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A PREY-PREDATOR SYSTEM WITH HERD BEHAVIOUR OF PREY IN A

RAPIDLY FLUCTUATING ENVIRONMENT

GURUPRASAD SAMANTA, ASHOK MONDAL, DEBGOPAL SAHOO, AND PRALAY DOLAI

Abstract. A statistical theory of non-equilibrium fluctuation in damped Volterra-Lotka prey-predator

system where prey population lives in herd in a rapidly fluctuating random environment has been pre-

sented. The corresponding results have also been obtained in absence of herd behaviour. The method

is based on the technique of perturbation approximation of non-linear coupled stochastic differential

equations. The characteristic of group-living of prey population has been emphasized using square

root of prey density in the functional response. Numerical results have also been obtained by varying

some of the vital system parameters.

1. Introduction

The classical Volterra-Lotka equations are generally used to describe the time-evolution of interacting

prey-predator system. The introduction of intraspecific competition among the prey, resulting from the

limited resources, makes the Volterra-Lotka model rough and the system is known as the damped

Volterra-Lotka system. In natural ecosystems, it has been observed that most of the prey populations

live forming groups, and all members of a group do not interact at a time (Bera et al. 2015, 2016a,

2016b). Major predators of zebra, buffalo, kongoni, toki and Thomsons gazelle are hyena, wild dog,

lion, leopard and cheetahs and so to defend against predators they form groups. The underlying reasons

behind group formation more likely depend upon self-defence, group-defence, group alertness within a

group and speed, to avoid being killed by a predator (Khan et al. 2004). Models of group formation are

analysed to study environmental and social forces, and individual decision rules that lead to formation

of swarms, flocks, schools, herds, and other groups (DeAngelis and Mooij 2005). It is pointed out by

Fryxell et al. (2007) that group formation profoundly reduce food intake rates below the expected

levels. As a consequence, suitable form of functional response was searched by researchers to describe

the social behaviour of such populations. Freedman and Wolkowitz (1986) analysed the characteristics

of group defence in this regard. Now, when a population lives forming groups, then all members of a

group do not interact at a time and some of the reasons for this herd behaviour are for searching food

resources, defending the predators. To explore the consequence of spatial group formation of fixed shape

by predators, Cosner et al. (1999) introduced the idea that the square root of the predator variable is to

be used in the function describing the encounter rate in two-dimensional systems. Unfortunately, such

an idea has not been incorporated by the researchers for about a decade. The most significant works

of Ajraldi et al. (2011) and Braza (2012) gave such modelling a new dimension. The central ideas are

as follows: Let x be the density of a population that gathers in herds, and suppose that herd occupies

an area A. The number of individuals staying at outermost positions in the herd is proportional to
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the length of the perimeter of the patch where the herd is located. Clearly, its length is proportional

to
√
A. Since x is distributed over a two-dimensional space,

√
x would therefore count the individuals

at the edge of the patch. As a result, the encounter rate e(x, y) = βxy should change its form to

e(x, y) = β
√
xy in two dimension.

Rapidly fluctuating environmental variations usually cause random variations in system parameters,

in particular, in the natural growth coefficient of the prey and in the natural mortality of the predator.

Since these are the main parameters subject to coupling of a prey-predator pair with its environment

(Dimentberg 1988). Bera et al. (2016a) considered a prey-predator model, where the ‘functional

response’ is of the form Holling type-II, but the prey density is replaced by its square root. They studied

the stochastic version of the model, which takes into account the effect of fluctuating environment

characterized by Gussion white noises. A prey-predator model was proposed in the work of Maiti

et al.(2016), where both the prey and the predator show herd behaviour. The effect of fluctuating

environment was analyzed by them incorporating Gaussian white noises. They concluded that, to

keep ecological balance in a fluctuating environment, the system has to maintain some restrictions. In

the present article we have developed a general stochastic analysis of the behaviour of the damped

Volterra-Lotka prey-predator system with herd behaviour in prey population in a rapidly fluctuating

random environment. The method is based on the technique of perturbation approximation of non-

linear coupled stochastic differential equations. Numerical results have also been obtained by varying

some of the vital system parameters. We have derived the corresponding results in absence of herd

behaviour.

