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A MATHEMATICAL MODEL FOR THE ROLE OF MACROPHAGES IN THE

PERSISTENCE AND ELIMINATION OF ONCOLYTIC VIRUSES

NADA ALMUALLEM AND RALUCA EFTIMIE

Abstract. Replicating oncolytic viruses provide promising treatment strategies against cancer. How-

ever, the success of these viral therapies depends mainly on the complex interactions between the virus

particles and the host immune cells. Among these immune cells, macrophages represent one of the
first line of defence against viral infections. In this paper, we consider a mathematical model that

describes the interactions between a commonly-used oncolytic virus, the Vesicular Stomatitis Virus

(VSV), and two extreme types of macrophages: the pro-inflammatory M1 cells (which seem to resist
infection with VSV) and the anti-inflammatory M2 cells (which can be infected with VSV). We first

show the existence of bounded solutions for this differential equations model. Then we investigate the

long-term behaviour of the model by focusing on steady states and limit cycles, and study changes in
this long-term dynamics as we vary different model parameters. Moreover, through local and global

sensitivity analysis we show that the parameters that have the highest impact on the level of virus

particles in the system are the viral burst size (from infected macrophages), the virus infection rate,
and the virus elimination rate.

1. Introduction

Although viral infections are a major health concern to humans and animals, some viruses have been
used for therapeutic purposes [36]. An important area where viruses are currently being used to alter the
course of the disease is cancer research. In this context, non-replicating viruses have been used as cancer
vaccines (by engineering them to express tumour antigens that would trigger an anti-tumour immune
response) [33], while replicating viruses have been used either as vaccines that can boost the immune
response or as oncolytic agents [51]. Viruses can be naturally oncolytic or can be engineered to display
oncolytic activity by genetically modifying them to replicate inside cancer cells and lysing them [49].
However, the efficacy of these viruses is reduced by the presence of anti-viral immune responses. Some
of the most important innate immune cells involved in viral clearance are the macrophages.

Macrophages are immune cells that reside in every organ of the body and act as a first line of
defence against viral infections [30]. They are also present in large numbers inside various types of
solid tumours [29, 56], and thus they are likely interfering with viral therapies for cancers [10]. In the
context of viral infections, macrophages can eliminate viruses and virus-infected cells through phagocy-
tosis [32]. They can also enhance the spread of different infections, as some viruses infect and replicate
inside these cells [31, 43, 44]. Macrophages are a very heterogeneous cell population, with the two
extreme phenotypes being represented by the pro-inflammatory classically-activated M1 cells, and the
anti-inflammatory alternatively-activated M2 cells [30, 52]. Different macrophages phenotypes respond
differently to viral infections. For example, the influenza virus seems to replicate better inside the M2
cells compared to the M1 cells [12]. Moreover, some viral infections seem to affect the macrophages po-
larisation. For example, the human immunodeficiency virus (HIV) infection can switch the phenotype
of infected macrophages towards an M2-like phenotype during the later stages of the disease [27, 52],
while the human cytomegalovirus (HCMV) skews the phenotype of infected macrophages towards an
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M1-dominated phenotype which might support their replication and spread [6]. Some oncolytic viruses
can also induce the switch of macrophages towards an M1-like phenotype, by increasing the expression
of pro-inflammatory cytokine interferon-γ (IFN-γ) [45].

In this study we focus on replication-competent Vesicular Stomatitis Virus (VSV) vectors, which
have been shown to offer great promise as oncolytic agents mainly because (i) they are not pathogenic
to humans and (ii) humans do not have pre-existing immunity against these viruses [26, 3]. In regard
to the interactions between these virus particles and the macrophages, various experimental studies
have shown that immune protection against VSV infection is controlled by the induction of a type-I
interferon response [53], and therefore, the M1 macrophages are likely to be involved in the elimination
of VSV particles. Moreover, it is known that macrophages can be infected by the VSV [50, 54]. An
experimental study in [38] suggested that the M2 macrophages can support viral replication, while
the M1 macrophages are resistant to infection with VSV. Other experimental studies (which do not
differentiate between M1 and M2 cells) have suggested that macrophages can act as a reservoir for
VSV, not encouraging viral replication [54]. In [22] it was shown that in the context of breast cancer,
a VSV strain can modulate macrophages phenotype from a M2-like phenotype towards an M1-like
phenotype. This is probably due to the induction of a type-I interferon response after VSV infection,
which stimulates innate immune cells [55]. Therefore, it seems that there is a fine balance between
the roles of VSV in inducing an innate immune response and escaping this anti-viral immune response
(which is particularly important in the context of various diseases, such as cancers that can be infiltrated
by large numbers of macrophages). Because experimental studies do not offer a full understanding of
this delicate balance, in this paper we consider a mathematical modelling approach to further investigate
this aspect.

Mathematical and computational approaches have been used over the past years to investigate the
interactions between viruses and macrophages in the context of cancer [9, 13, 14, 35, 37], or in the
context of different viral infections [5, 17, 18, 21, 25, 28, 34, 41, 61]. While the latest models that
focus on oncolytic viruses differentiate between the anti-tumour and anti-viral roles of M1 and M2
macrophages, the models that focus on viral infections do not usually differentiate between the roles
of M1 and M2 cells in eliminating/spreading the infection. Among the few models that focus on the
different roles of M1 and M2 cells during viral infections we mention [34, 21]. Regarding macrophages
response to oncolytic viruses, including VSV, to our knowledge there are no mathematical models that
focus on the infection of macrophages with these viruses, and on the delicate balance between the
anti-viral immunity and macrophages support for a viral reservoir or viral replication.

The main goal of this study is to derive a mathematical model that can shed light on the complex in-
teractions between the M1 and M2 macrophages and the VSV particles. In particular, we aim to answer
the following question: What mathematical and biological mechanisms can lead to a decrease/increase
in viral titres? (An increase in viral titres is important in the context of oncolytic therapies for cancer,
while a decrease in these titres is important for avoiding chronic infections.)

The structure of this work is as follows. In Section 2, we introduce a mathematical model for
the interactions between M1/M2 macrophages and VSV particles. In Section 3, we discuss the non-
negativity and boundedness of solutions, as well as the long-term behaviour of the model through the
investigation of the number and stability of steady states. We also perform a local sensitivity analysis
to investigate the role of different model parameters on the overall viral load. We conclude in Section
4 with a summary and discussion of the results.

