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A LEVEL SET APPROACH FOR A MULTI-SCALE CANCER INVASION MODEL
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Abstract. The quest for a deeper understanding of the cancer growth and spread process focuses on

the naturally multiscale nature of cancer invasion, which requires an appropriate multiscale modeling

and analysis approach. The cross-talk between the dynamics of the cancer cell population on the tissue

scale (macroscale) and the proteolytic molecular processes along the tumor border on the cell scale

(microscale) plays a particularly important role within the invasion processes, leading to dramatic

changes in tumor morphology and influencing the overall pattern of cancer spread.

Building on the multiscale moving boundary framework proposed in Trucu et al. (Multiscale Model.

Simul. 11(2013), 309-335), in this work we propose a new formulation of this process involving a novel

derivation of the macro scale boundary movement law based on micro-dynamics, involving a transport

equation combined with the level set method. This is explored numerically in a novel finite element

macro-micro framework based on cut-cells.

1. Introduction

Involving a wide range of cross-related processes occurring on several spatio-temporal scales, cancer

cell invasion in human tissue is one of the hallmarks of cancer [36], playing a crucial role in the overall

development of a growing malignant tumour. Taking advantage of the heterotypic character of the

tumour microenvironment (which includes immuno-inflamatory cells, stromal cell, fibroblasts, endothe-

lial cells, macrophages), complex molecular processes facilitate intense interactions between the cancer

cell population and the extracellular matrix (ECM)[29, 36, 39, 40, 58]. These interactions lead to a

cascade of specific developmental patterns and behaviours of the growing tumours, most notable stages

including the degradation of the ECM, the local progression of the tumour, followed by the tumour

angiogenesis process and the subsequent metastatic spread of the cancer cells in the human body.

The alteration and remodelling of the ECM by the matrix degraded enzymes (MDEs) such as ma-

trix metalloproteinases MMPs or the urokinase plasminogen activator (uPA) play a key role in local

tumour progression. Alongside cell-adhesion and multiple taxis processes (including haptotaxis and

chemotaxis), the matrix degrading enzymes processes degrade various components of the surrounding

ECM that leads to further tumour progression. However, as the full mechanisms involved in these

complex processes is yet to be deciphered biologically, over the past two decades or so cancer invasion

received extensive mathematical modelling attention, in which systems of reaction-diffusion-taxis par-

tial differential equations [3, 7, 8, 9, 13, 15, 19, 20, 25, 33, 35, 49, 50, 54, 55, 74] as well as nonlocal

integro-differential systems [10, 18, 26, 34] were derived and proposed to deepen the understanding,

validate and create new experimental hypothesis. Furthermore, to capture various heterotypic aspects
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and related processes within tumour invasion, several multiphase models based on the theory of mix-

tures [14, 17, 21, 31, 56, 61, 69, 77, 78] were derived (by exploring the mass and momentum balances

as well as the inner multiphase constitutive laws).

A particularly important role in cancer invasion is played by the MDEs (such as the MMPs) that

are secreted from the outer proliferating rim and released within the tumour peritumoural microenvi-

ronment. This gives the cancer invasion a moving boundary character, and to that end several level set

approaches were recently proposed to study the tumour progression both in homogeneous environments

[32, 43, 44, 45, 80] and in complex heterogeneous tissues [46].

Despite recent advances, the multiscale modelling of the processes involved in cancer invasion remains

an open problem. Although this is a truly multiscale process, most mathematical models were offering

a one-scale perspective, whether that is from a purely macro scale (tissue scale) or an exclusively micro

scale (cell scale) stand point. However, recently a novel 2D multiscale moving boundary modelling

platform for cancer invasion was proposed in [73]. This explores in an integrated manner the tissue-

scale cell population dynamics and relevant cell scale molecular mechanics together with the permanent

link between these two biological scales. This addresses directly the dynamics of the MDEs proteolytic

processes occurring at the tumour boundary (i.e., at the invasive edge of the tumour) that are sourced

from within outer proliferating rim of the tumour and facilitate the complex molecular transport and

ECM degradation within the peritumoural region. The tissue-scale progression of tumour morphology

is captured here in a multiscale moving boundary approach where the contribution arriving from the cell

scale activity to the cancer invasion pattern is realised by the micro scale MDEs dynamics (occurring

along the tumour invasive edge), which, for its part, is induced by the cancer macro-dynamics. This

was recently applied to the extended context in which, rather than the MMPs dynamics, the uPA is

considered as the proteolytic system, and has led to biologically relevant results [53].

In this work we present a new formulation of the link that connects the two scales of the tumour

dynamics that was considered in the initial multiscale moving boundary modelling approach presented

in [73] as well as in the multiscale cancer invasion modelling developments that followed [4, 5, 6, 71,

52, 62, 63, 64, 65, 67, 72]. In particular, the movement of the tumor boundary is here defined by a

velocity field instead of a displacement of the interface. Therefore, the moving interface is defined and

implemented in a different way. Furtheremore, the discretization is based on finite elements instead of

finite differences as in the previous work. The new model is based on a level set approach in which

the moving domain is defined as the zero level of a level set function. The reason for this choice of

the problem setting is twofold: on one hand, all components of the model can be described by partial

differential equations at the continuum level allowing the complete separation between modelling and

discretization; on the other hand, it is better suited for an extension to the three-dimensional case since

the formulation of all components of the model is dimension independent and the use of a dimension

independent implementation of the discretization, like in our case using the finite element method

(FEM) package deal.II [11], facilitates the realization of the code.

The level set method was first introduced in [51] for tracking moving interface with complex defor-

mations. This method was developed starting from the notion of weak solutions for evolving interfaces.

The main aspect of this method is that an interface or a domain boundary is defined through the

embedding of the interface as the zero level set of a higher dimensional function. Furthermore, the

velocity of the interface is also embedded to the higher dimensional function. We avoid handling a

sharp interface, i.e. a lower dimensional manifold in the computational domain, but the velocity needs

to be extended from the interface to the rest of the domain. While the original setting, with the sharp

interface, poses several numerical difficulties due to its Lagrangian approach, the later setting, using an

Eulerian approach, can exploit techniques developed for hyperbolic problems.
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Other works have presented a level set approach for moving the tumour interface. In [43] the authors

use a level set function to define the boundary of a tumour mass and extend the velocity orthogonally to

the interface using a filter technique to damp numerical noise coming from the extension procedure. The

velocity at the interface is defined as a function of the gradient of a computed quantity (the pressure).

