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APPLYING THE CHEMICAL-REACTION DEFINITION OF MASS ACTION TO

INFECTIOUS DISEASE MODELLING

MO’TASSEM AL-ARYDAH, SCOTT GREENHALGH, JUSTIN M.W. MUNGANGA, AND ROBERT SMITH?

Abstract. The law of mass action is used to govern interactions between susceptible and infected

individuals in a variety of infectious disease models. However, the commonly used version is a simpli-

fication of the version originally used to describe chemical reactions. We reformulate a general disease

model using the chemical-reaction definition of mass action incorporating both an altered transmission

term and an altered recovery term in the form of positive exponents. We examine the long-term out-

come as these exponents vary. For many scenarios, the reproduction number is either 0 or ∞, while it

obtains finite values only for certain combinations. We found conditions under which endemic equilib-

ria exist and are unique for a variety of possible exponents. We also determined circumstances under

which backward bifurcations are possible or do not occur. The simplified form of mass action may

be masking generalised behaviour that may result in practice if these exponents “fluctuate” around 1.

This may lead to a loss of predictability in some models.

1. Introduction

The law of mass action is a standard modelling tool that has been used to characterize the transmis-

sion of disease between infected and susceptible individuals. As such, the law of mass action has had

far-reaching implications in the prediction of disease trajectories and the evaluation of health interven-

tions.

Initially, however, the law of mass action was first applied to describe the reaction rate between

chemical reactants [20], portraying the process by which chemicals collide and interact to form different

chemical combinations. The law of mass action under the context of chemical reactions is well known

[19] and has been generalized to include time-dependent rate constants, real-valued kinetic orders [9,

17, 7] and even power-law kinetics to describe multi-chemical reactions [14, 15, 16]. Importantly, the

use of power-law kinetics to describe multi-chemical reactions permits the possibility of the complete

exhaustion of chemical reactants, thereby potentially achieving a steady state solution in finite time

[16].

The law of mass action in the infectious-disease context is also well studied. Traditionally in

infectious-disease modelling, the law of mass action is often simplified from the original formulation

proposed by Guldberg and Waage [20] to a bilinear function of susceptible and infected proportions

multiplied by a transmission rate. Generalizations of the law of mass action do exist, however, and are

usually developed to account for behavioural characteristics, like the crowding of infected individuals,

measures taken by susceptible individuals to avoid exposure to infection or the effects of behavioural
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changes [10, 11, 18, 13, 1]. Generalizations of the law of mass action to power-law kinetics have also

been considered [10, 11]; however, due to the assumption of linearity often applied to the recovery term,

the complete exhaustion (or elimination) of the infected proportion is typically not physically possible.

That said, there does exist substantial motivation for using a nonlinear recovery rate that may permit

the exhaustion (or elimination) of the infected proportion. For instance, a nonlinear recovery rate could

account for additional behavioural characteristics, like active treatment that includes quarantine or iso-

lation [22, 21], the effect of limited treatment resources [3, 12] or the effects of population demographics

[6].

There have been a handful of infectious-disease models that have used variations of the generalised

mass action transmission function. Wang et al. used an infection form with α = 2 to represent the

effect of double exposure of susceptibles in a model with medical-resource contraints[4]. Ermentrout

& Ermentrout [5] used the same infection form to represent two zombies needed to infect one human.

Beeton et al. [2] used a more generalised form (with powers in the infection term but also the susceptible

term) to model the effects of stochasticity in a zombie model. Greenhalgh et al. used this form to

describe measles in Iceland and its re-emergence from Denmark via fishermen [6]. The use of exponents

in models has been used to quantify activities of cell production and removal in bone remodelling [8].

Here we quantify the effects of generalizing both the law of mass action and the recovery rate in

infectious-disease-transmission dynamics. In particular, we examine the effects of power-law kinetics,

as they can be used to generalize both the law of mass action and the recovery rate. Our results

include power-law-exponent conditions for stability, the existence of endemic equilibria and identifying

backward bifurcations.

We address the following research questions: Can we quantify the effect of the exponents in the

model? Specifically, can we calculate R0 and determine stability for various choices of the exponents?

Can we determine the existence of endemic equilibria or conditions where they do not arise? Does the

generalised model lead to backward bifurcations?