2. Model Description

The graphical description of the proposed mathematical model is shown in Figure 1. We define
four variables: the density of M1 macrophages (M1) (which are resistant to VSV infection [48]), the
densities of uninfected M2 macrophages (M2u) and VSV-infected M2 macrophages (M2i) [48], and the
density of oncolytic virus particles (V ). We emphasise that in this study, even if we focus on oncolytic
viruses, we ignore their interactions with the tumour cells and focus exclusively on the interactions of
these viruses with the macrophages. The time-evolution of these variables is given by the following
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Figure 1. Description of the interactions between the M1/M2 macrophages and an
oncolytic VSV, as given by equations (2.1a)-(2.1d). The model was inspired by the
experimental studies in [50, 38, 48] (where the VSV infects only the M2 cells but not
the M2 cells), and the mathematical modelling studies in [13, 14] (which focused only
on the anti-viral effect of M1 cells, and did not consider the infection of macrophages).
Even if we focus on an ocolytic virus, here we do not investigate the effect of the tumour
on these VSV-macrophages interactions; this aspect will be investigated in a further
study [2].

differential equations:

dM1(t)

dt
= pm1M1(t)

(
1− M1(t) +M2u(t)

k2

)
︸ ︷︷ ︸

logistic growth

− r0m1M1(t)︸ ︷︷ ︸
M1→M2 polarisation

+M2u(t)

(
r0m2 + rvm2

V (t)

hv + V (t)

)
︸ ︷︷ ︸

M2→M1 re−polarisation

− de1M1(t)︸ ︷︷ ︸
natural death

, (2.1a)

dM2u(t)

dt
= pm2M2u(t)

(
1− M1(t) +M2u(t)

k2

)
︸ ︷︷ ︸

logistic growth

+ r0m1M1(t)︸ ︷︷ ︸
M1→M2 polarisation

−M2u(t)

(
r0m2 + rvm2

V (t)

hv + V (t)

)
︸ ︷︷ ︸

M2→M1 re−polarisation

− β2V (t)M2u(t)︸ ︷︷ ︸
M2 infection with V SV

− de2M2u(t)︸ ︷︷ ︸
natural death

, (2.1b)

dM2i

dt
= β2V (t)M2u(t)︸ ︷︷ ︸
M2 infection with V SV

− δi2M2i(t)︸ ︷︷ ︸
lysis by viruses

, (2.1c)

dV

dt
= cδi2M2i(t)︸ ︷︷ ︸
production of viruses

− δvV (t)
M1(t)

hm +M2u(t)︸ ︷︷ ︸
virus elimination by M1

− ωV (t)︸ ︷︷ ︸
natural death

, (2.1d)
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with the initial conditions

M1(0) ≥ 0, M2u(0) ≥ 0, M2i(0) ≥ 0, V (0) ≥ 0. (2.2)

This model incorporates the following biological assumptions:

• In Eqns. (2.1a)-(2.1b), the M1 and uninfected-M2 macrophages grow logistically at rates pm1

and pm2 through a self renewal process [30] up to a maximum carrying capacity k2. This type
of growth depicts experimentally observed cell kinetics [7]. To describe macrophages plasticity,
we assume that the environment can induce a M1→M2 polarisation at a constant rate r0m1 (e.g.,
in the presence of cytokines such as IL-4, IL-10 [1]), or a M2→M1 re-polarisation at a constant
rate r0m2 (e.g., in the presence of cytokines such as IFN-γ, IL-2 [1]). Moreover, it has been exper-
imentally shown in [22] that matrix (M) protein mutant (rM51R-M) VSV could modulate the
switch M2→M1 (probably through the induction of IFN-γ response). Furthermore, engineering
oncolytic viruses which carry specific cytokines can trigger a macrophages re-polarisation to a
M1-like phenotype [24]. Thus, we assume that this enhanced M2→M1 re-polarisation occurs at
a rate rvm2 in the presence of the virus. The re-polarisation of M2 cells upon contact with VSV
particles is described by a Michaelis-Menten term with constant hv to account for the saturated
re-polarising response induced by viruses. The M1 and M2 macrophages have natural mortality
rates de1 and de2, respectively. Finally, the M2 macrophages are predisposed to infections with
VSV particles at a rate β2 [48], while the M1 cells are resistant to VSV infections [48].
• In Eq. (2.1c), the infected M2 macrophages are eliminated by the viruses at a rate δi2. All other

terms have been described above.
• In Eq. (2.1d), we assume that each infected M2 macrophage releases c new VSV particles [22].

Moreover, the reduction in the number of virus particles is the result of their elimination, at
a rate δv, by the M1 macrophages. Note that, as discussed in [10], viral clearance may be
prevented by the M2 macrophages. Finally, we assume that the virus particles have a natural
death rate ω [11]. This last term includes also the virus elimination rate by other innate immune
cells (e.g., NK cells [58]) or adaptive immune cells (e.g., T cells [8]) not considered in this study.

All parameters that appear in model (2.1) are non-negative and described in further detail in Table 2.

Remark 2.1. Since many experimental studies on the proliferation rates of macrophages do not distin-
guish between the M1 and M2 cells [7], throughout most of this study we will assume that pm1 = pm2 =:
pm. For simplicity we also assume that de1 = de2 =: de. The cases where de1 6= de2 and pm1 6= pm2 will
be investigated in Section 3.3.

Remark 2.2. For the macrophages logistic proliferation terms, one could include also the infected

macrophages that produce virus particles: pm1,m2M1,2u

(
1− M1+M2u+M2i

k2

)
. However, some experi-

mental studies have shown that the proportion of productively infected cells is very small: only 0.9-7.5%
of the total cells were able to produce viruses [50]. Therefore, in this study we ignore the variable M2i

from the proliferation terms, since it does not impact them significantly.

Table 1. Summary of initial conditions used for numerical simulations of system (2.1).
By choosing these conditions, we tried to replicate the experimental conditions
from [50].

Variable Description Initial condition

M1 Density of M1 macrophages (cell numbers per volume) M1(0) = 4× 105

M2u Density of uninfected M2 macrophages (cell numbers per volume) M2u(0) = 1× 105

M2i Density of infected M2 macrophages (cell numbers per volume) M2i(0) = 0

V Density of virus particles (particles forming units (PFU) per volume) V (0) = 5× 101
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2.1. Parameter values. In Table 2, we summarise the parameter values used throughout this theo-
retical study. Some of these values were taken directly from the existent mathematical literature, while
other values (marked by “*” in Table 2) were approximated based on experimental studies – see the
discussion below. However, there were a few parameters for which we could not find any values, so
we provided some estimated ranges (see Table 2). In the following we discuss the parameter values
we approximated using experimental studies, and the values taken from the literature (especially if
different mathematical studies used different parameter values).

• In [19] the authors suggested that the doubling time of macrophages is around 27hrs. In [66]
the authors estimated the doubling time of untreated murine macrophage-like RAW264.7 cells
to be between 18 − 22hrs, while cells stimulated with bacterial lipopolysaccharide (LPS) had
an estimated doubling time of 35hrs. In [57], the authors estimated that M1 macrophages have
a doubling time between 23.86hrs and 28.97hrs. In [7] it has been indicated that the average
doubling time of macrophages is between 20 − 30hrs. From all these experimental studies
we can conclude that the doubling time of macrophages is likely between 18 − 35hrs, which
corresponds to proliferation rates between 0.4− 0.9/day. For simplicity, through this study we
choose pm1 = pm2 = 0.57/day.
• In regard to the M1/M2 macrophages death rates, various modelling studies used different

values. For example, in [15] it was assumed that de1 = de2 = 0.02/day, the same as in [40]. On
the other hand, in [13] the authors considered de1 = de2 = 0.2/day, as approximated from the
experimental study in [63]. Here, we use the same values as in [13], i.e. de1 = de2 = 0.2/day.
However, in Section 3.3 we will assume different macrophages death rates (i.e., de1 = 0.1 and
de2 = 0.8) and investigate their impact on the dynamics of the system.