2. Damped Volterra-Lotka system with herd behaviour of prey: basic stochastic

differential equations

For damped Volterra-Lotka system with herd behaviour of prey, the prey population represented by

its biomass x(t) and that of predator population represented by y(t) satisfy the following deterministic

equation:

d

dt
X(t) = F (X(t)), (1)

where

X(t) =

[
x(t)

y(t)

]
, F =

x(t)(α− kx(t))− β
√
x(t)y(t)

y(t)(−m+ ηβ
√
x(t))

 , and α,m, k, η, β > 0.

It is assumed that fluctuations in the environment will manifest themselves mainly as fluctuations

in the natural growth coefficient of the prey (α) and in the natural mortality of the predator (−m),

because these are the main parameters subject to coupling of a prey-predator pair with its environment

(Samanta and Maiti 2003). In a random environment, the parameters α and −m are replaced by

α+ θ1(t) and −m+ θ2(t) respectively, where θ1(t) and θ2(t) are random fluctuating terms. We assume

that these fluctuations are rapid and we express this fact by writing θ(τ) ≡ (θ1(τ), θ2(τ)) where τ = t/ε

and 0 < ε << 1 is a small, non-random parameter.

In a rapidly fluctuating random environment, the stochastic modification of (1) is as follows:

d

dt
X(ε, t) = F (X(ε, t), θ(t/ε)), (2)
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where

X(ε, t) =

[
x(ε t)

y(ε, t)

]
, F (X(ε, t), θ(t/ε)) =

x(ε, t)(α+ θ1(t/ε)− kx(ε, t))− β
√
x(ε, t)y(ε, t)

y(ε, t)(−m+ θ2(t/ε) + ηβ
√
x(ε, t))

 ,
x(ε, t), y(ε, t) represent the prey and predator population respectively and α,m, k, η, β > 0; 0 < ε << 1.

The meaning of this is as follows: as the natural time t changes by a typical amount δt, θ(t/ε)

fluctuates considerably, since it experiences an elapsed time δτ =
δt

ε
which is large when ε is small.

We assume that the perturbed terms θ1(τ), θ2(τ); τ = t/ε, are coloured noises or Ornstein-Uhlenbeck

processes. The mathematical expectations and correlation functions of these processes are given by

〈θi(τ)〉 = 0, 〈θi(τ1)θi(τ2)〉 =
σ2
i

2γi
exp(−γi|τ1 − τ2|),

〈θ1(τ1)θ2(τ2)〉 = σ exp(−|τ1 − τ2|)(1 + |τ1 − τ2|), (γi > 0, i = 1, 2),

(3)

where 〈·〉 represents the average over the ensemble of the stochastic process.

This is motivated by the fact that

lim
|τ1−τ2|→∞

〈θ1(τ1)θ2(τ2)〉 = 0⇒ θ1(τ1), θ2(τ2) tend to independent random processes.

It is also noted that as σi, γi → ∞ keeping
σ2
i

γ2
i

=constant= D2
i (say), then θi(τ) → Diηi(τ) where

ηi(τ) are standard white noises, i.e., 〈ηi(τ)〉 = 0, 〈ηi(τ1)ηi(τ2)〉 = δ(τ1 − τ2).

3. Perturbation approximation and non-equilibrium fluctuation

We shall now use a two term perturbation approximation to X(ε, t) (White 1977):

X(ε, t) ∼ X0(t) +
√
εY 0(t). (4)

The first approximation

X0(t) =

[
x0(t)

y0(t)

]
,

satisfies
d

dt
X0(t) = F (X0(t)), (5)

where

F (X0(t)) = lim
T→∞

1

T

∫ T

0

〈F (X0(t), θ(τ))〉dτ

=

x0(t)(α− kx0(t))− β
√
x0(t)y0(t)

y0(t)(−m+ ηβ
√
x0(t))

 .
These are just the equations of the damped Volterra-Lotka system with herd behaviour of prey in a

fixed environment. This system has a unique non-trivial equilibrium (both components of which are

non-zero) at the point:

X =

[
x?

y?