2. The Model

The general form of the mass-action transmission model is given by

dS

dt
= b− βIαS − bS (2.1)

dI

dt
= βIαS − ηIξ − bI (2.2)

dR

dt
= ηIξ − bR, (2.3)

where S, I and R are proportions of susceptible, infected and recovered individuals. The population is

assumed to be growth neutral so that the birth/death rates are given by b. The infection rate is β and

the recovery rate is η. Note that all parameters are assumed to be positive.

The exponents α and ξ describe a modified form of infection and recovery. Here, we generalise α

to take values from the positive real numbers. The exponent ξ may account for differences in recovery

related to the immune system. Different people may recover faster or slower, depending on how effective

their immune systems are. The usual form of mass-action transmission is the case when α = ξ = 1. We

can assume α, ξ > 0. The equations (2.1)–(2.3) are supplemented with the initial conditions

S(0) = S0, I(0) = I0, R(0) = R0. (2.4)

We will also assume that the system (2.1)–(2.4) is epidemiologically well defined; i.e.,

(S0, I0, R0) ∈ [0, 1]
3

such that S0 6= 0 and I0 6= 0 (2.5)
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Note that the model may not have a unique solution when α or ξ is less than one, as the right-hand

side of equation (2.2) will not be Lipschitz around I = 0. Also, there is a possibility that no global

solution exists for the model when α or ξ is greater than one.

3. Analysis

3.1. Well-posedness.

Theorem 3.1. The system (2.1)–(2.3) has a unique solution (S(t), I(t), R (t)) which is positive and

bounded provided that the initial conditions satisfy (2.4) and (2.5).

Proof. (1) Existence of solutions. We define

X(t) = (S(t), I(t), R (t)) ,

f (t,X) = (f1, f2, f3) ,

f1 (X) = b− βIαS − bS,

f2 (X) = βIαS − ηIξ − bI,

f3 (X) = ηIξ − bR.

It is clear that the right-hand side of the system (2.1)–(2.3) is C1 (i.e., the space of continuously

differentiable functions). Thus, f is differentiable and hence locally Lipschitz continuous in some

open ball containing X(0). Hence, a unique local solution X(t) of the system (2.1)–(2.4) exists.

(2) Positivity of solutions. The solutions for (2.1) and (2.2) are

S(t) = e−
∫ t
0
(βIα(r)+b)dr

(
S0 +

∫ t

0

be
∫w
0

(βIα(u)+b)dudw
)
,

I(t) = I0e
∫ t
0
(βIα−1(u)S(u)−ηIξ−1(u)−b)du.

With S0 and I0 satisfying (2.4) and (2.5), we have S(t), I(t) > 0 for t ≥ 0. Starting with

I(t) ≥ 0, we have

dR

dt
≥ −bR,

which implies

R(t) ≥ R0e
−bt ≥ 0.

(3) Boundedness of solutions. Let N(t) = S(t)+I(t)+R(t), N(0) = 1. Adding equations (2.1)–(2.3)

we have

dN

dt
= b− bN, N(0) = 1.

Integrating on [0, t) , t > 0, gives N(t) = 1 for all t > 0. Since X(0) ≥ 0 for all t > 0, we deduce

that X(t) ≤ 1 and thus bounded.

�

Remark. Theorem 3.1 proves local solutions exist, although not necessarily global.
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3.2. Stability of the disease-free equilibrium. The disease-free equilibrium is (S, I,R) = (1, 0, 0).

To examine stability, we set S = 1 and then have

Iα(β − ηIξ−α − bI1−α) = 0.

Setting the part in the parentheses equal to zero and rearranging, we have

Rα,ξ0 = lim
I→0+

β

ηIξ−α + bI1−α
. (3.1)

We have several cases:

α > 1: In this case, Rα,ξ0 = 0 for all values of ξ. Since Rα,ξ0 = 0 < 1, the disease cannot invade, and

there is no epidemic.

α = 1: If ξ = 1, we have R1,1
0 = β

η+b . This is the value for the standard model.

If ξ > 1, R1,ξ
0 = β

b . If ξ < 1, R1,ξ
0 = 0.