• Various experimental studies investigated macrophages yield per mouse. For example, in [64]
the authors isolated macrophages from bone marrow, spleen and peritoneal cavity, and the
numbers varied between 106 − 107 cells per site. Throughout this study we use the same
carrying capacity for macrophages as in [13, 15]: k2 = 108 cells.
• In regard to the apoptosis rate of infected macrophages, Rager et. al [50] showed that two

macrophages cell lines (clones J774.16 and C3C, derived from the murine reticulum cell sarcoma
J774) were completely lysed by the virus within 1-2 days after infection. Thus, we assume a

death rate of δi2 ∈
(

ln(2.0)
2 , ln(2.0)1

)
= (0.35, 0.69)/day. For the simulations we use an average

value of δi2 = 0.52.
• In regard to the virus burst size, [50] showed that each productively infected macrophage was

able to produce viral progeny of at least 1000PFU. Moreover, Zhu et. al [65] showed that each
virus-infected cell produced between 50 to 8000 progeny virus particles. For our simulations we
use an average of c = 2500, which is the same value as in [13].
• The VSV death rate varies between different mathematical studies: e.g., ω = 2/day in [13,

39]), or ω ∈ (1 − 2.56)/day in [16]. This is because experimental studies have shown that
the intracellular half-lives of non-replicating wild type and mutant strains of VSV can vary
between 5.3hrs and 18hrs, which translates into a death rate between ln(2)/5.3hr= 3.13/day
and ln(2)/18hr= 0.92/day [11]. In [23] the authors have calculated the half-life of a replicating
VSV strain between 2− 15.9hrs, which translates into a death rate between 1.04− 8.31/day. In
this study, we choose an average death rate of ω = 2/day.
• In regard to the M1→M2 and M2→M1 polarisation rates, the theoretical studies in [59, 15]

used r0m1 ∈ (0.05, 0.09) and r0m2 ∈ (0.05, 0.08). In [13] the authors used the baseline values of
r0m1 = 0.001 and r0m2 = 0.01, which could vary between (0.0001, 0.1). Here, we use the same
parameter ranges as in [13].
• The rest of the parameter values (i.e., rvm2, hm, hv, β2, δv) used in this study for the numerical

simulations are listed in Table 2.
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Table 2. Summary of the parameters that appear in model (2.1), together with the
values used for the numerical simulations. References marked by “*” correspond to
parameter values that were approximated based on experimental studies. Some of the
items in column “Value” show the ranges over which those parameters were varied,
while the parentheses show the baseline values used for the numerical simulations.

Param. Description Value Units Reference

pm1 proliferation rate of M1 cells 0.4 − 0.9

(0.57)

days−1 ∗[19],[66], [57]

pm2 proliferation rate of M2 cells 0.4 − 0.9
(0.57)

days−1 ∗[19],[66], [57]

β2 infection rate of M2 macrophages with
the oncolytic virus

2× 10−5 − 2
(0.000002)

days−1

(PFU/vol)−1
estimated

δi2 rate at which an infected M2 are killed

by viruses

0.35 − 0.69

(0.52)

days−1 ∗[50]

c number of virus particles released from

an infected M2 cell

50 − 8000

(2500)

PFU/cells [65]

ω death rate of oncolytic virus particles 0.1-10 (2.0) days−1 [13, 39],[11, 23]

δv elimination rate of viruses by the M1

cells

5×10−5−0.5

(5× 10−5)

days−1 estimated

k2 carrying capacity of macrophages 106 − 109

(108)
cells/vol [13]

r0m1 M1→M2 re-polarisation rate in re-
sponse to cytokines in the microenvi-

ronment

0.00001−0.1
(0.001)

days−1 [13],[59]

r0m2 M2→M1 re-polarisation rate in re-

sponse to cytokines in the microenvi-
ronment

0.00001−1.0

(0.01)

days−1 [13],[59]

rvm2 M2→M1 re-polarisation rate in re-

sponse to engineered viruses

0− 10 (0.0) days−1 estimated

de1 natural death rate of M1 macrophages 0.02 − 0.8

(0.2)

days−1 [13],[63]

de2 natural death rate of M2 macrophages 0.02 − 0.8

(0.2)

days−1 [13],[63]

hv half-saturation constant for the viruses
to trigger a M2 → M1 re-polarisation

0.2 − 1.7
(1.0)

PFU/vol estimated

hm half-saturation constant for
macrophages that support half

the maximum immune response

0.2 − 1.7
(1.0)

cells/vol estimated

3. Results

To understand the dynamics of system (2.1), we first show that the model is well-posed and bio-
logically realistic. Then we focus on the steady states and their stability to investigate the long-term
behaviour of the system. We also perform numerical simulations to confirm these analytical results, and
to test the impact of different parameters on the transient and long-term behaviour of the mathematical
model.

3.1. Non-negativity and boundedness of solutions. We start the investigation of model (2.1a)-
(2.1d) by showing that it is biologically realistic, in the sense that all cell and virus populations are
non-negative and bounded.

Proposition 3.1. The following results hold true:

(i) There exists a unique solution (M1,M2u,M2i, V ) ∈ R4
≥0 for system (2.1a)-(2.1d).

(ii) For any (M1,M2u,M2i, V ) ∈ R4
≥0 there exists a nonnegative solution to system (2.1a)-(2.1d)

for all t ≥ 0. Moreover, there exist positive constants L1, L2 and L3 independent of initial data,
such that M1 +M2u ≤ L1,M2i ≤ L2 and V ≤ L3 for sufficiently large t.
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Proof. See Appendix A. �

3.2. Long-term dynamics: steady states and stability. We begin investigating the long-term
behaviour of the model (2.1a)-(2.1d) by discussing all possible steady states. The equilibria of (2.1a)-
(2.1d) satisfy the following equations:

pm1M
∗
1

(
1− M∗1 +M∗2u

k2

)
− de1M∗1 − r0m1M

∗
1 +M∗2u

(
r0m2 + rvm2

V ∗

hv + V ∗

)
= 0, (3.1a)

pm2M
∗
2u

(
1− M∗1 +M∗2u

k2

)
− β2V ∗M∗2u − de2M∗2u + r0m1M

∗
1 −M∗2u

(
r0m2 + rvm2

V ∗

hv + V ∗

)
= 0, (3.1b)

β2V
∗M∗2u − δi2M∗2i = 0, (3.1c)

cδi2M
∗
2i − ωV ∗ − δvV ∗

M∗1
hm +M∗2u

= 0. (3.1d)

As mentioned in the previous section, since we do not have data which differentiates between the
proliferation rates for M1 and M2 cells, we assume that pm1 = pm2 := pm. For simplicity we also
assume for now that de1 = de2 := de. Under these assumption, model (2.1) exhibits three types of
equilibria:

(i) Immune-Free Virus-Free Steady State (IVF): (M∗1 ,M
∗
2u,M

∗
2i, V

∗) = (0, 0, 0, 0).
(ii) Immune-Present Virus-Free Steady State (VF): (M∗1 ,M

∗
2u,M

∗
2i, V

∗) = (M∗1 ,M
∗
2u, 0, 0).