]
, where x? =

m2

η2β2
, y? =

αη2β2 − km2

η3β4
. (6)

It is immediately apparent that in the absence of predators the limit value of prey population will

be x′ =
α

k
. The realization of the obvious condition:
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x? < x′ ⇒ αη2β2 − km2 > 0 (7)

which makes y? positive, and hence this equilibrium exists.

We assume that the system is at the initial time t = 0 at X, therefore we have X0(t) = X. Here

Y 0(t) =

Y 0
1 (t)

Y 0
2 (t)


is a Gaussian random process which satisfies the linear equation

d

dt
Y 0(t) = CY 0(t) +W (t), (8)

where

Y 0(0) = 0, C =
∂F

∂X
(X) =

−a −mη

b 0

 , (9)

where

a =
2m(2km2 − αη2β2) + (αη2β2 − km2)

2mη2β2
, b =

αη2β2 − km2

2mηβ2
(10)

and

〈W (t)〉 = 0, 〈W (t)WT (t′)〉 = Aδ(t− t′),

A = lim
T→∞

1

T

∫ T

0

∫ T

0

〈[F (X, θ(τ1))− 〈F (X, θ(τ1))〉]

[F (X, θ(τ2))− 〈F (X, θ(τ2))〉]T 〉dτ1dτ2

=

[
A11 A12

A21 A22

]
,

A11 =
m4σ2

1

η4β4γ2
1

, A12 = A21 =
4m2(αη2β2 − km2)σ

η5β6
, A22 =

(αη2β2 − km2)2σ2
2

η6β8γ2
2

.

Now the solution of (8) is given by

Y 0(t) = Y (t)

∫ t

0

Y −1(s)W (s)ds, (11)

where Y (t) satisfies the linear equation:

d

dt
Y (t) = CY (t), Y (0) = I. (12)

Therefore,

〈Y 0(t)〉 = 0, since 〈W (s)〉 = 0.

The solution of (12) is given by

Y (t) =


1√
∆

(
λ1e

λ1t − λ2e
λ2t
)

− m
η
√

∆

(
eλ1t − eλ2t

)
b√
∆

(
eλ1t − eλ2t

)
− 1√

∆

(
λ2e

λ1t − λ1e
λ2t
)
 ,

where (a and b are given by (10)):

∆ = a2 − 4m

η
b, λ1 =

−a+
√

∆

2
, λ2 =

−a−
√

∆

2
.
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Let us assume that

2km2 − αη2β2 > 0⇒ km2 < αη2β2 < 2km2 ⇒ a > 0. (13)

Hence the system (1) is locally asymptotically stable at the unique non-trivial equilibrium point given

by (6).

Now the expression of the strength of the fluctuation D(t), the covariance at one instant of time, is

given by

D(t) = 〈Y 0(t)Y 0T

(t)〉 = Y (t)

[∫ t

0

Y −1(s)AY −1T

(s)ds

]
Y T (t)

=

[
D11(t) D12(t)

D21(t) D22(t)

]
,

where

D11(t) =
e2λ1t

2∆b
Φ(λ1, λ2) +

e2λ2t

2∆b
Φ(λ2, λ1) +

2m

∆η
e−atΨ +

1

2ab

{
A11b+A22

m

η

}
,

D12(t) = D21(t) =
e2λ1t

2∆λ1
Φ(λ1, λ2) +

e2λ2t

2∆λ2
Φ(λ2, λ1)− e−at

2∆b
Θ− A22

2b
,

D22(t) =
e2λ1t

2∆λ1
Z(λ2) +

e2λ2t

2∆λ2
Z(λ1) +

2b

∆
e−atΨ +M,

Φ(x, y) = A11bx− 2A12xy +A22
m

η
y, Ψ =

1

a

{
A11b+A22

m

η

}
+A12,

Θ = 2A11b
2 + 2A12ab+A22

{
a2 + 2

m

η
b

}
,

Z(x) = A11b
2 − 2A12bx+A22x

2,

M =
A11bη

2am
+
A22η

2amb

{
a2 +

m

η
b

}
+
A12

m
η.