α < 1: If ξ = α, then Rξ,ξ0 = β
η .

If ξ > α, then Rα,ξ0 =∞.

If 0 < ξ < α, then Rα,ξ0 = 0.

This is summarised in Figure 1. An important observation is how sensitive the standard value of R0

is to fluctuations in α and ξ when these values are close to 1. Since the disease will invade if Rα,ξ0 > 1

and will be eradicated if Rα,ξ0 < 1, it follows that small changes in either exponent can have drastic

effects on the outcome. This is particularly true when the exponents are both close to 1 (as in the

standard model).

α

ξ

1

1

β/
b 0

0

0

∞

∞
β/η

β/(η+b)

Figure 1. Calculation of Rα,ξ0 as the exponents vary. The reproduction number is

0 in the shaded region, infinite in the white region and takes (different) finite values

along the border. The value calculated from the standard model is boxed.

3.3. Existence of endemic equilibria. Endemic equilibria (EE) may or may not exist. To derive

them, we use the condition I 6= 0. From the equation I ′ = 0, we have

S =
ηIξ−1 + b

βIα−1
.
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Substitution into the S′ = 0 equation yields

bβIα−1 − βηIα+ξ−1 − bβIα − bηIξ−1 − b2 = 0. (3.2)

It follows that the existence of any endemic equilibria (S∗, I∗) , where S∗ =
ηIξ−1

∗ +b

βIα−1
∗

, depends on α and

ξ.

We set

f (I) = bβIα−1 − βηIα+ξ−1 − bβIα − bηIξ−1 − b2. (3.3)

In the following proposition, we provide sufficient conditions for the existence of the EE.

Proposition 3.2. Define

βc ≡
b(η + bξ)α(α+ 1)(α+ ξ)

ξ (b(α+ ξ)− ηα(α+ 1))
. (3.4)

If β ≥ βc > 0, there exists at least one EE. Moreover, when α > 1 and ξ > 1 are rational numbers, we

have exactly two EE (possibly equal).

Proof. We introduce the function

F (I) =
b

α
βIα − βη

α+ ξ
Iα+ξ − bβ

α+ 1
Iα+1 − bη

ξ
Iξ − b2I, (3.5)

which is an antiderivative of f(I) give in (3.3). Using the mean-value theorem for 0 ≤ I ≤ 1, there

exists at least one 0 < c < 1 such that f(c) = F (1) = bβ
α(α+1) −

βη
α+ξ −

bη
ξ − b

2. Assuming β ≥ βc > 0,

we have f(c) = F (1) ≥ 0. Now, as f(c) = F (1) ≥ 0 and f(1) < 0, we can apply the intermediate-value

theorem (IVT) on f . As a result, there exists at least one I∗ between c and 1 such that I∗ solves (3.3),

which proves the first part of the proposition. For the second part (uniqueness), let α = m1

n1
and ξ = m2

n2
.

Define u = I
1

n1n2 . Then f(u) is a polynomial that changes coefficient sign twice. By Descartes’ rule of

signs, f(u) has either two or zero positive roots. Therefore, if β ≥ βc > 0 holds, we have two EE. �

We divide α into several cases.

α > 1: Rα,ξ0 = 0 for all ξ. We consider the following two cases: ξ = 1, ξ 6= 1.

(a) If ξ = 1, then (3.3) is reduced to

f (I) = bβIα−1 − β(η + b)Iα − bη − b2. (3.6)

Note that both f(0), f(1) < 0 and f has a unique local maximum at the critical value

0 < IM = b(α−1)
α(η+b) < 1. Also, f(IM ) ≥ 0 if and only if β ≥ αα(η+b)α

bα−1(α−1)α−1 . This means that

there is a bifurcation at β = αα(η+b)α

bα−1(α−1)α−1 (see Figure 2).

(b) ξ 6= 1. Assume that β ≥ βc > 0. Then, using Proposition 3.2, there exists at least one EE.

The particular cases α = ξ = 2 and α = 1.5 and ξ = 0.5 are shown in Figures 3 and 4,

respectively.