(iii) Immune-Present Virus-Present Steady State (IV): (M∗1 ,M
∗
2u,M

∗
2i, V

∗) = (M∗,v1 , M∗,v2u , M∗,v2i ,
V ∗,v).

In the following, we obtain explicit expressions for the equilibria (ii) and (iii). To this end, note that
solving Eq. (3.1c) for M2i, and further substituting this solution into Eq. (3.1d) leads to

V ∗
(
cβ2M

∗
2u − δv

M∗1
hm +M∗2u

− ω
)

= 0, (3.2)

which means that

either V ∗ = 0 or M∗1 =
(cβ2M

∗
2u − ω)(hm +M∗2u)

δv
. (3.3)

• If V ∗ = 0: then M∗2i = 0 (from Eq. (3.1c)), and thus we can obtain an explicit expression for
the steady state (ii) by solving Eqns. (3.1a) and (3.1b) for non-zero M∗1 and M∗2u values:

M∗1 =
(pm − de)k2r0m2

(r0m1 + r0m2)pm
, M∗2u =

(pm − de)k2r0m1

(r0m1 + r0m2)pm
. (3.4)

Both M∗1 and M∗2u exist when the proliferation rate of macrophages is greater than their death
rate (i.e., pm > de).
• If V ∗ 6= 0: we can obtain an expression for the steady state (iii), by adding Eqns. (3.1a) and

(3.1b), to obtain an implicit equation in M∗2u, M∗1 and V ∗,

pm(M∗1 +M∗2u)

(
1− M∗1 +M∗2u

k2

)
− de(M∗1 +M∗2u)− β2V ∗M∗2u = 0, (3.5)

and then substituting M∗1 from Eq. (3.3) into Eq. (3.5). This yields a polynomial of the fourth
degree in M∗2u (with M∗2u seen as a function of V ∗):

P (M∗2u) := A(M∗2u)4 +B(M∗2u)3 + C(M∗2u)2 + (D + EV ∗)(M∗2u) + F = 0, (3.6)
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where

A = pmc
2β2

2 , B = 2cpmβ2(chmβ2 − ω + δv),

C =

[
δ2v +

(
2c(hm −

k2
2

)β2 − 2ω

)
δv + c2h2mβ

2
2 − 4chmβ2ω + ω2

]
pm + cdek2β2δv,

D = (cβ2hm − ω + δv)
[
k2δv(de − pm)− 2hmωpm

]
,

E = β2k2δ
2
v , F = h2mω

2pm + ωhmk2δv(pm − de).

Only real positive solutions M∗,v2u of Eq. (3.6) provide biologically relevant steady states. For the
parameter values used here (i.e., pm > de, so that this state exists; see Proposition 3.2) there are
either zero or two positive solutions M∗,v2u for each V ∗,v (see Figure 2(a)), and correspondingly
two positive solutions M∗,v2i for each V ∗,v, with M∗,v2i = (β2V

∗,vM∗,v2u )/δi2 (see Figure 2(b)).
To obtain a better understanding of the effect of different virus-related and immune-related
parameters on these coexistence steady states, in Figure 2 we graph M∗,v2u vs. V ∗,v (and M∗,v2i

vs. V ∗,v) as we vary: (i) β2, (ii) c, (iii) ω, (iv) pm, (v) de, (vi) δv. We observe that variations
in some parameters (e.g., pm, de, δv) do not impact in a similar manner the two (IV ) states,
with a more significant impact being observed on the state characterised by a larger M∗2u (i.e.,
the upper branch of these plots).

In Figure 2 we also observe that these non-zero (IV ) states exit only for smaller V ∗ values:
when V ∗ > 1010 there are no such immune-present virus-present states. This observation is
detailed in the last part of Proposition 3.2, and proved in Appendix B.

The following result summarises the conditions for the existence and stability of the steady states
exhibited by model (2.1) (under the assumption that pm1 = pm2 = pm and de1 = de2 = de):

Proposition 3.2. Model (2.1) can have three different types of steady states, with the following
stabilities:

(i) The Immune-Free Virus-Free Steady State (IV F ), which exists for all non-zero parameter values
and is locally asymptotically stable when pm ≤ de and unstable otherwise.

(ii) The Immune-Present Virus-Free Steady State (V F ), which exists for pm > de and is locally
asymptotically stable when

R0
e :=

cβ2M
∗
2u

δv
M∗

1

hm+M∗
2u

+ ω
< 1, (3.7)

and unstable otherwise.
(iii) The Immune-Present Virus-Present Steady States (IV ) (with pm1 = pm2 = pm and de1 = de2 =

de) exist provided that pm > de, M
∗
2u > ω/(β2c) and V ∗ < −D/E (with D < 0 and E given by

Eq. (3.6)). These states can be stable or unstable, depending on model parameters.

Proof. See Appendix B. �

All these existence and stability results for the steady states displayed by model (2.1) are summarised
in Figure 3. Here we vary the cells proliferation rates pm above/below the death rates de = 0.2, since
these two parameters control the stability of the (IV F ) state and the existence of the (V F ) and (IV )
states. In sub-panel (i) we graph M∗2u vs. pm, while in sub-panel (ii) we graph V ∗ vs. pm. Figure
3 shows that the (IV F ) steady state is stable when pm ∈ (0, 0.2) and unstable when pm ∈ (0.2, 0.9).
The steady states (V F ) and (IV ) do not exist for pm < de = 0.2; they exist only for pm ≥ de = 0.2.
Moreover, for the baseline parameter values in Table ??, the (V F ) steady state is unstable when it
exists, while for the two co-existence (IV ) states one is stable and the other one is unstable (see also
Figure 10 in Appendix B).
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Figure 2. Immune-Present Virus-Present Steady State (IV ) (M∗,v1 ,M∗,v2u ,M
∗,v
2i , V

∗,v):
the curves in (a) show the uninfected M2 cells (given by Eq. (3.6)) as a function of
virus particles V ∗, while the curves in (b) show the infected M2 cells as a function
of V ∗ (where M∗2i = β2V

∗M∗2u/δi2). In sub-panels (i)-(vi) we investigate the changes
in these steady states (IV ) as we vary (i) the infection rate β2, (ii) the burst size c,
(iii) the decay rate ω, (iv) the proliferation rate pm, (v) the death rate de and (vi) the
elimination rate of viruses by M1 cells δv. The rest of parameters are fixed at their
baseline values shown in Table 2.
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Figure 3. Summary of all possible steady states and their stability, as determined
by the relation between pm and de; (a) M∗2u vs. pm; (b) V ∗ vs. pm. Note that the
(IV F ) state is stable when pm < de. The (V F ) state exists when pm > de = 0.2;
moreover, when it exists is unstable (R0

e > 1). The co-existence (IV ) state exists when
pm > de = 0.2. The rest of parameter values are as described in Table 2.

In Figure 4 we show numerically the dynamics of system (2.1) as the solutions approach the three
steady states discussed above, for some specific parameters values which ensure that these states are
stable (and thus the solution trajectories will approach them).
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Figure 4. Dynamics of model (2.1) as the solutions approach asymptotically the three
steady states: (a) For the baseline parameter values (see Table 2) the solutions approach
one of the immune-present, virus-present (IV ) states; (b) For pm = 0.57 > de = 0.2,
β = 2 × 10−11 and the rest of parameter values as in Table 2, the solutions approach
the virus-free (V F ) state; (c) For pm = 0.57 < de = 0.7 and the rest of parameter
values as in Table 2, the solutions approach the IVF steady state.

