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ANALYSIS OF SOLUTIONS AND DISEASE PROGRESSIONS FOR A

WITHIN-HOST TUBERCULOSIS MODEL

WENJING ZHANG, FEDERICO FRASCOLI, AND JANE M HEFFERNAN

Abstract. Mycobacterium tuberculosis infection can lead to different disease outcomes, we analyze a

within-host tuberculosis infection model considering interactions among macrophages, T lymphocytes,

and tuberculosis bacteria to understand the dynamics of disease progression. Four coexisting equilibria

that reflect TB disease dynamics are present: clearance, latency, and primary disease, with low and

high pathogen loads. We also derive the conditions for backward and forward bifurcations and for

global stable disease free equilibrium, which affect how the disease progresses. Numerical bifurcation

analysis and simulations elucidate the dynamics of fast and slow disease progression.

1. Introduction

Mycobacterium tuberculosis (Mtb) is a bacterium that causes an ancient and deadly infectious disease

in humans, called tuberculosis (TB) [9]. Currently, TB affects approximately one third of the world’s

population [10, 6]. In 2018, the World Health Organization (WHO) estimated approximately 10 million

infections globally, and 1.2 million deaths among HIV-negative people [12]. It has also been found

that TB susceptibility and disease are increased in HIV-AIDS infected individuals, resulting in higher

mortality rates [8, 1, 14, 16].

The pathological outcomes of TB infection include clearance, latent infection, and primary disease

with fast or slow progression [13]. After initial infection, 5−10% of infected subjects can clear the disease.

Of the remaining individuals, 5 − 10% will progress to primary disease, and the rest will remain in a

latently infected state with no clinical symptoms, with the possibility of re-activation to primary disease

later in their life. A large number of mechanisms have been proposed to explain TB disease progression

considering individual factors, including bacterial and immune response mechanisms. However, the

most influential factors for TB outcomes are not currently known. Motivated by this, we analyze a

TB host-pathogen model first proposed in Ref. [3]. The model incorporates known mechanisms of

host-pathogen interaction in TB dynamics, and includes all realistic disease outcomes. Analysis is

performed to determine the driving factors behind disease progression and outcome, especially fast or

slow progression to primary disease.

The paper is organized as follows. In Section 2, we introduce the established tuberculosis progression

model. In Section 3, model dynamics are shown through the proofs of the well-posedness of solutions, the

existence of equilibrium solutions, and analyses of the disease free equilibrium. The basic reproduction

number R0 and the vector field on the center manifold for the disease free equilibrium when R0 = 1

are derived analytically. The conditions for the occurrence of the backward and forward bifurcations
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are also derived. In Section 4, numerical continuations are carried out for the infected equilibrium to

confirm the existence of a backward bifurcation. The corresponding numerical simulations show the

fast and slow disease progressions to latency and primary diseases. Finally, conclusions are drawn in

Section 5.

2. Model

The 4-dimensional model (2.1) includes the MTb ideal target cell population, macrophages (their

uninfected Mu and infected Mi populations). It also includes the Mtb bacterial population B, and a

population of CD4 T cells, which aid in TB clearance. The model is as follows:

dMu

dt
= sM − µMMu − βMuB

dMi

dt
= βMuB − bMi − γMi

T/Mi

T/Mi + c

dB

dt
= δB

(
1− B

K

)
+Mi

(
N1b+N2γ

T/Mi

T/Mi + c

)
−MuB(η +N3β)

dT

dt
= sT +

cMMiT

eMT + 1
+

cBBT

eBT + 1
− µTT.

(2.1)

Briefly, uninfected macrophages Mu enter the system with constant rate sM , and can die naturally

(µM ), or be infected by the pathogen B (βMuB). It is assumed that infected macrophages can release

new bacteria into the system in two different ways: (1) through cell death and bursting b, producing

N1 new bacteria, and (2) through cytotoxic T-lymphocyte killing (represented by the ratio T/Mi) with

rate γ and saturating factor c, which releases N2 new bacteria into the system. It is assumed that

the bacteria population can divide (δB(1 − B/K) and that bacteria can be lost due to interaction

with macrophages. This occurs through immune system neutralization ηBMu or macrophage infection

βBMu involving, on average, N3 individual bacteria. Finally, it is assumed that T-cells are produced

at a constant rate sT by the thymus, can be stimulated to proliferate through interactions with the

infected macrophage cMMiT/(eMT + 1) and bacteria cBBT/(eBT + 1), and can die naturally, with

rate µT . Infection is initiated with an initial pathogen load. We refer the reader to Du et al. [3] for

more detail on the biology and model assumptions. Parameters and their values are listed in Table 1.

In previous work, Du et al. [3] found four biologically realistic equilibria and determined the basic

reproduction number. Note that, in the original contribution, there is no mention of the driving factors

behind the different outcomes of disease (namely, clearance, latency, and primary disease with fast or

slow progression) and only an asymptotic version of the model that neglects the effects of the CD4 T-cell

population is used/analyzed. In the following, we expand and elaborate on the four disease outcomes

and other interesting aspects of the model using the full model system Eq. 2.1.

3. Model Dynamics

3.1. Well-posedness of solutions. Let

D =
{

(Mu, Mi, B, T ) ∈ R4
+ : Mu +Mi ≤Mmax, B ≤ Bmax, T ≤ Tmax

}
, where

Mmax =
sM

min {µM , b}
, Tmax =

1

µT

(
sT +

cM
eM

Mmax +
cB
eB
Bmax

)
,

Bmax =
K

2
+

√
(4KδMmax(N1b+N2γ) +K2δ2

2δ
.