α = 1: (a) If ξ = 1, R1,1
0 = β

η+b and equation (3.2) becomes

bβ − βηI − bβI − bη − b2 = 0, (3.7)

which has a unique root 0 < I∗ = b(β−η−b)
β(b+η) < 1 if and only if R1,1

0 > 1. No backward

bifurcation occurs in this case (see Figure 5).

(b) If ξ > 1, f̃(I) = −f(I) = βηIξ+bηIξ−1+bβI−b(β−b), we have f̃(0) = −b (β − b) , f̃(1) =

βη + bη + b2 > 0.

Note that f̃(0)f̃(1) < 0 if and only if R1,ξ
0 = β

b > 1. Applying the IVT, there exists at

least one I∗ such that 0 < I∗ < 1 with f̃(I∗) = 0 when R1,ξ
0 > 1. Since

f̃ ′(I) = ξβηIξ−1 + bη(ξ − 1)Iξ−2 + bβ > 0,
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Figure 2. Bifurcation at β = αα(η+b)α

b(α−1)(α−1)(α−1) . Parameters used were α = 2, ξ = 1,

b = 0.0011391 and η = 0.00013912, with the bifurcation occurring at β = 0.0057374.

Note that other branch of the pichfork bifurcation involves negative individuals and

hence is not shown.

Figure 3. Solutions for system (2.1)–(2.3) for α = ξ = 2, b = 0.032, β = βc = 0.67191

and η = 0.013912.

then f̃ is strictly increasing. Therefore I∗ is the unique EE for R1,ξ
0 > 1. When R1,ξ

0 < 1,

then f̃(0) > 0 and f̃ is increasing, which implies no EE exists. Hence there is no backward

bifurcation. See Figure 6.
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Figure 4. Solutions for system (2.1)–(2.3) for α = 1.5, ξ = 0.5, b = 0.032, β = βc =

1.1237 and η = 0.013912.

(a) (b)

Figure 5. Solutions for system (2.1)–(2.3) for α = 1, ξ = 1. The two cases are (a)

b = 0.02232, β = 0.60803 and η = 0.61671, so R0 < 1 and (b) b = 0.032, β = 0.32 and

η = 0.013912, so R0 > 1.

(c) If ξ < 1, R1,ξ
0 = 0. We have f(0+) = +∞ and f(1) > 0, so no conclusion can be made by

applying the IVT on f . Note that (3.4) is reduced to

βc =
2b(η + bξ)(1 + ξ))

ξ (b(1 + ξ)− 2η)
,

which is positive for b(1+ξ) > 2η. If β ≥ βc > 0, then Proposition 3.2 implies the existence

of at least one EE. This case is shown in Figure 7.
1
2 ≤ α < 1: (a) If α = ξ, then equation (3.2) becomes

b(β − η)Iα−1 − βηI2α−1 − bβIα − b2 = 0. (3.8)
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(a) (b)

Figure 6. Solutions for system (2.1)–(2.3) for α = 1, ξ > 1, R0 < 1 and R0 > 1.

Figure 7. Solutions for system (2.1)–(2.3) for α = 1, ξ = 0.5

Define g(I) = b (η − β) Iα−1 + βηI2α−1 + bβIα + b2 (the negative of the left-hand side of

equation (3.8)). Note that g is continuous in (0, 1] and

g(0+) =

{
∞ if β < η

−∞ if β > η

g(1) > 0

g′ (I) = b (η − β) (α− 1) Iα−2 + βη(2α− 1)I2α−2 + bβαIα−1.

Hence, if Rα,α0 = β
η > 1, then g′(I) > 0 and g(0+)g(1) < 0. The IVT implies that g(I∗) = 0

for some unique I∗ ∈ (0, 1). If Rα,α0 = β
η < 1, then no conclusion can be made. However,

we can illustrate the two cases numerically in Figure 8. Note that equation (3.4) is reduced

to

βc =
2b(η + bα)(α+ 1)

(2b− η(α+ 1))
≥ η,

which is not helpful in this case.
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(a) (b)

Figure 8. Solutions for system (2.1)–(2.3) for α < 1, ξ < 1, R0 < 1 and R0 > 1.