3.3. Sensitivity to model parameters. Since we are interested in understanding how model param-
eters impact viral persistence (i.e., the existence of virus-present steady states (IV )), in Figure 5 we
start with the baseline parameter values from Table 2 and investigate how changes in various parameters
impact V (t). The initial conditions used in this Section are shown in Table 1.
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Figure 5. Changes in virus dynamics, V (t), as we vary the following parameters: (a)
burst size c; (b) virus-induced M2→M1 polarisation rate rvm2; (c) elimination rate δv
of viruses by M1 cells; (d) macrophages infection rate β2; (e) M1→M2 polarisation
rate r0m1; (f) M2→M1 polarisation rate r0m2; (g) proliferation rate pm1 of M1 cells;
(h) proliferation rate pm2 of M2 cells; (i) death rate de1 of M1 cells; (j) death rate
de2 of M2 cells; (k) decay rate δi2 of infected M2 cells; (l) virus death rate ω; (m)
carrying capacity k2 of macrophages; (n) saturation constant hm for macrophages, (o)
saturation constant hv for virus particles. The rest of parameter values are as in Table
2. The inset figures show the long-term dynamics of V (t) (i.e., for t < 1000 days).
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In Figure 5 we see that the burst size (c), the elimination rate of the viruses by M1 cells (δv), the
infection rate (β2), the M1→ M2 polarisation rate (r0m1), the macrophages carrying capacity (k2) have
the greatest impact on both the short-term and long-term dynamics of virus population V (t). A weaker
impact is observed for the virus elimination rate (ω). Other parameters, such as r0m2 or de2, impact
only the transient dynamics of V (t) (but not the long-term dynamics). Two other parameters, pm1 and
de1, seem to trigger a bifurcation in the long-term dynamics of V (t): from a stable steady state to a
stable limit cycle (see the inset sub-figures in panels (g) and (i)). We will investigate this limit cycle in
more detail in the next section.

Global sensitivity analysis. The above local sensitivity analysis examines changes in V (t) based on
changes in only one input parameter at a time. To investigate what happens with V (t) when we change
all parameter values at the same time (within the parameter ranges used for the local sensitivity), next
we perform a global sensitivity analysis using the Latin Hypercube Sampling (LHS) / Partial Rank
Correlation Coefficient (PRCC) approach [4, 42, 62]. In Figure 6 we show the PRCC for all model
parameters. We note that only two parameters are highly and positively correlated with the viral load
over the first two weeks (i.e., the PRCC value is very close to +1): β2 (the most sensitive parameter)
and c (the next sensitive parameter). A lower PRCC value is observed for δi2, and an even lower one for
ω, suggesting much weaker influences of these parameters on the viral load. All other model parameters
show no correlations with the output (i.e., viral load).

While both local and global sensitivity analysis identified β2 and c as the parameters that have the
greatest influence on viral load, and ω as a parameter with a weak influence on viral load, there are
also some significant differences in the local/global sensitivity results. In particular, local sensitivity
identified also δv, r

0
m1 and k2 as potentially important parameters, while global sensitivity identified δi2

as a potentially important parameter. These differences suggest that there is a high variation in the
output, especially when we are moving away from the baseline values chosen in Table 2.
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Figure 6. The effect of model parameters on V levels, as predicted by LHS-PRCC
analysis. Each parameter is sampled randomly (1000 samples), using a uniform dis-
tribution, from the same parameter ranges used for the local sensitivity analysis (i.e.,
pm1 ∈ [0.1, 0.9], pm2 ∈ [0.1, 0.9], β2 ∈ [2 × 10−11, 2], δi2 ∈ [0.35, 0.69], c ∈ [1, 8000],
ω ∈ [0.1, 10], δv ∈ [5 × 10−7, 0.5], k2 ∈ [106, 109], r0m1 ∈ [10−5, 0.1], r0m2 ∈ [10−4, 1],
rvm2 ∈ [0, 10], de1 ∈ [0.1, 0.8], de2 ∈ [0.1, 0.8], hv, hm ∈ [0.2, 1.7]). We simulate the viral
load for 14 days (similar to the time scale shown in Figure 5), with a time-step of 1
day. The PRCC index varies between −1 and +1; the largest PRCC (in absolute value)
corresponds to the parameter to which the model outcome is most sensitive to: here
β2 and c, followed by δi2 and ω. All other parameters have PRCC< 0.1.

3.4. Oscillatory dynamics. We now focus on the long-term oscillatory dynamics observed in Figure
5(i), which was obtained when we increased the death rate of M1 cells to de1 = 0.8 (while keeping the
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Figure 7. Oscillatory dynamics exhibited by model (2.1). (a) Hopf-bifurcation for
the co-existence steady state (IV ), when de1 = 0.8, de2 = 0.1 and we vary pm1 and
pm2. (i) Bifurcations between stable steady states (IV ) and stable limit cycles in the
(pm1, pm2) space; (ii),(iii) changes in the real and imaginary part of eigenvalues of the
Jacobian matrix at the steady state (IV ), as we vary pm1. (b) (i) Limit cycles obtained
for pm2 = 0.9, and different pm1 values; (ii) Amplitude of oscillations in V (t) as we
increase pm1. (c) Example of oscillatory dynamics obtained for pm1 = 0.57, pm2 = 0.9:
(i) V (t), (ii) M2i(t), (iii) M2u(t), (iv) M1(t). The rest of parameter values are as
described in Table 2.
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death rate of M2 cells at its baseline value de2 = 0.2). Having different macrophages death rates seems is
biologically realistic. In [30] the authors noted that the murine macrophages with M1-like markers have
a half-life between 18 − 20 hrs, while the macrophages with M2-like markers have a half-life between
5− 7 days. This corresponds to the following death rates: de2 ∈ (0.099, 0.138) and de1 ∈ (0.83, 0.92).

In Figure 7 we assume that de1 = 0.8 and de2 = 0.1, and investigate the effect of varying the
macrophages proliferation rates pm1 and pm2. Note that in this case there is only one positive co-
existence steady state (and not two, as for the case de1 = de2 = 0.2 and pm1 = pm2 = 0.57 investigated
in Figure 3(a)); see also the discussion in Appendix C. Figure 7(a)(i) shows the existence of a Hopf
bifurcation as we vary pm1. Sub-panels (a)(ii) and (a)(iii) show the numerically-calculated real and
imaginary parts of the eigenvalues λ of the Jacobian matrix, as we vary pm1; here λ1,4 ∈ R, λ2,3 ∈ C).
In Figure 7(b)(i) we graph in the (M1+M2u, V +M2i)−space the limit cycles obtained for pm2 = 0.9 and
various pm1 values, while in Figure 7(b)(ii) we graph the changes in the amplitude of the oscillations
in V (t) as we vary pm1. Finally, in Figure 7(c) we graph an example of the time-evolution of the
oscillations in (i) V (t), (ii) M2i(t), (iii) M2u(t), (iv) M1(t), for some specific pm1 and pm2 values.