This work nevertheless does not link different model scales. In [80] an adaptive finite element combined

with a level set approach is used to solve a model that considers tumour necrosis, neo-vascularization

and tissue invasion. The model is composed of a continuum part and a hybrid continuum-discrete

part. The velocity of the interface is the cell velocity. Therefore, the velocity does not need to be

extended into the neighbourhood of the interface. In [47] a level set approach with a ghost-cell method

is applied to tumour growth of glioblastioma. The velocity of the interface depends on solutions of

linear and nonlinear equations with curvature-dependent boundary conditions. Since the velocity is

only defined at the interface the authors extend it beyond the interface and use a narrow band/local

level technique to update the interface velocity and level set function only in the vicinity of the interface.

Our approach uses a level set method with an extension of the velocity. While the coupling between the

macroscopic and microscopic scales was originally introduced in [73] considering a Lagrangian approach

to move the nodes of the discrete approximation of the interface, we introduce here a continuous link

between the two scales defined by the velocity at the interface at the continuum level. This changes

the formulation of the multiscale coupling that goes with the definition of the velocity starting from

heuristic arguments. The scope of this work is to present as a whole the new formulation of the tumour

invasion model explaining the possible advantages that this approach can have for future developments

and the numerical aspects that need further attention and further development.

The paper is organized as follows. In Section 1 we state the problem setting and describe the

different components of the model: the macroscopic and microscopic components and the description

of the moving boundary. In Section 3.2 we introduce the weak formulation of the model which is

needed for the approximation of the continuum problem with a finite element method. We introduce

the discretization of the problem using cut-cells for the approximation of the cancer region domain. In

Section 4 we present some numerical results showing the interplay of the different parts of the multiscale

model. Finally we present an outlook and some concluding remarks in Section 5.

2. The two-scale tumour dynamics

We present a two-scale model for cancer invasion that involves a double feedback loop to link the

dynamics occurring at two different spatial scales explored by the following two modelling components: a

macroscopic component describing the population of cancer cells and extracellular matrix at tissue-scale

and a microscopic component describing the dynamics of a generic matrix-degrading enzyme molecular

population whose cell-scale takes place at the leading edge of the tumour. Both scales are considered

at the continuum level, and we assume that possible stochastic effects (in regions where the continuum

assumption is not valid) can be neglected. Nevertheless, besides the establishment of a new approach

to linking the scales, our aim includes also the derivation of a flexible numerical framework that would

allow to extend the model with a stochastic part (e.g. at the interface of the domain) that would require

to a hybrid formulation.

The cancer cells population mixed with the extracellular matrix density exercises its macro-scale

interacting dynamics within a tumour invading domain Ω(t) that changes its size and morphology in

time during the invasion process within a reference tissue domain Y . Its boundary ∂Ω(t) will also be

referred to as interface because this represents the tumour interface separating the healthy region with

zero cancer cells from the region with a distribution of cancer cells.
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Assumption 2.1 (Scale separation). We assume here scale separation in space and time between

the tissue-scale tumour macro-dynamics (involving cancer cells population mixed with ECM) and the

cell-scale molecular boundary micro-dynamics (involving matrix degrading enzymes). The model is of

two-scale nature, since, due to the different physical dimensions of tissue and tumour constituents that

are involved in the process (such as of cells, ECM, and matrix degrading enzymes), cancer invasion

is genuinely a multiscale biological process [75], which in its most basic setting involves a cancer cell

population mixed with ECM density (for the macroscopic part) and a population of matrix degrading en-

zymes (for the microscopic part) that have their dynamics occurring at separated spatial scales (namely,

at macro- and micro- scale, respectively). Hence, the natural assumption of scale separation enables us

to derive the multiscale model and to address the dynamics at each of the two scales on correspondingly

different scale domains. Finally, the characteristic length L for the macroscopic part of the model re-

lates to the diameter of the cancer region and is considered here as in [8, 34], ranging between 0.1cm

and 1.0cm. Furthermore, the characteristic length ` of the microscopic part related to the region where

the matrix degrading enzymes are spatially transported is considered to be of the order of 10−3cm, [48].

The ratio between the scales is denoted ε = `/L, and so in the non-dimensional setting of the model we

propose here ε will represent the cell-scale size (i.e., the micro-scale size).

During the macro-dynamics, the cancer cels from the outer proliferating rim secrete matrix degrading

enzymes (such as MMPs), providing this way a source of MDEs along the leading edge of the tumour

[36, 75], i.e., in the cell-scale proximity of the tumour boundary. Once secreted, these MDEs cell-scale

exercise a diffusive transport across the tumour interface in the peritumoural region, causing degradation

of the ECM that they meet in the immediate proximity of the tumour and this way enabling further

tumour progression [36, 75]. Proceeding in a similar manner as in [73], the boundary micro-dynamics

of the matrix degrading enzymes population is explored here on a bundle of micro-domains εY , of

cell-scale size ε > 0, whose union provides a cell-scale neighbourhood for the interfacial points in ∂Ω(t).

Using the scale separation, we explore the micro-dynamics within a cell-scale neighbourhood of each

of the boundary points x ∈ ∂Ω(t) (i.e., at each point of the macroscopic interface) that is enabled

by acorresponding εY micro-domain centred at x. In brief, adopting here a multiscale modelling

perspective similar to the one proposed in [4, 5, 6, 71, 52, 62, 63, 64, 65, 67, 72, 73], the coupling

of two-scale dynamics of cancer invasion is captured as follows:

• the “top-down” macroscopic-to-microscopic coupling is realised via the source of the matrix-

degrading enzymes, which is induced by the tumour macro-dynamics and is formed as a collec-

tive contribution of the cancer cells that arrive during the macro-dynamics within an appropriate

distance from any boundary point x ∈ ∂Ω(t), see equation (2.8);

• the “bottom-up” microscopic-to-macroscopic coupling determines the movement of the macro-

scopic tumour interface that is induced by the dynamics of the micro-spatial distribution of

MDEs within the cell-scale neighbourhood of the tumour interface (enabled by an appropriate

union of boundary micro-domains, see Figure 1) in the form of a velocity field (see equation

(2.10)) that drives a transport process for boundary relocation at macro-scale (see equation

(2.6)) .