(b) If ξ ≥ 1, then define f(I) = Iα−1(bβ − βηIξ − bβI − bηIξ−α) − b2 (the left-hand side of

equation (3.2)). We have f(0+) = +∞, f(1) < 0. From the IVT, there exists at least one

EE unconditionally. Since Rα,ξ0 = +∞, no backward bifurcation is possible. Moreover,

since f ′(I) < 0 (f is decreasing), then we have a unique EE unconditionally.

(c) If 1
2 ≤ α < ξ < 1 with the same f as in (b), bβIα−1− bηIξ−1 = Iα−1(bβ− bηIξ−α)→ +∞

as I → 0+, which implies f(0+) = +∞ and f(1) < 0, so at least one EE exists, since

Rα,ξ0 = +∞. Hence no backward bifurcation occurs.

(d) If 1
2 ≤ ξ < α < 1, Rα,ξ0 = 0,

f (I) =
(
bβIα−ξ − βηIα − bβIα−ξ+1 − bη

)
Iξ−1 − b2,

f(0+) = −∞ and f(1) < 0. No conclusion can be drawn from applying the IVT on f .

If β ≥ βc > 0, then Proposition 3.2 implies the existence of at least one EE. This case is

shown numerically in Figure 9.

Figure 9. Solutions for system (2.1)–(2.3) for α = 0.66, ξ = 0.5



APPLYING THE ORIGINAL MASS-ACTION DEFINITION TO DISEASE MODELLING 59

(e) If ξ < 1
2 , then Rα,ξ0 = 0,

f (I) =
(
bβIα−ξ − βηIα − bβIα−ξ+1 − bη

)
Iξ−1 − b2,

f(0+) = −∞, f(1) < 0. No conclusion can be drawn from applying the IVT on f . If

β ≥ βc > 0, then Proposition 3.2 implies the existence of at least one EE. This case is

shown in Figure 10.

Figure 10. Solutions for system (2.1)–(2.3) for α = 0.66, ξ = 0.4

α < 1
2 : (a) If α = ξ, with g(I) = Iα−1 (b(η − β) + βηIα) + bβIα + b2, we have

g(0+) =

{
∞ if η > β

−∞ if η < β

g(1) > 0

Hence if Rα,α0 = β
η > 1, then g(0+)g(1) < 0 and at least one I∗ > 0 exists. If Rα,α0 = β

η < 1,

β ≥ βc = 2b(η+bα)(α+1)
(2b−η(α+1)) , then Proposition 3.2 implies the existence of at least one EE. This

case is shown in Figure 11.

(b) If ξ ≥ 1, then again define

f(I) = Iα−1(bβ − βηIξ − bβI − bηIξ−α)− b2

(the left-hand side in (3.2)). We have f(0+) = +∞ and f(1) < 0. From the IVT, there

exists at least one EE unconditionally, since Rα,ξ0 = +∞ and no backward bifurcation is

possible. Moreover, since f ′(I) < 0 (f is decreasing), then we have a unique EE uncondi-

tionally.

(c) If α < ξ < 1 with the same f as in (b), f(I)→ +∞ as I → 0+, which implies f(0+) = +∞
and f(1) < 0, so by the IVT we have at least one EE, since Rα,ξ0 = +∞, and no backward

bifurcation occurs.

(d) If ξ < α < 1
2 , Rα,ξ0 = 0, f (I) =

(
bβIα−ξ − βηIα − bβIα−ξ+1 − bη

)
Iξ−1 − b2, f(0+) =

−∞, f(1) < 0 and we have no conclusion from f . Assuming that β ≥ βc > 0, then, using

Proposition 3.2, there exists at least one EE. This case is shown in Figure 12.
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Figure 11. Solutions for system (2.1)–(2.3) for α = 0.4, ξ = 0.4

Figure 12. Solutions for system (2.1)–(2.3) for α = 0.4, ξ = 0.3

3.4. Global Stability for the DFE. Set Ω = {(S, I,R) : S, I,R ≥ 0 and, S + I + R ≤ 1}. Then

define the candidate Lyapunov function

V : Ω −→ R
V (S, I,R) = I.
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Note that

V ′ = I ′

= Iα(βS − ηIξ−α − bI1−α)

= (ηIξ + bI)(R(I)S − 1)

≤ 0

if R(I) ≡ β
ηIξ−α+bI1−α

≤ 1.