3.5. Macrophages as reservoirs for viruses. Until now we investigated the case where VSV particles
infect the M2 macrophages and replicate inside these cells (i.e., c � 1). Equation (2.1d) did not
incorporate an extra term (i.e., −β2VM2u) to account for the loss of free viruses trapped inside the M2
cells, since due to the high replication rate c such a term would not impact significantly the dynamics
of system (2.1).

In the following we investigate numerically the dynamics of model (2.1) under the assumption that
macrophages act as reservoirs for the virus particles [54]. In this case, we have c = 1 (i.e, the virus
particles entering the cells do not replicate). For this reason, we need to consider a virus-trapping term
to account for the removal of free virus particles from the environment, as these viruses are hiding inside
the macrophages. Thus, Eq. (2.1d) now becomes:

dV (t)

dt
= cδi2M2i(t)− δvV (t)

M1(t)

hm +M2u(t)
− ωV (t)− β2V (t)M2u(t).

Since the M2 cells are assumed to act as reservoirs, it make sense to assume also a reduction in the lysis
rate δi2.

Figure 8 shows the dynamics of viruses and infected cells when: (a) c = 2500 and δi2 = 0.52 (baseline
parameters; see Table 2); (b) c = 1 and δi2 = 0.52 (same lysis rate as before); (c) c = 1 and δi2 = 0.052
(low lysis rate); (d) c = 1 and δi2 = 0.0052 (very low lysis rate). We note that the assumption of M2
macrophages acting as a viral reservoir (and thus being characterised by a low lysis rate) leads to the
persistence of a very low virus population, and a slightly higher infected M2 macrophage population.
Further reduction in δi2 (e.g., from δi2 = 0.052 to δi2 = 0.0052) does not affect the size of virus and
infected macrophage populations.

4. Summary and Discussion

In this work, we have considered a mathematical modelling and computational approach to investigate
the interaction between an oncolytic virus (Vesicular Stomatitis Virus – VSV) and the innate immunity
generated by M1 and M2 macrophages in response to this virus. While oncolytic viruses are used in the
context of tumour therapies, here we ignored the tumour and focused exclusively on the interactions
between the viruses and the innate immunity (the tumour-virus-immune interactions will be investigated
in a future study [2]).

First we have shown that the mathematical model for macrophages-virus interactions we developed
in this study is biologically realistic, in the sense that the solutions are non-negative and bounded.
Second, by focusing on the long-term dynamics of this model, we have shown that there are three types
of equilibria: (i) an immune-free virus-free equilibrium, (ii) an immune-present virus free equilibrium,
and (iii) multiple immune-present virus-present equilibria (see Figure 4). Since we were interested in
the state where virus is present, we then investigated the changes in this co-existent state as we varied
different model parameters (see Figure 5). Local and global sensitivity analysis showed that the virus
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Figure 8. Dynamics of virus V (t) and infected macrophages M2i(t), under the as-
sumption that macrophages support (a) virus proliferation (c = 2500, δi2 = 0.52); (b)
viral reservoir with a high virus-lysis rate (c = 1, δi2 = 0.52); (c) viral reservoir with
a low lysis rate (c = 1, δi2 = 0.052); (d) (c) viral reservoir with a very low lysis rate
(c = 1, δi2 = 0.0052).

population is most sensitive to the burst size c of infected cells and the infection rate β2, and less
sensitive to the virus elimination rate ω. Differences between the local and global sensitivity results for
parameters δv, r

0
m1, k2 (identified as important by local sensitivity) and δi2 (identified as important by

global sensitivity), are the result of model nonlinearity. Thus, some parameters are non-monotonically
correlated with the viral load (i.e., PRCC < 0.1), while other parameters can become monotonically
correlated with the viral load (i.e., PRCC > 0.3) only when varied inside parameter spaces where many
other parameters are away from the baseline values listed in Table 2.

Finally, we investigated the role of macrophages as promotors of virus replication versus viral reser-
voirs (see Figure 8). We confirmed numerically the persistence of virus (and infected M2 macrophages)
in the case of macrophages acting as viral reservoirs, in the context of a very low lysis rate of infected
cells by viruses. The assumption of viral reservoirs was shown to lead to lower virus levels compared to
the assumption of active viral replication.

Biological significance. In this study, our focus was on an oncolytic VSV, which was successful enough
in reducing the size of different tumours to be allowed to reach the clinical trials stage [20]. However,
one of the main problems with oncolytic viruses (including VSV) is their premature clearance by the
immune response. Given that previous experimental studies have shown that VSV can infect one of
the main types of immune cells infiltrating solid tumour, namely the M2 macrophages, here we focused
on the poorly-understood interactions between VSV and such macrophages. As discussed above, if we
assume that the M2 macrophages promote VSV replication, then parameters such as c, and β2 lead to
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an increased virus population, which is important for anti-tumour viral therapies (not considered here,
but investigated in an upcoming study [2]). If, on the other hand, we assume that the M2 macrophages
only act as reservoirs for viruses, there is a persistent low-level of infected macrophages and a low-level
of virus particles. The level of infected M2 cells can be slightly increased if we increase the infection rate
β2 (not shown here). However, it cannot reach the level obtained under the assumption of active viral
replication. Therefore, depending on the role of M2-like macrophages, one could predict lower/higher
levels of virus particles in the system.

Appendix A

Proof of Proposition 3.1:
(i) The functions on the right hand side of Eqs. (2.1a)-(2.1d) are C1 on R4. Thus, it follows from the
Fundamental Existence-Uniqueness Theorem for ODEs [47] that Eqns. (2.1a)-(2.1d) exhibit a unique
solution that satisfies the initial conditions (2.2). �
(ii) Now we show that model (2.1a)-(2.1d) is biologically realistic, in the sense that the cell and virus
populations cannot become negative. To do so, we investigate the conditions under which the non-
negative orthant R4

≥0 is positively invariant for (2.1a)-(2.1d) (see e.g. [46]):

Ṁ1 |(M1=0)= av1V +M2u(r0m2 + rvm2

V

hv + V
) ≥ 0, for all V,M2u ≥ 0,

Ṁ2u |(M2u=0)= M1r
0
m1 ≥ 0, for all M1 ≥ 0,

Ṁ2i |(M2i=0)= β2VM2u ≥ 0, for all M2u, V ≥ 0,

V̇ |(V=0)= cδi2M2i ≥ 0, for all M2i ≥ 0.