The rate of cancer cells invasion into the surrounding tissues is therefore driven by the velocity of the

interface that depends on the boundary MDE micro-dynamics microscopic enzyme dynamics. Further-

more, the tumour interface is described here by the zero-level of a level set function and its spatial

dynamics is governed by a transport equation. To account for all interactions between the different

parts of the problem, the tissue macro-domain Y is assumed to be sufficiently large such that the

complete dynamics happen inside it.
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In the following we proceed with the multiscale model description in three parts: macroscopic,

microscopic and a transport process for the tumour boundary which is induced by the micro-scale.

Focussing first on the macro-scale, at this level the model considers cancer cells and extracellular matrix

(ECM) dynamic interaction as well as a micro-scale-induced transport process that will ultimately

describe the movement of the macro-scale tumour boundary.

2.1. Tumour macro-dynamics. Let c(x, t) and v(x, t) denote the cancer and the extracellular matrix

distributions at (x, t) ∈ Ω(t)× (0, T ), respectively. Proceeding as in [73], the dynamics at macroscopic

scale is given by the following PDE system:

∂c

∂t
=

Random motility︷ ︸︸ ︷
D1∆c −

Haptotaxis︷ ︸︸ ︷
η∇ · (c∇v) +

Proliferation︷ ︸︸ ︷
µ1 c (1− c− v), (2.1)

∂v

∂t
= − αcv︸︷︷︸

Degradation

+ µ2(1− c− v)︸ ︷︷ ︸
ECM Remodelling

, (2.2)

with boundary condition

(D1∇c− ηc∇v) · n = 0 on ∂Ω× (0, T ). (2.3)

and initial conditions

c(x, 0) = c0(x) on Ω(0) (2.4)

v(x, 0) = c0(x) on Ω(0). (2.5)

where D1 is the diffusion coefficient for the cancer cells, η is the advection coefficient, µ1 is the

proliferation coefficient, α a degradation coefficient and µ2 a coefficient for the remodelling of ECM.

All these coefficients are considered constant and their typical values are included in Table 2.

It is assumed that the cancer cells are zero outside Ω(t) and that there is no transport of cells through

the boundary ∂Ω(t), see boundary condition (2.3). Furthermore, under the presence of these boundary

and initial conditions, for the case of constant proliferation rate µ1, the results in [68, 76, 37] explore

the local and global existence of system (2.1)-(2.2). The initial distribution of cancer cells c0(x) and

extracellular matrix v0(x) are given in the larger domain Y .

In the next section we introduce the part of the model used to update the tumour domain in time.

2.2. Two-scale tumour boundary movement: the macro-scale transport process induced

by the MDEs boundary micro-dynamics. As mentioned above, the movement of the tumour

interface is directly governed by the matrix degrading enzymes (MDE) dynamics occurring in a cell

scale neighbourhood of the tumour interface ∂Ω(t). The pattern of degradation of the peritumoural

ECM by the advancing front of MDEs drives the invasion of the tumour cells in the surrounding tissues

and determines the movement of the tumour boundary ∂Ω(t). Therefore, the movement of the time-

dependent macro domain Ω(t) is enabled by a velocity field defined on the points of the interface

x ∈ ∂Ω(t), which is determined by the micro-dynamics occurring on a small micro-domain εY centred

at x. Hence, the velocity field generated in this way is induced directly by the micro-dynamics of the

MDE molecular distribution m(y, τ) over a suitable micro-spatio-temporal domain εY × (0,∆T ) (which

will be detailed in Section 2.3). We denote this velocity field by V (m).

Since V (m) is defined only on points at the interface, we consider an extension of the velocity to the

whole domain Y . This allows us to describe the cancer region boundary by a level set approach. The

interface is defined as the zero-level of the level set function φ which satisfies the following transport

equation:
∂φ

∂t
+ V (m) · ∇φ = 0, in Y × (0, T ). (2.6)
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For later purposes, we introduce the notation

L0(t) = {x ∈ Y : φ(x, t) = 0} (2.7)

for the zero level of the level set function that defines the interface ∂Ω(t).

A natural extension of the velocity is the constant continuation of the velocity at the boundary in

normal direction [23]. In Section 3.6 more details about this point are given.

2.3. MDEs boundary micro-dynamics. Due to the scale separation Assumption 2.1 we can describe

the micro-dynamics of the MDEs within a cell-scale neighbourhood of the tumour interface by exploring

this on a bundle of micro-domains εY defined and centred at each macroscopic interface point x ∈ ∂Ω(t).

Assuming for convenience that the maximal domain Y is centred at origin of the space, the micro scale

coordinates y of the micro-scale problem on a εY centred at x0 are obtained by an appropriate scaling

and translation of Y (given by the transformation y = x0 + ε(x− x0)), see Figure 1 for an illustration

of these micro-domains on the ∂Ω(t). As argued in [73], collectively, the cancer cells that get to be

point on the macroscopic tumour boundary

microscopic domains

εY

∂Ω(t)

εY

εY

Figure 1. Sketch of micro-dynamics sampling at the macroscopic tumour boundary ∂Ω(t)

distributed during their dynamics within a certain radius Rm > 0 from the interface x ∈ ∂Ω(t) secrete

matrix degrading enzymes, giving rise this way to a source of MDEs within each boundary micro-

domain εY . This micro-scale source MDEs (which is induced by the macro-dynamics) can therefore be

formalised mathematically as

Fx,t(c)(y) :=


1

|B|

∫
B

c(ξ, t) dξ y ∈ εY ∩ Ω(t),

0 otherwise.

(2.8)

where B := {ξ ∈ Y : ‖ξ−x‖ ≤ Rm}. Therefore, in the presence of source (2.8), the cross-interface micro-

dynamics of MDE molecular distribution m(y, τ), which takes place on the boundary micro-domain εY

over a time interval (0,∆T ), is governed by the following reaction diffusion equation

∂m

∂t
(y, τ) = D2∆m(y, τ) + Fx,t(c) in εY × (0,∆T ),

m(y, 0) = 0 in εY,

∂m

∂n
(y, τ) = 0 in ∂εY × (0,∆T ),

(2.9)

with ∆T> 0 representing here the micro scale time perspective and serving also later on as natural

time interval for the coupling between the microscopic and macroscopic stages of the multiscale model.