Therefore, D(t) converges exponentially to the limiting variance

D(∞) =

D11(∞) D12(∞)

D21(∞) D22(∞)

 , (14)

where
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D11(∞) =
m3

{2m(2km2 − αη2β2) + (αη2β2 − km2)}η2β2

[
m2σ

2
1

γ2
1

+
2(αη2β2 − km2)

η2β2

σ2
2

γ2
2

]
,

D12(∞) = D21(∞) = −m(αη2β2 − km2)

η5β6

σ2
2

γ2
2

,

D22(∞) =
m3(αη2β2 − km2)

2{2m(2km2 − αη2β2) + (αη2β2 − km2)}η2β4

σ2
1

γ2
1

+

[
(αη2β2 − km2){2m(2km2 − αη2β2) + (αη2β2 − km2)}

2mη6β8
+

m(αη2β2 − km2)2

{2m(2km2 − αη2β2) + (αη2β2 − km2)}η4β6

]
σ2

2

γ2
2

+
4m(αη2β2 − km2)σ

η4β6
.

(15)

This convergence is rapid. In the case of high-amplitude fluctuations D11(∞) and D22(∞) are large.

This indicates that for high-amplitude fluctuations the system demonstrates statistical parametric shat-

ter as a result of rapidly fluctuating environmental conditions, and the equilibrium, which is stable in

absence of these fluctuations, becomes unstable. It is also evident from (15) that the prey population is

more sensitive in rapidly fluctuating environmental conditions and the natural growth coefficient (α) of

the prey play a significant role in instability. This is due to the herd behaviour of the prey population.

4. Numerical simulation for system (2)

Parameter k β m η σ1 γ1 σ2 γ2 σ

Value 0.001 0.4 0.09 0.5 0.4 0.16 0.8 0.64 0.1

Table-1: Parameter values used for numerical simulation of system (2) for Figure-1

If we change the parameter value of α continuously from 0.5 to 2.0, limiting variance D11(∞) decreases

whereas D22(∞) increases rapidly (see Figure-1), i.e., in a rapidly fluctuating environment, the interior

equilibrium of system (2) which is stable in absence of these fluctuations, becomes unstable.

Parameter α k m η σ1 γ1 σ2 γ2 σ

Value 1.1 0.001 0.09 0.5 0.4 0.16 0.8 0.64 0.1

Table-2: Parameter values used for numerical simulation of system (2) for Figure-2

Now taking α = 1.1 and varying the parameter value of β from 0.2 to 2, both the limiting variance

D11(∞) and D22(∞) decreases and converges to a positive value which is very close to zero (see Figure-

2), i.e, the prey and the predator population coexist in stable equilibrium because the perturbation terms

around the interior (coexistence) equilibrium given by (6) tend to zero. So, it can be concluded that

for increasing consumption rate of predator the system develops an internal mechanism for coexistence

steady state free from fluctuation though the environment is fluctuating rapidly. It is a very interesting

result to maintain ecological balance, that is, to maintain the balance of nature.
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Figure 1. Limiting variance D11(∞) and D22(∞) with respect to the parameter value α.
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Figure 2. Limiting variance D11(∞) and D22(∞) with respect to the parameter value β.

