Transmitter Receiver

Initialization

Set pins 0-4 = 0, set
identifier: data is ready to
read, and set identifier:
now is last block (pin 6 =
0)

Read data and send
identifier: data has been
read

Set identifier: data hasn't
been read

Set identifier: data isn't
ready to read and set
identifier: now isn't last
block (pin 6 = 1)

Convert input_value to
binary:
 binCounter = input_value % 2
 input_value = input_value / 2
enter each bit of
binCounter to pins 1-4,
set pin 0 as identifier of
positive value (0) or
negative value (1), and
set identifier: data is
ready to read

Read identifier (pin 0)
and save to var.
multiplier, read data (pin
1-4), and set identifier:
data has been read

Set identifier: data isn't
ready to read

Set identifier: data hasn't
been read

Set identifier: data isn't
ready to read

Set identifier: data hasn't
been read

Enter bit in the last block
of binCounter to pins 0-4,
set identifier: data is
ready to read, and set
identifier: now is last
block

Read data, merge, and
change to decimal, and
set identifier: data has
been read

Set identifier: data isn't
ready to read and set
identifier: now isn't last
block

Set identifier: data hasn't
been read

If input_value = 0 then

Else then

.

.

.

.

.

.

Figure 11. Flowchart of float type data transmission

Separated fractions and
integer of var.
input_value
 fractions=input_value-floor
 (input_value)
 input_value = floor
 (input_value)
Then convert var.
input_value to binary.
 binCounter = input_value-
 floor(input_value/2)*2
 input_value = floor
 (input_value/2)
enter each bit of
binCounter to pins 1-3,
set pin 0 as identifier of
positive value (0) or
negative value (1), set
identifier: data is integer
(pin 4=0), and set
identifier: data is ready to
read

.

.

.

.

.

.

Initialization
Transmitter Receiver

Initialization

Send identifier: data to
be transmitted is float
(pin 2 = 1) and identifier:
data is ready to read (pin
5 = 0)

Read identifier, call
procedure to read float,
and set identifier: data
has been read (pin 7 = 0)

Set identifier: data is'nt
ready to read (pin 5 = 1)

Set identifier: data hasn't
been read (pin 7 = 1)

Set pins 0-4 = 0, set
identifier: data is ready to
read, and identifier: now
is last block (pin 6 = 0)

Read data and set
identifier: data has been
read

Set identifier: data hasn't
been read

Set identifier: data isn't
ready to read and
identifier: now isn't last
block (pin 6 = 1)

Read identifier (pin 0)
then save to var.
multiplier, read data (pin
1-3) then save to var.
data1, and set identifier:
data has been read

Set identifier: data hasn't
been read

Set identifier: data isn't
ready to read

Enter each bit of
binCounter to pins 0-3,
set identifier: data is
integer, and set identifier:
data is ready to read

Read data (pin 0-3) then
save to var. data1, and
set identifier: data has
been read

Set identifier: data hasn't
been read

Set identifier: data isn't
ready to read

If all of var. input_value
(integer) has been sent,
then count the number of
0 after comma and insert
to pin 0-3, then set
identifier: data is ready to
read

Read data (pin 0-3) then
save to var. jml0, and set
identifier: data has been
read

Set identifier: data isn't
ready to read

Set identifier: data hasn't
been read

Convert var. fraction to
integer value, then set
input_value = fraction.
Convert var. input_value
to binary.
 binCounter = input_value -
 floor(input_value/2) *2
 input_value =
 floor(input_value/2)
enter each value of
binCounter to pins 0-3,
set identifier: data is
fraction (pin 4=1), and
set identifier: data is
ready to read

Read data (pin 0-3) then
save to var. data2, and
set identifier: data has
been read

Set identifier: data isn't
ready to read

Set identifier: data hasn't
been read

Enter bit in the last block
of binCounter to pins 0-3,
set identifier: data is
fraction (pin 4=1), set
identifier: data is ready to
read, and set identifier:
now is last block

Read data, merge,
reconvert var. data2 to
fraction (using var. jml0),
and convert to decimal:
data1 = (data1 + data2)
 x multiplier
set identifier: data has
been read

Set identifier: data isn't
ready to read and set
identifier: now isn't last
block

Set identifier: data hasn't
been read

If input_value = 0 then

Else then

.