38 T. CARRARO, S.E. WETTERAUER, A.V. PONCE BOBADILLA, AND D. TRUCU

Therefore, the pattern of peritumoural ECM degradation caused by the advancing fronts of MDE

molecules (which are transported across the tumour interface in the immediate proximity within the

appropriate microscale region) gives rise to a boundary velocity that can be described by

V (m) =
cvel

∆T |εY |

∫ ∆T

0

∫
εY

m∇m dydτ, (2.10)

where |εY | =
∫
εY

1 dt and cvel is a tuning scaling factor, see Table 2. Specifically, this form of V is

based on the following main considerations:

• the term ∇m takes into consideration the assumption that the cancer boundary moves following

the gradient with respect to the MDE;

• further, by multiplying it by m(y, τ), we are taking into account the influence of the amount of

enzymes over their given gradient direction at each spatio-temporal micro-node (y, τ), enabling

an appropriate weighting of its “strength” (magnitude);

• finally, by considering the average contribution of MDE microdynamics over εY × [0,∆T ] by

simply accounting upon the mean-value in time of the revolving weighted MDE gradient spatial

direction

[0,∆T ] 3 τ 7→ 1

|εY |

∫
εY

m∇m dy,

we ultimately obtain the definition of the velocity given in (2.10), where V (m) is taken as being

proportional to this spatio-temporal mean value, with proportion constant cvel > 0.

2.4. Schematic summary of our multiscale moving boundary modelling. The new model that

we introduced here falls in the class of heterogeneous multiscale models that were developed over the past

two decades not only for multiscale biological processes but also for other multiscale processes arising in

material science or fluid-structure interactions [1, 4, 5, 6, 22, 71, 27, 28, 30, 52, 62, 63, 64, 65, 67, 72, 73].

Schematically, the two-scale dynamics of our cancer invasion model is coupled across the scales as

depicted in Figure 2, and its progression can be summarised in the following three steps:

(1) At a time t∗> 0, the macro-scale cancer distribution (i.e., the solution of the macro-dynamics)

on the domain Ω(t∗) induces in a non-local manner the enzymatic source for the MDEs boundary

micro-dynamics.

(2) The boundary micro-dynamics is explored on each boundary micro-domain εY . The time-space

average of the microscale MDEs spatio-temporal distribution over the micro-domain εY and a

fixed but arbitrarily small time range of size ∆T> 0 is used to determine pointwise the tumour

interface velocity, which will ultimately result in describing the direction and displacement

magnitude of the macroscopic tumour boundary relocation.

(3) The interfacial velocity obtained from the boundary MDEs micro-dynamics is then set into a

transport equation that finally determines the the position of the tumour boundary at time

t∗ + ∆T . Therefore, a new tumour macro-domain Ω(t∗ + ∆T ) is defined, and this becomes

the new playground for the cancer macro-dynamics, which continues now its evolution on this

newly expanded domain, progressing again through the stages described in (1)-(3).

3. Multiscale Computational Approach

3.1. Definition of the computational microscopic problem. We consider the microscopic problem

in a bundle of boundary microdomains εY , with y := (y1, y2) being the standard local microscale

reference system within a given εY and τ denoting the time at micro scale.

As will be explained below in Section 3.5, in our finite element approach the macroscopic dynamics

will be considered on an appropriately defined macroscopic domain Ωh(t) with a linearized boundary
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Ω(t∗) Ω(t∗ + ∆T )

Figure 2. Sketch of the coupling (including the top-down and bottom-up links) be-

tween the macro- and micro- dynamics of our two-scale moving boundary model for

tumour invasion.

∂Ωh(t). The microscopic dynamics is then explored within a microdomain εY centred at a macro scale

boundary point x ∈ ∂Ωh(t) and eventually appropriately rotated so that this is positioned with two

edges parallel to the linearized boundary (in direction y1) and two edges orthogonal to it (in direction

y2) as shown in Figure 1. This simplifies the setting of the microscopic problem. In fact, since we

consider the linearized boundary ∂Ωh(t), the right hand side Fx,t in equation (2.9) does not depend on

y1. Furthermore, we would like to note that, due to scale separation, the quantity m does not depend on

the macroscopic variable x. Nevertheless, since each microscopic domain is centred at a different point

x on the boundary, a potentially different MDEs micro-source is induced by the macro-scale for each

micro-dynamics on each microscopic domain εY . The value of cancer cells concentration c in one single

microscopic domain is constant because (due to scale separation) no oscillations in y are considered for

c. In addition, since on the boundaries of the quadrilateral domain no flux conditions are prescribed, it

follows that the solution is constant in y1 direction. In fact, it is straightforward to show that the 1D

solution is also solution of the 2D problem. Due to uniqueness of both problems this constant property

is given. Therefore, we can consider the following simplified one-dimensional microscopic problem for

the quantity m, which is the integral of m along y1 (giving the amount of enzyme molecules per unit

of length)

∂m

∂τ
(y2, τ) = D2∆m(y2, τ) + F x,t(y2) in (0, εL)× (0,∆T ),

m(y2, 0) = 0 in (0, εL),

∂m

∂n
(y2, τ) = 0 in ∂(0, εL)× (0,∆T ),

(3.1)

where F x,t is Fx,t integrated over y1. Since Fx,t and m do not depend on y1, the solution m of (2.9) is

the constant extension of the solution m of (3.1) in y1 direction.

We introduce now a scaling of the domain to the interval (0, 1) through the following tranformation

y2 = εLz with z ∈ (0, 1),
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then we get after the rescaling the transformed system

∂m̂

∂t
(z, τ) = D2ε

−2L−2∆m̂(z, τ) + F̂x,t(z) in (0, 1)× (0,∆T ),

m̂(z, 0) = 0 in (0, 1),

∂m̂

∂n
(z, τ) = 0 in ∂(0, 1)× (0,∆T ),

(3.2)

with

F̂x,t(z) :=


1

|B|

∫
B

c(ξ, t) dξ z ∈ [0, 1/2],

0 otherwise,

(3.3)

note that the coordinate ξ is a macroscopic quantity. Notice furthermore that a solution of (3.1) is a

solution of (3.2) by m̂(z, τ) = m(εz, τ).

Remark 3.1 (Limit ε → 0). In case of ε → 0 we have in (3.2) a large diffusion coefficient, therefore a

fast redistribution process of the solution occurs, leading to negligible spatial variations of the solution.

The only relevant parameter of the problem at the limit becomes the time. The limit problem becomes

an ordinary differential equation (ODE). Even if we consider scale separation in this model, we do not

consider the limiting case ε→ 0. In that case the velocity has to be defined in a different way since the

term ∇m becomes the zero vector. The parameter ε in our model has always a finite value bounded

below ε ≥ ε
cell

> 0, where ε
cell

is assumed here to be a minimal microscale size of the order of a cell

length.