Note that

Rα,ξ0 = lim
I→0

R(I). (3.9)

Now, if Rα,ξ0 =∞, then the DFE is unstable. We thus need to consider only the following cases.

(1) ξ = α = 1, which implies R(I) = R1,1
0 = β

η+b . Therefore V ′ ≤ 0 if and only if R1,1
0 ≤ 1. As a

result, the DFE is globally stable when R1,1
0 < 1.

(2) ξ = α < 1, so that R(I) ≡ β
η+bI1−α with R′(I) < 0 on [0, 1]. As a result, R(I) ≤ Rα,α0 = β

η

and V ′ ≤ 0 if Rα,α0 ≤ 1. In this case, the DFE is globally stable when Rα,α0 < 1, so there is no

backward bifurcation.

(3) α = 1 < ξ. R′(I) < 0 on [0, 1]. As a result R(I) ≤ Rα,10 = β
b . In this case, the DFE is globally

stable when Rξ,10 < 1, so there is no backward bifurcation.

(4) ξ < α < 1. R′(I) = 0 if and only if I = Î ≡
[
η(α−ξ)
b(1−α)

] 1
1−ξ

. R′(I) > 0 in [0, Î] and R′(I) < 0 for

I > Î. As a result R(I) ≤ R(Î). In this case, the DFE is unconditionally locally stable, since

Rα,ξ0 = 0, and conditionally globally stable. The sufficient condition for global stability of the

DFE is R(Î) < 1 or

β ≤ β∗c = η

[
1− α
η(α− ξ)

]α−ξ
1−ξ

+ b

[
η(α− ξ)

1− α

] 1−α
1−ξ

(3.10)

Therefore, a possible backward bifurcation can only occur when β > β∗c .

(5) If α > ξ and α ≥ 1 or α = ξ > 1, then R′(I) > 0 on (0, 1], which implies that R(I) is increasing

on this interval. As a result R(I) ≤ R(1) = β
η+b . In this case, the DFE is unconditionally

locally stable but conditionally globally stable, where the sufficient condition needed is β
η+b < 1.

Therefore, a possible backward bifurcation can only occur when βc > η + b.

(6) ξ > α > 1. R′(I) = 0 if and only if I = Î ≡
[
b(α−1)
η(ξ−α)

] 1
ξ−1

. R′(I) > 0 on (0, Î) and R′(I) < 0 if

I > Î. As a result, R(0+) ≤ R(I) ≤ max{R(Î), R(1)}, where R(1) is added to avoid comparing

Î with I = 1. In this case, the DFE is unconditionally locally stable and conditionally globally

stable, where the sufficient condition needed is max{R(Î), β
η+b} < 1.

We summarise our findings in Table 1.

3.5. Global Stability for the EE, simple case. Let Rα,ξ0 > 1. Set Ω = {(S, I) : S, I > 0 and, S +

I ≤ 1}. Then define the candidate Lyapunov function

V : Ω −→ R
V (S, I) = W1

(
S − S∗ − S∗ ln( SS∗ )

)
+W2(I − I∗ − I∗ ln

(
I
I∗ )
)
,

with W1,W2 > 0. Note that ∂V
∂S = ∂V

∂I = 0 if and only if (S, I) = (S∗, I∗). Moreover, ∂2V
∂S2 (S∗, I∗) =

1
S∗ > 0 and ∂2V

∂S2 (S∗, I∗)∂
2V
∂I2 (S∗, I∗)−

[
∂2V
∂S∂I (S∗, I∗)

]2
= 1

S∗I∗ > 0. As a result, V (S∗, I∗) = 0 is a local
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Table 1. Endemicity and backward bifurcation possibilities for different values of α

and ξ. If Rα,ξ0 = 0, the bifurcation is with respect to β.

α ξ Rα,ξ0 Endemicity
Backward

bifurcation?