.

.

.

.

.

.

.

.

.

.

.

 M. Mirdanies et al. / J. Mechatron. Electr. Power Veh. Technol. 06 (2015) 75-82

79

where input_value filled with values that will be
sent. micro filled with numbers of specific
microcontroller that will receive the data. All
these functions will return to 1 if it is successful
or otherwise will return to 0.

The receiver microcontroller simply call one
of the following two procedures.

int dataReceive()

int specificDataReceive (int micro)

If the connection type used is tree type, then call
the procedure int specificDataReceive (int

micro) on the receiver microcontroller. Parameter
micro is filled with the microcontroller number
(0-63). If the connection used is not tree type,
then call the procedure int dataReceive () on
the receiver microcontroller. This function will
automatically call other functions according to
the data type that the transmitter used, and return
1 if successful and otherwise is 0. Functions that
are called are as follows.

long int dataReceive_long_int()
unsigned long int dataReceive_unsigned_
 long_int()

float dataReceive_float()

The function returns a value that is received
whose type is unsigned long int, long int, or float.

III. RESULT AND DISCUSSION
Experiments have been conducted to test the

accuracy and speed of data transfer between two
microcontrollers (Figure 1) as well as using four
microcontrollers in series (Figure 5), parallel
(Figure 6), and tree (Figure 7). The data
transmitted and received is displayed on a PC
terminal via com 3 and com 5 to view the results.

Port B is used for experiments between two
microcontrollers. For experiments using 4
microcontrollers ports are assigned as follows. In
series connection, the transmitter uses port A
while the receiver uses port B. In parallel
connection, the transmitter uses ports A, B, and C,
while the receiver uses port B. In tree connection,
both the transmitter and receiver use port B.

Measurement of data transmission time is
performed using the timer microcontroller [11] as
shown in Figure 13. The time calculation
algorithm can be seen in Figure 14.

At the start of the data transmission process,
the transmitter set port D.6 = 0, then timer will
start calculate using 16-bit timer, after the data
transmission process is completed then set the
port D.7 = 0, finally data transmission time can
be calculated from the time interval.

A. Data Accuracy Experiments

Several data from minimum to maximum for
each data type are used in experiments. Figure 15
and Figure 16 are described example data which
sent from the first microcontroller and data
received by the second microcontroller.

It can be seen that the data transmitted from
the first microcontroller can be received without
any damage or data loss by the second
microcontroller. The range of values that can be
used for each data type are listed in Table 1.

Figure 12. Flowchart of confirmation step for sending data
to a specific microcontroller in tree connection

Initialization

Transmitter Receiver

Initialization

Read input_value and
convert to binary:
 binCounter =
 input_value % 2
 input_value =
 input_value / 2
enter each bit of
binCounter to pins 0-4
and set identifier: data is
ready to read (pin 6 = 0)

Read data (pin 0-4),
merge, and change to
integer, then send
identifier: data has been
read (pin 7 = 0)

Set identifier: data is'nt
ready to read (pin 6 = 1)

Set identifier: data hasn't
been read (pin 7 = 1)

Call data transmission procedures
for unsigned long integer, long
integer, or float

Figure 14. Algorithm of data transmission time calculation

Figure 13. Connection for calculation of transmission time

 M. Mirdanies et al. / J. Mechatron. Electr. Power Veh. Technol. 06 (2015) 75-82 80

B. Data Transmission Time Experiments
Experiment of transmission times is done by

sending sampling value from minimum to
maximum. The number of data used in
experiment is 11 for each type. In the float, the
maximum number of digit used is seven digit [12,
13].

The transmission time between two
microcontrollers for unsigned long int, long int,
and float can be seen in Tables 2, 3, and 4. Based
on Table 2, Table 3, and Table 4 it can be seen
that maximum data transmission times for 32 bits
between two microcontrollers for unsigned long
integer, long integer, and float are 630 µs, 1,880
µs, 7,830 µs. Unsigned long integer has the
fastest time of data transmission than long integer
and float. This is related to the number of
processes/steps used in float is more than long
integer, and number of processes used in long
integer is more than unsigned long integer.