Thus, using (3.2), we obtain that the velocity can be further expressed as

V (m) =
cvel

∆Tε2

∫
[0,ε]2

∫ ∆T

0

m∇ymdτ dy =
cvel

∆Tε2
ε

∫ ε

0

∫ ∆T

0

m∇ym dy dτ ,

=
cvel

∆T ε

∫ 1

0

∫ ∆T

0

m̂∇zm̂ dz dτ , (3.4)

where m̂ indicates the transformed function on the unit domain.

3.2. Weak formulation of the two-scale tumour invasion model. To describe the model in the

setting needed for the FEM we introduce the following weak formulation. We use the notation (·, ·) to

define the usual L2 scalar product of Lebesgue square integrable functions. The space H1 is the Hilbert

space of square integrable functions with square integrable (weak) first derivative and H∗ is its dual

space, i.e. the space of bounded linear functional on H1. Furthermore, we use Bochner spaces of the

form U = {u ∈ L2(0, T ;H1) : ∂tu ∈ L2(0, T ;H∗)} to introduce the weak formulation for the dynamics

at each of the two scales. Specifically, we have the following:

• at macro-scale:

– for the weak formulation of the dynamics of the cancer cells population (2.1) as well as for

the dynamics of the ECM (2.2), we consider the space

UM = {u ∈ L2(0, T ;H1(Ω(t))) : ∂tu ∈ L2(0, T ;H∗(Ω(t)))}

– for the boundary transport process (2.6), we consider the space

UT = {φ ∈ L2(0, T ;H1(Y )) : ∂tφ ∈ L2(0, T ;H∗(Y ))};

• at micro-scale, for the MDEs micro-dynamics (3.2), we consider:

Um = {m ∈ L2(0,∆T ;H1((0, 1))) : ∂τm ∈ L2(0,∆T ;H∗((0, 1)))}
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Thus, at macro-scale the weak formulation for the tumour macro-dynamics (2.1)-(2.2) is as follows:

find (c, v) ∈ UM × UM such that, for almost all t ∈ (0, T ), it satisfies(∂c
∂t
, ϕ
)

+
(
D1∇c,∇ϕ

)
−
(
ηc∇v,∇ϕ

)
−
(
µ1(v) c(1− c− v), ϕ

)
= 0 ∀ϕ ∈ H1(Ω(t)), (3.5a)(∂v

∂t
, ϕ
)

+
(
αc v, ϕ

)
−
(
µ2(1− c− v), ϕ

)
= 0 ∀ϕ ∈ H1(Ω(t)), (3.5b)

c(x, 0) = c0 in Ω(0), (3.5c)

v(x, 0) = v0 in Ω(0). (3.5d)

Note that the initial conditions for cancer cells, c0, and ECM distributions, v0, are defined on the larger

maximal domain Y and that this formulation implies the natural zero flux condition for the cancer cells

and ECM, i.e. ∂nc = ∂nv = 0 on ∂Ω(t).

Similarly, the weak formulation of the macro-scale transport equation for interface dynamics (2.6) is:

find φ ∈ UT such that, for almost all t ∈ (0, T ) it satisfies(∂φ
∂t
, ϕ
)

+
(
V (m) · ∇φ, ϕ

)
= 0 ∀ϕ ∈ H1(Y ), (3.6a)

φ(x, 0) = φ0 in Y, (3.6b)

with φ0 being the level set function at the initial time. Using the notation

ϕ+ := max{ϕ, 0}

to define the positive part of a function ϕ, we have that supp(φ+
0 ) describes the initial support region

of the cancer cells.

Finally, at micro-scale, the weak formulation of the MDE micro-dynamics associated with each of the

boundary micro-domains εY is:

find m̂ ∈ Um such that for almost all τ ∈ (0,∆T ) it satisfies(∂m̂
∂τ

, ϕ
)

+
(
D2ε

−2L−2∇m̂,∇ϕ
)

=
(
F̂x,t, ϕ

)
∀ϕ ∈ H1((0, 1)), (3.7a)

m̂(z, 0) = 0 in (0, 1), (3.7b)

where F̂x,t is defined as in (3.3) and the natural condition ∂nm̂ = 0 is implicitly defined.

3.3. Discretization. The model is first discretized in time by the implicit Euler method and then

discretized in space by the FEM. The discretized system is defined on a regular mesh Mh composed

of quadrilateral cells K ∈ Mh of the same dimension. This mesh has the advantage that it can be

generated starting from an initial square that is successively refined to achieve a given cell diameter.

In this work we use global refinement to generate the mesh. Since the macroscopic domain Ω(t) is

time-dependent, the discrete space domain would need to be remeshed at every time step, if a fitted

FEM formulation is used. In case of large deformations, the procedure of remeshing has to deal with

the possible loss of shape regularity of the mesh. To avoid these complications related to remeshing,

we use an unfitted approach by using so called cut-cells. These are a special realization of the FEM

as described below. In particular, these are finite elements with shape functions with a support on a

subdomain of the cells that is defined by the intersection of the interface with the cells.

Let us consider the space of bi-linear polynomials Q1 defined on a unit cell K̂ = [0, 1]2, i.e.

Q1 = span(1, x, y, xy)

and the space of linear functions

P1 = span(1, x)
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defined on the one-dimensional unit cell K̂ = [0, 1]. The finite element space is defined as

UhM (t) = {u ∈ C(Ω(t)) :u|K ◦ TK ∈ Q1 if K ∩ ∂Ω(t) = ∅;
u|K∩Ω(t) = ψ|Ω(t), ψ ◦ TK ∈ Q1 if K ∩ ∂Ω(t) 6= ∅},

where TK is a bijective transformation from the unit cell K̂ to the physical cell K. Since the mesh is

non-fitted, the shape functions u (in case of cut-cells) are defined only on the portion of cell that is

intersected by Ω(t), while outside of Ω(t) they need not to be defined. In Figure 3 the restriction of

two shape functions ϕ1 and ϕ2 on the cut-cell is shown. For the transport and microscopic problems

0 1cut−cell

ϕ1

ϕ2

Figure 3. Shape functions on a unit cut-cell

we use the following spaces

UhT = {u ∈ C(Y ) : u|K ◦ TK ∈ Q1}

and

Uhm = {u ∈ C((0, 1)) : u|K ◦ TK ∈ P1}.