Thus the non-negative orthant R4
≥0 is positively invariant, namely, if a trajectory starts in R4

≥0, it
remains there for all t ≥ 0. �

To show the boundedness of the solutions for system (2.1a)-(2.1d), we use a similar approach as in
[60]. By adding Eq. (2.1a) and Eq. (2.1a), we obtain

d(M1(t) +M2u(t))

dt
=

(
pm1M1(t) + pm2M2u(t)

)(
1− M1(t) +M2u(t)

k2

)
−
(
de1M1(t) + de2M2u(t)

)
−β2V (t)M2u(t)

≤
(
pm1M1(t) + pm2M2u(t)

)(
1− M1(t) +M2u(t)

k2

)
,

which implies that limt→+∞(M1(t) + M2u(t)) ≤ k2. For any fixed ε > 0 let L1 = k2 + ε. Then
M1(t) +M2u(t) ≤ L1 for sufficiently large t.
Let T (t) = M1(t) +M2u(t) +M2i(t). Then T (t) satisfies (for sufficiently large t)

dT (t)

dt
=
(
pm1M1(t) + pm2M2u(t)

)(
1− M1(t) +M2u(t)

k2

)
− de1M1(t)− de2M2u(t)− δ2iM2i(t)

≤ pm1

(
M1(t) +M2u(t)

)
+ pm2

(
M2u(t) +M1(t)

)
− σ

(
M1(t) +M2u(t) +M2i(t)

)
≤ L1(pm1 + pm2)− σT (t),

where σ = min{de1, de2, δ2i}. The above inequality reduces to

T (t) ≤ e−σt
(
T (0)− L1(pm1 + pm2)

σ

)
+
L1(pm1 + pm2)

σ
.

Hence, if T (0) ≤ L2 with L2 = L1(pm1+pm2)
σ , then 0 ≤ T (t) ≤ L2 for sufficiently large t. Since

M1(t),M2u(t) and M2i(t) are all non-negative, then M2i(t) ≤ L2, for sufficiently large t. Moreover,
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because all variables are non-negative, we obtain the following inequality:

dV (t)

dt
= cδi2M2i(t)− δvV (t)

M1(t)

hm +M2u(t)
− ωV (t) ≤ cδi2L2 − ωV (t),

Hence, if V (0) ≤ L3 with L3 = cδi2L2

ω , then 0 ≤ V (t) ≤ L3 for sufficiently large t. �

Appendix B

Proof of Proposition 3.2: In the following we discuss the conditions for existence of the steady
states (M∗1 ,M

∗
2u,M

∗
2i, V

∗), when pm1 = pm2 = pm and de1 = de2 = de.

• It is obvious that the zero steady state (0, 0, 0, 0) exists for all positive parameter values, while
the immune-present virus-free state (M∗1 ,M

∗
2u, 0, 0) exists only if pm > de (see Eq. 3.4).

• In regard to the co-existence state (M∗1 > 0,M∗2u > 0,M∗2i > 0, V ∗ > 0) we note that if we add
Eqns. (3.1a)+(3.1b) we obtain

(M∗1 +M∗2u)

(
(pm − de)−

M∗1 +M∗2u
k2

)
= β2V

∗M∗2u.

This equation is satisfied only if pm > de (since β2, V
∗,M∗2u,M

∗
1 > 0). Moreover, the positivity

of M∗1 (given by Eq. (3.3)) is ensured if M∗2u > ω/β2c.
Finally, since this co-existence steady state must be a root for the 4th-order polynomial given

by Eq. (3.6), which connects M∗2u with V ∗, next we investigate the conditions that need to be
satisfied by M∗2u and V ∗ to ensure the existence of two or four such steady states.
First, we note that A > 0 in Eq. (3.6), and thus we have P (M∗2u)→ +∞ as M∗2u → ±∞. More-
over, we have P (0) = F > 0 for pm > de. Therefore, to have positive roots for P (M∗2u) = 0,
this polynomial should have a negative local minimum for some M∗2u > 0. This translates into
P ′(M∗2u) = 0 for some M∗2u > 0 (while P (M∗2u) < 0).
Since P ′(+∞) > 0, if we would have P ′(0) = D+EV ∗ < 0 (for pm > de and cβ2hm−ω+δv > 0),
then using the Intermediate Value Theorem we could say that there is a M∗2u > 0 such that
P ′(M∗2u) = 0. Hence, condition V ∗ < −D/E is necessary for having two positive roots M∗2u of
Eq. (3.6), and thus for having a non-zero co-existence steady state.

    Number of roots of P(M* ) (see Eq.(8)) when F>0 for p >d
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Figure 9. Description of the number of positive roots for the 4th order polynomial
P (M∗2u) = 0 (obtained when pm1 = pm2 = pm and de1 = de2 = de; see Eq. (3.6)).
Sub-panels (a) (i),(ii) show two caricature descriptions of the number of possible roots
depending on the specific parameter values in Eq. (3.6), when assuming pm > de, and
thus P (0) = F > 0. Sub-panel (b) shows the actual number of roots for the parameters
used in this study (Table 2), as we vary the steady-state level of virus particles V ∗ in
equation (3.6).

Now we investigate the stability of the steady states for the parameter values used in this study (when
pm1 = pm2 = pm, de1 = de2 = de). The Jacobian matrix associated with system (2.1a)-(2.1d) at a
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general equilibrium point is:

J(M∗1 ,M
∗
2u,M

∗
2i, V

∗) =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 , (4.1)

with

a11 = pm1

(
1− M∗

1 +M
∗
2u

k2

)
− pm1M

∗
1

k2
− r0m1 − de1, a12 = r0m2 +

rvm2V
∗

hv+V ∗ − pm1M
∗
1

k2
, a13 = 0,

a14 = M∗2u

(
rvm2

hv+V ∗ − rvm2V
∗

(hv+V ∗)2

)
, a21 = r0m1 −

pm2M
∗
2u

k2
,

a22 = pm2

(
1− M∗

1 +M
∗
2u

k2

)
− pm2M

∗
2u

k2
− rvm2V

∗

hv+V ∗ − β2V ∗ − r0m2 − de2, a23 = 0,

a24 = M∗2u

(
rvm2V

∗

(hv+V ∗)2 −
rvm2

hv+V ∗

)
− β2M∗2u, a31 = 0, a32 = β2V

∗, a33 = −δi2, a34 = β2M
∗
2u,

a41 = − δvV
∗

hm+M∗
2u

, a42 =
δvV

∗M∗
1

(hm+M∗
2u)

2 , a43 = cδi2, a44 = −ω − δvM
∗
1

hm+M∗
2u

.

Next we investigate the eigenvalues of this Jacobian at the specific steady states exhibited by model
(2.1):

(i) Immune-Free Virus-Free Steady State (IV F ): The eigenvalues of the Jacobian matrix (4.1)
calculated at (0, 0, 0, 0) are: λ1 = −ω < 0, λ2 = −δi2 < 0, and λ3,4 satisfying the following
equation

λ2 − λ(a11 + a22) + a11a22 − a12a21 = 0

with

a11 = pm1 − r0m1 − de1, a22 = pm2 − r0m2 − de2, a12 = r0m2, a21 = r0m1.

This zero steady state is stable if a11 +a22 < 0 and a11a22−a12a21 > 0, which for pm1 = pm2 :=
pm and de1 = de2 := de (as assumed throughout most of the manuscript) reduce to

pm − de <
1

2
(r0m1 + r0m2), and

[
pm − de − (r0m1 + r0m2)

]
[pm − de] > 0. (4.2)

These two inequalities hold true when de > pm.
When pm = de the eigenvalues of the Jacobian matrix calculated at this trivial steady state

are: λ1 = −ω, λ2 = −δi2, λ3 = −(r0m1 + r0m2), λ4 = 0. Since the trivial state is now a non-
hyperbolic equilibrium, we investigate its stability with the help of a Lyapunov function. To
this end consider the following function:

L(M1,M2u,M2i, V ) = M1 +M2u +M2i +
1

c
V.