The experiments results of data transmission
time using four microcontrollers in series,
parallel, and tree connections using unsigned
long int, long int, and float can be seen in Figures
17, 18, and 19.

X-axis in Figure 19 is float value which is
represented as data sequence as can be seen in
Table 4. Based on Figures 17, 18, and 19, it can
be seen that data transmission time of unsigned
long integer, long integer, and float are almost

Figure 15. Data transmitted from the first microcontroller

Figure 16. Data received by the second microcontroller

Table 1.
Data types with the range of values

Data types Value

Unsigned Long Int 0 to 4,294,967,295

Long Int -2,147,483,647to2,147,483,647

Float ±1.175e-38 to ±3.402e38 (seven
digit precision) [12,13]

Table 2.
Data transmission time of unsigned long int

No Unsigned Long Int Time (µs)

1 0 50

2 390,451,572 550

3 780,903,145 570

4 1,171,354,717 620

5 1,561,806,289 620

6 1,952,257,861 610

7 2,342,709,434 620

8 2,733,161,006 630

9 3,123,612,578 630

10 3,514,064,150 630

11 4,294,967,295 630

Table 3.
Data transmission time of long int

No Long Int Time (µs)

1 -2,147,483,647 1820

2 -1,717,986,919 1880

3 -1,288,490,189 1880

4 -858,993,460 1820

5 -429,496,730 1740

6 0 50

7 429,496,729 1730

8 858,993,459 1820

9 1,288,490,188 1870

10 1,717,986,918 1860

11 2,147,483,647 1810

Table 4.
Data transmission time of float

No Float Time (µs)

1 -999,999.9 7290

2 -12,345.67 7830

3 -123.456 6220

4 -12.3 2920

5 -0.1 1750

6 0 460

7 0.1 1720

8 12.3 2890

9 123.456 6180

10 12,345.67 7810

11 999,999.9 7260

 M. Mirdanies et al. / J. Mechatron. Electr. Power Veh. Technol. 06 (2015) 75-82

81

equal between tree and parallel connections with
the average absolute difference on unsigned long
integer is 69 μs, long integer is 66 μs, and float is
54 μs, while series connection is slower with an
average difference on unsigned long integer is
1,160 μs to parallel, long integer is 3,334 μs to
parallel, and float is 9,543 μs to parallel. It is due
to the data transmission performed gradually over
three microcontrollers. The maximum
transmission time on (a) unsigned long integer
using parallel connection is 630 μs, tree is 700 μs,
and series is 1,930 μs, (b) long integer using
parallel connection is 1,880 μs, tree is 1,930 μs,
and series is 5,640 μs, (c) float using parallel
connection is 7,830 μs, tree is 7,890 μs, and
series is 23,540 μs.

Based on the above experiments results, in
order to maximize the range of available data and
to minimize the transmission time, the following
data type selection is recommended: In the case
of transferred data is positive integers, then use
unsigned long integer type. If transfered data is
negative and positive integers, long integer type
is preferable to be used. Finally, the float type
should be used when the transferred data has
fractions.

IV. CONCLUSION
A 32-bit data transmission among

microcontrollers using an 8-bit port can be
realized by using the algorithm described in this
paper. The data types used are long integer,

Figure 17. Unsigned long int type data transmission time

Figure 18. Long int type data transmission time

Figure 19. Float type data transmission time

0

500

1000

1500

2000

2500

0 1,000,000,000 2,000,000,000 3,000,000,000 4,000,000,000 5,000,000,000

Ti
m
e
 (
µ
s)

Value

Tree

Parallel

Series

0
1000
2000
3000
4000
5000
6000

‐3,000,000,000 ‐2,000,000,000 ‐1,000,000,000 0 1,000,000,000 2,000,000,000 3,000,000,000

Ti
m
e
 (
µ
s)

Value

Tree

Parallel

Series

0

5000

10000

15000

20000

25000

0 2 4 6 8 10 12

Ti
m
e
 (
µ
s)