α > 1 ξ = 1 0
Two EE for β > αα(η+b)α

bα−1(α−1)α−1 ,

No EE for β < αα(η+b)α

bα−1(α−1)α−1

None

ξ 6= 1 0 At least one EE if β ≥ βc None

α = 1 ξ = 1 β
η+b

One unique EE for Rα,ξ0 > 1

No EE for Rα,ξ0 < 1
None

ξ > 1 β
b

One unique EE for Rα,ξ0 > 1

No EE for Rα,ξ0 < 1
None

ξ < 1 0 At least one EE if β ≥ βc
Possible when

βc > η + b

α ∈
[
1
2 , 1
)

ξ = α β
η

One unique EE for β > η

No conclusion for β < η
Possible

ξ ≥ 1 ∞ One unique EE None

1
2 ≤ α < ξ < 1 ∞ At least one EE None

ξ < α < 1 0 At least one EE if β ≥ βc
Possible when

β > max{βc, β∗c }

α < 1
2 ξ = α β

η

At least one EE for Rα,ξ0 > 1

At least one EE when

Rα,ξ0 < 1 and β ≥ βc
None

ξ ≥ 1 0 One unique EE None

α < ξ < 1 0 At least one EE None

ξ < α < 1
2 0 At least one EE if β ≥ βc None

minimum, since V (S, I) > 0 if (S, I) 6= (S∗, I∗). We have

V ′ = W1(S − S∗)
(
b

S
− βIα − b

)
+W2(I − I∗)

(
βIα−1S − ηIξ−1 − b

)
. (3.11)

From the EE, we have

−b =
−b
S∗

+ β(I∗)α

−b = − β(I∗)α−1S∗ + η(I∗)ξ−1.

Substituting this into equation (3.11), we have

V ′ =
−W1b

SS∗
(S − S∗)2 +W1β(S − S∗)((I∗)α − Iα) +W2(I − I∗)(η(I∗)ξ−1 − ηIξ−1)

+W2(I − I∗)(βIα−1S − β(I∗)α−1S∗). (3.12)
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For ξ = 2 we have

V ′ =
−W1b

SS∗
(S − S∗)2 +W1β(S − S∗)((I∗)α − Iα)−W2η(I − I∗)2

+W2(I − I∗)(βIα−1S − β(I∗)α−1S∗). (3.13)

For α = 1 and W1 = W2, we have V ′ = −W1b
SS∗ (S − S∗)2 −W2η(I − I∗)2 ≤ 0. Hence the unique EE is

globally stable for α = 1 and ξ = 2, when R1,2
0 > 1.

4. Discussion

We modified an SIR mass-action model to include Iα and Iξ with α, ξ > 0 in the infection and

recovery terms, respectively. The powers α and ξ account for differences in infectivity and recovery.

We used α and ξ to calculate the basic reproduction number. Small changes in either of the exponents

change R0 between 0, different finite values and ∞. As a result, the stability of the DFE is sensitive to

the choice of α and ξ and requires further restrictions to have a globally stable DFE. Similar results show

that the existence of the EE is also sensitive to the choice of the exponents. Numerical simulations are

provided for the time-series solution for different values of α and ξ to illustrate our theoretical results.

Since the disease will invade if Rα,ξ0 > 1 and can be eradicated if Rα,ξ0 < 1, it follows that small

changes in either exponent can have drastic effects on the outcome. This is particularly true when the

exponents are both close to 1 (as in the standard model). It follows that epidemic models that use

the original mass-action formulation may not have meaningful predictions if a reproduction number is

calculated.

Some limitations apply, which should be acknowledged. We assumed that the population growth

was neutral; that is, rates of growth and death are equal (b), which is not true in general. Mass-action

transmission, whether in its original form or the form used in most epidemic models, assumes that

populations are well mixed, an assumption based on the random mixing of particles from which the

original term was derived. Such an assumption rarely applies in practice.

Future work will apply these results to standard incidence. While we were guided by the chemical-

reaction definition of mass action, it would be interesting to generalise all other terms in the model. The

rich behaviour exhibited here suggests that other extensions would like yield a range of unanticipated

outcomes. Likewise, although different forms of the transmission function have been investigated, few

papers have looked at different forms of the recovery rate. Extending this beyond our formulation would

doubtless result in further unexpected phenomena.

Given the sensitivity of our results to small changes in α and ξ, especially close to α = ξ = 1

(the standard case), it is likely that many disease models are sitting on a knife-edge situation. If such

fluctuations occur in the real world, then the ability of disease models to make long-term predictions

may be vastly curtailed.
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