Clearly, L(0, 0, 0, 0) = 0 and L(M1,M2u,M2i, V ) > 0 for M1,M2u,M2i, V > 0 (see Proposition
3.1). Moreover,

L′(M1,M2u,M2i, V ) = M ′1 +M ′2u +M ′2i +
1

c
V ′

= −pm
k2

(M1 +M2u)2 − δv
c
V

M1

hm +M2u
− ω

c
V ≤ 0,

since M1,M2u,M2i, V ≥ 0. In fact L′ < 0 if M1,M2u,M2i, V > 0. Therefore L satisfies the
conditions of a Lyapunov function, and thus (0, 0, 0, 0) is asymptotically stable also for pm = de.

(ii) Immune-Present Virus-Free Steady State (V F ): (M∗1 ,M
∗
2u, 0, 0), where

M∗1 =
(pm − de)k2r0m2

(r0m1 + r0m2)pm
, M∗2u =

(pm − de)k2r0m1

(r0m1 + r0m2)pm
, exists for pm > de. (4.3)

The four eigenvalues of the Jacobian matrix (4.1) associated with system (2.1a)-(2.1d) and
calculated at this state are satisfying two quadratic equations:
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– The first equation is

λ2 − λ(c11 + c22) + c11c22 − c12c21 = 0,

with

c11 =
(de − pm− r0m1)r0m2 − (r0m1)2

(r0m1 + r0m2)
, c12 =

(de − pm)r0m2

(r0m1 + r0m2)
+ r0m2,

c21 =
(de − pm)r0m1

(r0m1 + r0m2)
+ r0m1, c22 =

(de − pm− r0m2)r0m1 − (r0m2)2

(r0m1 + r0m2)
.

The roots λ1,2 are negative provided that c11 + c22 < 0 and c11c22− c12c21 > 0. These two
inequalities can be re-written as

de − pm − r0m1 − r0m2 < 0, and (pm − de)(r0m1 + r0m2) > 0,

which hold true if pm > de (when this virus-free steady state exists).
– The second quadratic equation (which gives us λ3,4) is

λ2 − b1λ+ b2 = 0,

with

b1 = −ω − δi2 −
δvM

∗
1

hm +M∗2u
, b2 = δi2

(
ω +

δvM
∗
1

hm +M∗2u
− cβ2M∗2u

)
.

Since b1 is always negative, the stability of this steady state depends on the value of b2: if
b2 > 0 then this steady state is stable. One can re-write this condition as

b2 = −δi2
(
R0
e − 1

)
, with R0

e =
cβ2M

∗
2u

δv
M∗

1

hm+M∗
2u

+ ω
.

For the parameters used in this study R0
e > 1, which implies that b2 < 0 and thus this

equilibrium is unstable.
(iii) Immune-Present Virus-Present Steady States (IV ): given that the Jacobian matrix calculated

at the states (M∗,v1 ,M∗,v2u ,M
∗,v
2i , V

∗,v) is very complex, and we could not find explicit solutions
for these co-existence states (see Eq. (3.6) and Figure 2), the stability of these states is even
more difficult to be investigated analytically. Thus we calculate numerically (for the baseline
parameters listed in Table 2) the eigenvalues of the Jacobian matrix corresponding to the two
steady states shown in Figure 2. Figure 10(a) shows one more time these two steady states
as we vary: (a) V ∗ (while keeping all parameter values, including pm, fixed at their baseline
levels from Table 2); (b) pm (while fixing V ∗ = 2 × 109 and all other parameters at their
baseline levels). Sub-panel (b)(ii) shows the eigenvalues of the Jacobian matrix at the state

M∗,12u (which is always stable for pm > 0.4218, as all λi < 0, i = 1, 2, 3, 4). Sub-panel (b)(iii)

shows the eigenvalues of the Jacobian matrix at the state M∗,22u (which turns out to be stable
for pm ≤ 0.433 and unstable for pm > 0.433 – when λ4 > 0).

Appendix C

Conditions for the co-existence steady state when pm1 6= pm2,de1 6= de2. In Section 3.4
we investigated numerically the case when pm1 6= pm2 and de1 6= de2. In the following we study the
conditions for the existence and the number of coexistence steady states (M∗1 ,M

∗
2u,M

∗
2i, V

∗) for this
particular case.

When pm1 6= pm2 and de1 6= de2, the co-existence steady state is a root for the 4th-order polynomial
given by the following equation:

Q(M∗2u) := A(M∗2u)4 +B(M∗2u)3 + C(M∗2u)2 + (D + EV ∗)(M∗2u) + F = 0, (4.4)

where
A = pm1c

2β2
2 , B = cβ2 (2(β2chm − ω)pm1 + δv(pm1 + pm2)) ,
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Figure 10. (a) Stability of Immune-Present Virus-Present steady states (IV ) as we
vary V ∗; here we fix pm = 0.57, de = 0.2. (b) Stability of Immune-Present Virus-
Present steady states (IV ) as we fix V ∗ = 2 × 109 and we vary pm. The dotted
vertical line identifies the value pm = 0.57 used in sub-panel (a). Sub-panel (b)(i)

shows the existence of stable/unstable states M∗,12u and M∗,22u as we vary pm; note that
for pm ∈ (0.4218, 0.433) both steady states are stable, while for pm > 0.433 the first

state (M∗,12u ) is stable while the second state (M∗,22u ) is unstable. Sub-panels (ii) and
(iii) show the eigenvalues of the Jacobian matrix (4.1) at each of these two (IV ) states,
which determine the stability of the two steady-state branches shown in sub-panel (i).

C = pm2δ
2
v + [c ((hm − k2)pm1 + hmpm2 + de1k2)β2 − ω(pm1 + pm2)] δv + pm1(β2

2c
2h2m − 4β2chmω + ω2),

D = (de2 − pm2)− ((pm1 − de1)(β2chm − ω)k2 + ωhm(pm1 + pm2)) δv + 2ωhmpm1(β2chm − ω),

E = β2k2δ
2
v , F = hmω (k2(pm1 − de1)δv + ωhmpm1) .

As for Eq. (3.6) we have A > 0 and therefore Q(M∗2u)→∞ as M∗2u →∞. If we vary pm1 above/below
de1 value, as in Figure 7, we note that F could be positive or negative:

• for de1 = 0.8, pm1 > 0.8: we have F > 0, which leads to either 2 or 4 positive roots for
Q(M∗2u) = 0; same as in Figure 9 (not shown here).
• for de1 = 0.8, pm1 < 0.8: we have F < 0, which leads to either 1 or 3 positive roots for
Q(M∗2u) = 0; same as in Figure 11.

However, not all these positive roots lead to biologically realistic steady states, since we also require
that M∗1 > 0, which happens for M∗2u > ω/(cβ2) = 400 (for the parameter values used in this study:
ω = 2, c = 2500, β2 = 2× 10−6). Therefore, the increase in pm1 above de1 leads to a bifurcation from
1 co-existence steady state (for pm1 < de1) to 2 co-existence steady states (for pm1 > de1). We remark
that the co-existence state obtained for pm1 < de1 is characterised by a lower level of virus particles V ∗,
compared to the co-existence states obtained for pm1 > de1.
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