Value

Tree

Parallel

Series

 M. Mirdanies et al. / J. Mechatron. Electr. Power Veh. Technol. 06 (2015) 75-82 82

unsigned long integer, or float types. The
algorithm has been successfully implemented
using the C language with CodeVision AVR
v3.10 Advanced IDE. It has been successfully
tested for the communication among
ATMega32A microcontrollers. Based on the
experiment results, it is known that the data
transmitted using 32-bit long integer, unsigned
long integer, or float can be accurately received
without errors or data loss. Maximum
transmission times between two microcontrollers
for unsigned long integer, long integer, and float
are 630 µs, 1,880 µs, and 7,830 µs. Unsigned
long integer has the fastest time of data
transmission than long integer and
float. Maximum transmission times using four
microcontrollers in parallel connection for
unsigned long integer is 630 µs, long integer is
1,880 µs, and float is 7,830 µs. Maximum
transmission times in tree connection for
unsigned long integer is 700 µs, long integer is
1,930 µs, and float is 7,890 µs. Maximum
transmission times in series connection for
unsigned long integer is 1,930 µs, long integer is
5,640 µs, and float is 23,540 µs.

ACKNOWLEDGEMENT
Authors would like to thank to Rifa

Rahmayanti and the Research Centre for
Electrical Power and Mechatronics - Indonesian
Institute of Sciences (LIPI) that has supported
this research and all those who have helped
conducting this research.

REFERENCES
[1] R. P. Saputra et al., "DC brushless motor

control design and preliminary testing for
independent 4-wheel drive REV-11 robotic
platform," Journal of Mechatronics,
Electrical Power, and Vehicular
Technology, vol. 2, no. 2, Dec 2011, pp. 85-
94.

[2] M. Mirdanies and R. P. Saputra, "Control
system of solar tracking mechanism using
combination of astronomy algorithm and
light sensor," in Seminar Nasional Rekayasa
Energi, Mekatronik, dan Teknologi
Kendaraan (RIMTEK 2013), Bandung,
2013, pp. 213-222.

[3] M. R. Reddy et al., "Touch screen and
Zigbee based wireless communication
assistant," International Journal of
Combined Research & Development
(IJCRD), vol. 1, no. 4, Aug 2013, pp. 6-10.

[4] D. S. Thakur and A. Sharma, "Voice
recognition wireless home automation
system based on Zigbee," IOSR Journal of
Electronics and Communication
Engineering (IOSR-JECE), vol. 6, no. 1,
June 2013, pp. 65-75.

[5] M. Leeman et al., "Bridging the educational
gap in embedded systems curricula:
Developing an e-commerce audio streaming
system," in Ninth Annual IEEE International
Conference and Workshop on the
Engineering of Computer-Based Systems,
Lund, 2002, pp. 211-220.

[6] M. Solanke et al., "Automatic override of
speed and brake control and ABS system,"
International Journal of Thesis Projects and
Dissertations (IJTPD), vol. 2, no. 2, June
2014, pp. 04-08.

[7] P. W. Prickett et al., "A microcontroller-
based end milling cutter monitoring and
management system," The International
Journal of Advanced Manufacturing
Technology, vol. 55, no. 9, Aug, 2011, pp.
855–867.

[8] A. Kutlu, "MicroLab: a web-based multi-
user remote microcontroller laboratory for
engineering education*," International
Journal of Engineering Education, 2004, pp.
879-885.

[9] Mikro Elektronika, "PORT Expander
Manual," Zemun, Manual Book 2014.

[10] C. Pozrikidis, Introduction to C++
programming and graphics, 1st ed.
University of California, San Diego:
Springer Science+Business Media, LLC,
2007.

[11] Atmel. (2015, Oct.) ATmega32A 8-bit AVR
microcontroller Datasheet Complete.
[Online].
http://www.atmel.com/images/atmel-8155-
8-bit-microcontroller-avr-
atmega32a_datasheet.pdf

[12] IEEE, "IEEE standard Floating-Point
Arithmetic," IEEE Std 754-2008, Aug 2008,
pp. 1-58.

[13] Microsoft. (2014) Floating point types.
[Online]. https://msdn.microsoft.com/en-
us/library/aa691146%28v=vs.71%29.aspx