3.4. Approximation of the solution on the moving domain. In every time step of the time

discretization scheme the domains at tn and tn+1, Ω(tn) and Ω(tn+1), are defined by the level set

function at the two times tn and tn+1. At the nth time step the solution is known only in Ω(tn).

To determine the solution at tn+1 the variation of the domain in time should be taken into account

in the formulation of the problem. One possible formulation of the problem would be to consider a

reference domain Ω(t0) for a given t0 in each time step and to use a (time dependent) mapping to

transform the solution from the domain Ω(tn) to the reference domain Ω(t0) and then to the domain

Ω(tn+1). However, if the time step is small enough the combination of these two transformations can be

approximated with the identity and, instead of implementing a complicated formulation, an extension of

the solution uh(tn) from the old domain Ω(tn) to the new domain Ω(tn+1) could be used. This procedure

introduces an approximation error that for small enough time steps can be neglected in comparison to

other sources of error (such as space-time discretization of the solution, or splitting error etc.). In the

following, we describe the extension used in this work and advice that this should be defined properly

depending on the finite element ansatz used.
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0 1st cut 2nd cut

extension

1

tn tn+1

Figure 4. One dimensional sketch of the extension of the macroscopic solution in case

of a cell cut twice

0 01st cut 1 1

extension

2nd cut

tn+1tn

Figure 5. One dimensional sketch of the extension of the macroscopic solution in case

the interface cuts two neighbour cells at tn and tn+1.

Following the above construction, the fully discrete formulation of the macroscopic problem becomes(
cn+1
h , ϕ

)
Ω(tn+1)

+ k
[(
D1∇cn+1

h ,∇ϕ
)

Ω(tn+1)
−
(
η cn+1

h ∇vh,∇ϕ
)

Ω(tn+1)

−
(
µ1(vn+1

h ) cn+1
h (1− cn+1

h − vn+1
h ), ϕ

)
Ω(tn+1)

]
=
(
c̃nh, ϕ

)
Ω(tn+1)

, ∀ϕ ∈ UhM (tn+1),
(3.8a)

(
vn+1
h , ϕ

)
Ω(tn+1)

+ k
[(
αcn+1

h vn+1
h , ϕ

)
Ω(tn+1)

−
(
µ2 (1− cn+1

h − vn+1
h ), ϕ

)
Ω(tn+1)

]
=
(
ṽnh , ϕ

)
Ω(tn+1)

, ∀ϕ ∈ UhM (tn+1),
(3.8b)

where k = tn+1− tn is the macroscopic time step, c̃nh and ṽnh are the extensions from Ω(tn) to Ω(tn+1).

In fact, the two components ch(tn) and vh(tn) are defined only in Ω(tn). Therefore an extension in the

region Ω(tn+1)\Ω(tn) needs to be defined. We have chosen a continuous extension using the prescribed

values c0(x) and v0(x) for x ∈ Y . In particular, we have considered two cases: case (i) the cell where we

need to define the extension is cut at time tn and at time tn+1, see Figure 4 and case (ii) the cell is cut at

time tn and uncut at time tn+1, see Figure 5. In case (ii) the cut goes to the neighbour cell at time tn+1.

In case (i) both components are extended up to the new cut using the values of all degrees of freedom of

the considered cell (also those lying outside the domain Ω(t)) with a bilinear nodal interpolation. Note

that the bilinear nodal interpolation is justified only within the domain Ω(t) in the cut-cell formulation

of the problem, because the integrals in the weak formulation are computed only in the inner part of

the cells. In this sense, we are “extrapolating” the values ch and vh outside the region of validity of

the finite element interpolation. It is known that the problem formulation using cut-cells can lead to

instabilities due to the lost of coercivity outside of the physical domain Ω(tn). To overcome to this
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problem special stabilization techniques can be used, e.g. the ghost penalty method [12]. To implement

stabilization techniques extra boundary integrals have to be implemented increasing the complexity of

the code. We have therefore decided to use a heuristic solution. We have set a threshold of 1% on

the volume to be considered for extrapolation. Cells, whose volume is cut by 99%, are eliminated from

the mesh. The value of 1% has been chosen after testing different values and we have seen that also

with larger values we got the same boundary, meaning that this threshold is accurate enough. In fact,

neglecting the contribution of small cells can be interpreted as a quadrature error. By keeping small

the threshold for the suppression, we keep small this quadrature error.

Stabilization of the haptotaxis term. Due to the large difference between the diffusion coefficient D1

and the haptotactic coefficient η, see Table 2, the macroscopic problem is transport dominant and

therefore must be numerically stabilized. Typically, upwind techniques are used in the finite element

framework to stabilize the calculations [41]; see, for example, [66] for an application of these techniques

to a chemotaxis problem. In this work, we have chosen a streamline diffusion stabilization [81] that

adds an artificial diffusion term only in the direction of the ECM distribution gradient. Hence, the

weak formulation (3.5a) of the macroscopic problem becomes(∂c
∂t
, ϕ
)

+
(
D1∇c,∇ϕ

)
−
(
ηc∇v,∇ϕ

)
+ δc

(
η∇v · ∇c,∇v · ∇ϕ

)
−
(
µ1 c(1− c− v), ϕ

)
= 0, (3.9)

with a stabilization parameter δc that has been heuristically choosen testing a range of values until the

spurious oscillations has been reduced on the choosen refinenemnt level of the computational meshes.

The transport equation is defined on Y . Since this is a hyperbolic equation, a suitable discretization is

needed. Here we have chosen the streamline diffusion approach for its easy implementation and good

performance. We have used an artificial diffusion in the streamline direction scaled with a parameter

δ > 0, whose value can be found in Table 2. Therefore, the discretisation of the weak formulation (3.6)

for the transport equation is given by(
φn+1
h , ϕ

)
Y

+ k
(
V nh · ∇φ

n+1
h , ϕ+ δ (V nh · ∇ϕ)

)
Y

=
(
φnh, ϕ

)
Y
∀ϕ ∈ UhT ,

φ0
h = φ0 ∀x ∈ Y,

(3.10)

where φ0 is the initial level set function, k the time step and V nh is the discrete velocity defined as

V nh :=
cvel

∆T ε
Ix
(
Iτ
(
m̂h,n∇m̂h,n

))
, (3.11)

where Ix and Iτ are two quadrature formulas for the approximation of the integral in space and time

(see expression (3.4)) and m̂h,n is the discrete solution of the microscopic problem as defined below.