Parameter α k β η σ1 γ1 σ2 γ2 σ

Value 1.1 0.001 0.4 0.5 0.4 0.16 0.8 0.64 0.1

Table-3: Parameter values used for numerical simulation of system (2) for Figure-3

Now taking α = 1.1, β = 0.4 and varying the predator death rate m from 0.05 to 0.5, both the

limiting variance D11(∞) and D22(∞) increases rapidly near m = 0.5 (see Figure-3), i.e, the system

becomes unstable near m = 0.5. Again around m = 0.2 which is not too far from the rate ηβ, the

limiting variances are small and so the predator and prey coexist in stable equilibrium which is free from

fluctuation though the environment is fluctuating rapidly. This agrees with our theoretical findings.

5. Damped Volterra-Lotka system without herd behaviour: basic stochastic

differential equations

In absence of herd behaviour of prey, system (1) takes the following form:
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Figure 3. Limiting variance D11(∞) and D22(∞) with respect to the parameter value m.

d

dt
X(t) = F (X(t)), (16)

where

X(t) =

[
x(t)

y(t)

]
, F =

x(t)(α− kx(t)− βy(t))

y(t)(−m+ ηβx(t))

 , and α,m, k, η, β > 0.

In a rapidly fluctuating random environment, system (16) is modified as follows:

d

dt
X(ε, t) = F (X(ε, t), θ(t/ε)), (17)

where

X(ε, t) =

[
x(ε t)

y(ε, t)

]
, F (X(ε, t), θ(t/ε)) =

x(ε, t)(α+ θ1(t/ε)− kx(ε, t)− βy(ε, t))

y(ε, t)(−m+ θ2(t/ε) + ηβx(ε, t))

 ,
x(ε, t), y(ε, t) represent the biomass of prey and predator population respectively and α,m, k, η, β >

0; 0 < ε << 1. As in Section 2, the perturbed terms θ1(τ), θ2(τ); τ = t/ε, are coloured noises or

Ornstein-Uhlenbeck processes characterized by (3).

Proceeding as in Section 3, the expression of the strength of the fluctuation D(t), the covariance at

one instant of time, is given by

D(t) = 〈Y 0(t)Y 0T

(t)〉 = Y (t)

[∫ t

0

Y −1(s)AY −1T

(s)ds

]
Y T (t)

=

[
D11(t) D12(t)

D21(t) D22(t)

]
, where

(18)

D11(t) =
e2λ1t

2∆b
Φ(λ1, λ2) +

e2λ2t

2∆b
Φ(λ2, λ1) +

2m

∆η
e−atΨ +

1

2ab

{
A11b+A22

m

η

}
, (19)
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D12(t) = D21(t) =
e2λ1t

2∆λ1
Φ(λ1, λ2) +

e2λ2t

2∆λ2
Φ(λ2, λ1)− e−at

2∆b
Θ− A22

2b
, (20)

D22(t) =
e2λ1t

2∆λ1
Z(λ2) +

e2λ2t

2∆λ2
Z(λ1) +

2b

∆
e−atΨ +M, (21)

Φ(x, y) = A11bx− 2A12xy +A22
m

η
y, Ψ =

1

a

{
A11b+A22

m

η

}
+A12,

Θ = 2A11b
2 + 2A12ab+A22

{
a2 + 2

m

η
b

}
,

Z(x) = A11b
2 − 2A12bx+A22x

2,

M =
A11bη

2am
+
A22η

2amb

{
a2 +

m

η
b

}
+
A12

m
η,

(22)

where

A11 =
m2σ2

1

η2β2γ2
1

, A12 = A21 =
4m(ηαβ − km)σ

η2β3
, A22 =

(ηαβ − km)2σ2
2

η2β4γ2
2

,

and

∆ = a2 − 4m

η
b, a =

km

ηβ
, b =

ηαβ − km
β

, λ1 =
−a+

√
∆

2
, λ2 =

−a−
√

∆

2
.