Since we assume scale separation, in each point of the macroscopic boundary ∂Ω(t) we need to solve

a microscopic problem that defines the local velocity. In the discrete version, we define the microscopic

problem in a finite number of points at the interface and we discuss later the issue of how to use these

pointwise defined velocities to solve the transport problem. Then the discretisation of weak formulation

of the microscopic problem (3.7) reads:(
m̂l+1
h,n , ϕ

)
+ kτ

(
D2ε

−2L−2∇m̂l+1
h,n ,∇ϕ

)
=
(
m̂l
h,n, ϕ

)
+
(
F̂x,n,h, ϕ

)
∀ϕ ∈ Uhm,

m̂0
h,n = 0 in (0, 1),

(3.12)

where kτ = τn+1 − τn is the time step and m̂l
h,n indicates the discrete microscopic solution for the

macroscopic step n (note that the right hand side depends on the macroscopic solution at time tn),

with l being the time step of the time variable τ , i.e. m̂l
h,n = m̂h,n(τl). The term F̂x,n,h is an

approximation of F̂x,tn in which c is substituted by its discrete counterpart and the integral over B is
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approximated by a quadrature rule

F̂x,n,h(z) :=


IB(cnh)

IB(1)
z ∈ [0, 1/2],

0 otherwise,
(3.13)

where IB(·) is a quadrature rule that approximates the integral of the argument over B

IB(f) ≈
∫
B

f(ξ) dξ.

3.5. Cut-cells finite element approach in approximating the macroscopic tumour interface.

As introduced previously, we discretize in time the tumour macro-dynamics and the transport equation

for the tumour boundary relocation. Therefore, in the semidiscrete formulation we have terms that

are defined at time t = tn+1 and terms defined at time t = tn. Since the domain is time dependent,

the integrals of these terms are defined on different domains. Therefore, in each time step we need to

consider two configurations defined by the position of the boundary ∂Ω(t) in two subsequent time steps.

In particular, we have to consider the case in which the boundary cuts the same finite element cell in

both time steps, see in Figure 6a the cell at the bottom left, and the case in which the boundary cuts

one cell at time tn and it goes over to the neighbour cells at time tn+1 leaving the previous cell uncut

at time tn+1, see in Figure 6a the cell at bottom right.

For the discretized version of the system of equations, we consider the linearized domain Ωh(t), which

is defined by the piece-wise linear boundary

∂Ωh(t) := L0,h(t), (3.14)

where the linearized zero level L0,h(t) is defined by the polygonal line that connects all intersections of

the zero level L0(t) with the mesh cells boundaries shown in Figure 6b.

Cell cut twice

Ωh(tn+1)

Ωh(tn)

(a)

∂Ωh(t)

∂Ωh(t)

∂Ω(t)

(b)

Figure 6. Left: Sketch of the linearized zero level L0,h. Right: Cell cut twice by the

interface at two subsequent time steps.

Using the linearized boundary ∂Ωh(t) we can apply the quadrature rule described in [16] to integrate

the terms of the model on cut-cells with a single cut. Furthermore, if a cell is cut twice, i.e. at time tn
and at time tn+1, we apply the previous quadrature rule recursively.
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Approximation of the nonlocal term. The nonlocal term (3.13) is approximated by a quadrature rule.

We use a further level set function to define the distance from the macroscopic point x, which determines

the domain of integration B. Also in this case we introduce a piece-wise linear approximation of this

level set function and integrate the cells using the quadrature rule only for the cell portion contained

in B.

3.6. Extension of the micro-scale induced velocity. The velocity induced by the boundary MDE

micro-dynamics is determined using formula (3.4). It is computed at the macroscopic point x on the

linearized boundary ∂Ωh(t) and then extended to the rest of the domain Ωh(t).

In this work, we consider only one point x per finite element cell. This is taken at the midpoint of

the segment of the interface L0,h that intersects the cell, as shown in Figure 1. We set the velocity

computed at this point x to all cells which center lies at the closest distance from x. Therefore, the

velocity is approximated as a piecewise constant function. For finite element cells that lie in the cancer

region, i.e. K ∩ Ωh(t) 6= 0, at a distance larger than a prescribed radius of influence ρ> 0, we set the

velocity to zero. This enables us to avoid the transport of numerical pollution from the center of the

domain due to the singularity of the level set in the point that we take as reference to compute the

distance function.

This definition of the velocity extension can lead to regularity problems in the transport of the

interface if two parts of the boundary approach each other. This happens because the velocity of cells

that lie at the same distance from the two approaching boundary parts is not well defined. This is a

typical problem in level set approaches that can be overcome using a fast marching method [2].

3.7. Overall numerical solution process. We sketch the overall solution process underlying the

coupling between the different parts of the model.

Algorithm 1 Overall solution process

1: Set n = 0 and choose the splitting time step ∆T

2: Set φ0(x), c0(x) and v0(x) in Y

3: Define L0(tn) as in (2.7) and linearize it to get Ωh(tn)

4: Solve macroscopic part (3.8) for (x, t) ∈ Ωh(tn)× (tn, tn + ∆T )

5: Compute F̂x,n,h(z), see (3.13)

6: Solve microscopic part (3.12) for (x, τ) ∈ εY × (0,∆T )

7: Compute velocity V nh , see (3.11)

8: Extend velocity on all Y

9: Solve transport problem (2.6) for (x, t) ∈ Y × (tn, tn + ∆T )

10: if tn + ∆T = T then

11: stop

12: else

13: Set tn = tn + ∆T

14: goto 3

The macroscopic system is solved with an implicit Euler scheme. At each time step a nonlinear

system of the type (3.8a-3.8b) has to be solved. We use an exact Jacobian and no damping for the

Newton method, which converges generally in 2 steps to an accuracy lower than 10−6. The linear

system arising in each Newton step is solved by the direct solver UMFPACK [24]. The system (3.10) is

a linear system and is computationally much cheaper than the macroscopic problem. The direct solver

is used in every time step. Finally, the microscopic problem (3.12) is a linear one dimensional parabolic

problem solved with an implicit Euler method and the direct solver in each time step.
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4. Numerical results

In this section we show some numerical results obtained with the numerical method explained above.

We have used the following initial condition for cancer cells

c0(x) =


R− ‖(x1, x2)− (2, 2)‖2

10R
if ‖(x1, x2)− (2, 2)‖2 < R,

0 otherwise,
(4.1)

(4.2)

where R is the initial radius of the cancer region and the point (2, 2) is the center of the computational

domain, see Table 2 for the numerical parameters. For the extracellular matrix distribution we consider

two cases:

• Case 1: v0(x) = 0.3 sin (3π‖(x1, x2)− (0, 0)‖3) + 0.5.

• Case 2: v0(x) = 0.15 (sin (2π‖(x1, x2)− (0, 0)‖3) + sin (2π‖(x1, x2)− (4, 0)‖3)) + 0.75.

In Figure 7 are shown the results for Case 1. In figures 7a, 7c and 7e is depicted the distribution of

cancer cells at time t = 0, t = 5 and t = 10 respectively, while in figures 7b, 7d and 7f is depicted

the ECM distribution at the corresponding time points. The initial tumour mass is located at a valley

of the ECM distribution. The white circle in Figure 7b shows the initial cancer cells mass position

with respect to the ECM distribution. The coordinates of the center of the initial distribution are in

Table 1. We observe that the cancer cells population haptotaxis biases the macro-dynamics of cancer

cells towards regions with higher ECM levels, which in turn leads to the formation of stronger MDEs

sources for the micro-process taking place on the boundary micro-domains εY situated on the part

of the tumour interface facing those elevated ECM regions, leading to a stronger MDEs boundary

micro-dynamics that ultimately translates into a larger magnitude velocity that is induced from the

micro-scale and is fed into the transport equation which governs the tumour boundary movement, that

results into progression of the tumour in those regions. This is a truly multi-scale characteristic of the

actual cancer invasion process that our model is able to capture, resulting in this pronounced lobular

progression of the tumour. It can be observed at time t = 5 that the cancer cells distribution moves

towards the maximum of ECM, and then it follows the path along the two ECM ridges besides the

starting position, which confirms in silico the well-known process of durotaxis observed experimentally

[38, 42, 57, 59, 60, 70, 79].

In Figure 8 are shown the results of Case 2. In the figures 8a, 8c and 8e is depicted the distribution

of cancer cells at time t = 0, t = 5 and t = 10 respectively, while in figures 8b, 8d and 8f is depicted

the ECM distribution at the corresponding time points. Also here the initial cacer cells distribution

is set at the valley of the ECM distribution, see Table 1. In this case, in the vicinity of the starting

position there are four peaks of ECM distribution and the haptotactic term induces a transport of cancer

cells distribution towards all four peaks in a nonsymmetric manner, because the initial position is not

equidistant to the peaks. Therefore, the results in this figure with changed surrounding tissue structure

(induced by the different ECM initial pattern) confirm the same multiscale character of the tumour

progression that our multiscale moving boundary model is able to capture. Again here, we observe this

pronounced lobular progression underscoring again the durotaxis behaviour observed experimentally

for the cancer cell migration.

The behavior of the model is consistent with the expected behavior, in which an interplay of the

microscopic and macroscopic processes determine the transport of the cancer cell distribution in a

nonuniform environment with a nonconstant distribution of the ECM. Specifically, it can be observed

that the haptotactic movement of the cancer cell distribution at macro-scale leads higher levels of sources

of MDEs that the macro-dynamics induces at micro-scale for the boundary proteolytic processes, which
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Case 1: Distribution of c2ncer cells at time t=0 (7a), t=5 (7c) and t=10

(7e). Distribution of ECM at time t=0 (7b), t=5 (7d) and t=10 (7f).

in turn induces a movement of the macroscopic tumourinterface progression in pronounced lobular

manner toward the higher values of the ECM distribution.
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(a) (b)

(c) (d)

(e) (f)

Figure 8. Case 2: Distribution of cancer cells at time t=0 (7a), t=5 (7c) and t=10

(7e). Distribution of ECM at time t=0 (7b), t=5 (7d) and t=10 (7f).
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final time T 10

microdynamics time range ∆T 0.1

initial radius of cancer distribution R 0.3

scale factor ε 0.01

diffusion cancer cells D1 0.00043

haptotactic coefficient η 0.2

proliferation coefficient µ1 0.25

ECM remodelling µ2 0.15

degradation α 1.5

diffusion MDE D2 0.001

center of init. cancer distr. Case 1 (2.3,2.2)

center of init. cancer distr. Case 2 (2.0,1.9)

Table 1. Model parameters in our numerical experiments

time step k 0.1

mesh size h 0.0078125

stream-line stabilization transport problem δ 0.5

stream-line stabilization macroscopic problem δc 0.004

total tissue domain Y (0, 4)× (0, 4)

Table 2. Details of the numerical setting

5. Conclusions

We presented a new formulation of a two-scale model for the simulation of cancer invasion. This

included a new derivation of the tumor boundary motion law by considering the contributions of MDE

micro-dynamics within a transport equation (2.6) (via the velocity field V (m) that is induced by the

micro-scale MDEs processes at tumour interface), the solution of which provides the level set function

indicating the cancer boundary progression on the macro scale. For the computational implementation

we used an unfitted regular mesh with uniform cell diameters and a cut-cell finite element formulation

to avoid the problem of re-meshing in case of large deformations.

We have shown that the presented framework is highly flexible to study different aspects of the cancer

invasion process. In particular, since it is important to study the interplay between the two scales, the

presented implementation allows high flexibility in defining the strength of the coupling via the definition

of the velocity field. The effect on the velocity of the tumour boundary from multiple microscopic

substrates such as matrix metalloproteinases (MMPs) and urokinasetype plasminogen activators (uPAs)

can be studied. Also the level of complexity can be easily increased given the efficiency of the model

implementation and the explicit link between the scales.

Several numerical aspects are of interest for further work in this framework. The solution of transport

equation with finite elements can be substituited by a fast marching algorithm designed for the level set

approach as explained in Section 3.6. The stabilization of the macroscopic problem introduced here with

a streamline diffusion technique can be improved using (higher order) stabilization techniques based

on flux-corrected finite element approaches as indicated in Section 3.4. Furthermore, an adaptive local

refinement strategy for moving meshes can be adopted to reduce the computational costs and increase

the accuracy in the vicinity of the interface. Finally, we underline the potential of the presented
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method, which allows to go to three-dimensional problems without changing the numerical formulation,

thus allowing a significant development of this multiscale modeling framework. The most important

extension required for this development is the formulation of cut cells in three dimensions.
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