Therefore, D(t) converges exponentially to the limiting variance:

D(∞) =


1

2ηβ2k

{
mβσ2

1

γ2
1

+
(ηαβ−km)σ2

2

ηγ2
2

}
(km−ηαβ)σ2

2

2η2β3γ2
2

(km−ηαβ)σ2
2

2η2β3γ2
2

(ηαβ−km)
β2

{
σ2
1

2kγ2
1

+
(k2m+ηβ(ηαβ−km))σ2

2

2η2β2kmγ2
2

+ 4σ
η

}
 . (23)

This convergence is rapid except when k is close to zero. In the case of high-amplitude fluctuations

D11(∞) and D22(∞) are large. This indicates that for high-amplitude fluctuations the system demon-

strates statistical parametric shatter as a result of rapidly fluctuating environmental conditions, and

the equilibrium, which is stable in absence of these fluctuations, becomes unstable. This parametric

shatter may occur not only for high-amplitude fluctuations, but also for high fertility to the prey and

for small η, β.

5.1. Special case: Volterra-Lotka system. Now using (19) to (22), we have

lim
k→0

D11(t) =
1

4

√
m

α

1

η2β2

[
8σ
√
mα

{
cos(2t

√
mα)− 1

}
+

{
mσ2

1

γ2
1

− ασ2
2

γ2
2

}
sin(2t

√
mα)

]

+
m(mσ2

1γ
2
2 + ασ2

2γ
2
1)

2η2β2γ2
1γ

2
2

t

(24)

and
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lim
k→0

D22(t) = −1

4

√
α

m

1

β2

[
8σ
√
mα

{
cos(2t

√
mα)− 1

}
+

{
mσ2

1

γ2
1

− ασ2
2

γ2
2

}
sin(2t

√
mα)

]

+
α(mσ2

1γ
2
2 + ασ2

2γ
2
1)

2β2γ2
1γ

2
2

t.

(25)

From the above results, we see that as k → 0+ the damped Volterra-Lotka system tends to a classical

Volterra-Lotka system in a random environment which demonstrates statistical parametric shatter with

increasing time with a periodic background noise.

6. Discussion and Conclusion

In this paper, we have studied the stability behaviour of the damped Volterra-Lotka prey-predator

system where prey population lives in herd in a rapidly fluctuating random environment. The method

is based on the technique of perturbation approximation of non-linear coupled stochastic differential

equations. The characteristic of group-living of prey population has been emphasized using square root

of prey density in the functional response. The assumption of condition (13) implies that the system (in

deterministic environment) is locally asymptotically stable at the unique non-trivial equilibrium point

given by (6). From (13) it is evident that for predator death rates m less than yet not too far from the

rate ηβ it consumes prey, the predator and prey coexist in stable equilibrium. This is reasonable since,

because m is only moderate in size (in deterministic environment), the predator can sufficiently sustain

itself yet not grow too much so as to wipe out the prey. Ultimately though, the coexistence necessarily

becomes unstable when the predator death rate gets smaller in deterministic environment. In real

environment, the coexistence of populations has immense importance for ecological balance in nature.

From this viewpoint, study of the stability of the interior equilibrium is emphasized. The analysis

indicates that for high-amplitude fluctuations the system demonstrates statistical parametric shatter

as a result of rapidly fluctuating environmental conditions, and the equilibrium, which is stable in the

absence of these fluctuations, becomes unstable. It is also evident from (15) that the prey population

is more sensitive in rapidly fluctuating environmental conditions and the natural growth coefficient (α)

of the prey play a significant role in instability (causing ecological imbalance in nature). This is due to

the herd behaviour of the prey population.

In Section 5, it is derived that in absence of herd behaviour, the proposed system tends to a classical

Volterra-Lotka system for large carrying capacity (of the prey population) in a rapidly fluctuating

random environment which demonstrates statistical parametric shatter with increasing time with a

periodic background noise. These results are in good agreement with the results obtained by Baishya and

Chakrabarti (1987), Samanta (1996), Samanta and Maiti (2003). It is pointed out that this phenomenon

does not occur in presence of herd behaviour among the individuals of prey population. So, we have come

to the conclusion that when the individuals of prey population act collectively as part of a group, the

system develops an internal mechanism to resist this statistical parametric shatter (causing ecological

imbalance in nature). It is of course a new result.
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