(3.1)
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Proposition 3.1. Under the flow of (2.1), there exists a positive invariant set D that attracts all

solutions in R4
+ as time moves forward.

Proof. The smoothness of the right hand side of model (2.1) guarantees the local existence and unique-

ness of the solution of the initial value problem of model (2.1). The trajectories starting from positive

initial values never cross the boundary of R4
+, since

dMu

dt
|Mu=0 = sM > 0,

dMi

dt
|Mi=0 = βMuB ≥ 0,

and
dB

dt
|B=0 = Mi

(
N1b+N2γ

T

T + cMi

)
≥ 0,

dT

dt
|T=0 = sT > 0.

Next, we show that positive solutions are bounded. Due to the positiveness, we have

d

dt
(Mu +Mi) < sM − µMMu − bMi ⇒ lim

t→+∞
sup(Mu +Mi)(t) =

sM
min {µM , b}

:= Mmax.

Moreover,

dB

dt
< δB

(
1− B

K

)
+Mi (N1b+N2γ)−MuB(η +N3β), T

T+cMi
∈ (0, 1)

< − δ

K
B2 + δB +Mmax (N1b+N2γ)

⇒ B(t) = K/2 + tanh
[√

(4KδMmax(N1b+N2γ) +K2δ2)(C0 + t)/(2K)
]

×
√

(4KδMmax(N1b+N2γ) +K2δ2/(2δ),

where C0 is determined by initial condition and C0 + t > 0 for sufficiently large t. We have

B(t) =
K

2
+

√
(4KδMmax(N1b+N2γ) +K2δ2

2δ
:= Bmax.

Then, the last equation in (2.1) satisfies

dT

dt
< sT +

cMMmaxT

eMT + 1
+
cBBmaxT

eBT + 1
− µTT < sT +

cM
eM

Mmax +
cB
eB
Bmax − µTT.

It hence follows that

T (t) <
1

µT

(
sT +

cM
eM

Mmax +
cB
eB
Bmax

)
:= Tmax,

and the proposition is proven. �

3.2. Equilibrium Solutions. Denote model (2.1) as M ′u = f1, M ′i = f2, B′ = f3, T ′ = f4. The

corresponding steady states are derived as follows:

f1 = 0;⇒ M̄u(B) =
sM

βB + µM
. (3.2)

Case 1: If (b+ γ)Mi − βMuB 6= 0 or βsMB − (b+ γ)(βB + µM )Mi 6= 0, we have

f2 = 0 ⇒ T̄ (M̄u) = cMi

[
γMi

(b+ γ)Mi − βM̄uB
− 1

]
(3.2)
==⇒

T̄ (B) =
[βsMB − (βB + µM )bMi]cMi

βsMB − (b+ γ)(βB + µM )Mi
,

T̄ (B) > 0 if βsMB < (βB + µM )bMi or βsMB > (b+ γ)(βB + µM )Mi.

(3.3)
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Considering the preceding results (3.2) and (3.3), we obtain

f3 = cγM2
i f3af3b = 0, where

f3a = (b+ γ)(βB + µM )Mi − βsMB

f3b = Kb (βB + µM )Mi + ((βB + µM )δ + sM [(N2−N3)β − η])KB −B2δ(βB + µM ).

The existence of T̄ in (3.3) implies f3a 6= 0. Further, Mi = 0 induces that f4(Mu = M̄u(B), Mi =

0, B, T̄ (B) = 0) = sT 6= 0. This indicates that the equilibrium does not exist. Therefore f3 = 0 only

implies f3b = 0 followed by

M̄i(B) =

(
Bδ

K
− δ + sM (N2 −N3)β − sMη

βB + µM

)
B

b(N1−N2)
,

M̄i(B) > 0 if
Bδ

K
>
δ + sM (N2 −N3)β − sMη

βB + µM
and N1 > N2.

(3.4)

The B in (3.4) satisfies f4(M̄u(B), M̄i(B), B, T̄ (B)) = 0, the following is true:

F (B) = −eBeMµT T̄ 3(B) +
[
(cMM̄i(B) + eMsT − µT )eB + eM (cBB − µT )

)
T̄ 2(B)

+
[
cBB + cMM̄i(B) + eBsT + eMsT − µT

]
T̄ (B) + sT = 0.

(3.5)

Then, we find the infected equilibrium E∗ = (M̄u(B), M̄i(B), B, T̄ (B)). We note that there could be

more than one solution, and up to three feasible infected equilibria.

Case 2: If βsMB − (b+ γ)(βB + µM )Mi = 0, we have

f2 = 0 ⇒ M̄i0 =
βsMB

(b+ γ)(βB + µM )
. (3.6)

Then substituting M̄u(B) in (3.2) and M̄i0 in (3.6) into f3(M̄u(B), M̄i0) = 0, yields

B̄0 = 0. (3.7)

This is followed by f4(M̄u(B), M̄i0, B̄0) = 0, which yields

T̄0 =
sT
µT

. (3.8)

We thus find the disease free equilibrium (DFE) E0 = (M̄u(B̄0), M̄i0(B̄0), B̄0, T̄0), where M̄u(B̄0) =

sM/µM and M̄i0(B̄0) = 0.

3.3. Analysis of the disease free equilibrium.

3.3.1. Calculation of the basic reproduction number. Following the next-generation matrix approach in

Ref. [11], the basic reproduction number R0 is the spectral radius of FV −1, where

FV −1 =

 0
βsM
µM

N1b+N2γ δ

[b+ γ 0

0
sM
µM

(N3β + η)

]−1
=

 0
β

N3β + η
N1b+N2γ

b+ γ

µMδ

sM (N3β + η)

 ,
and

R0 = ρ(FV −1) =
δµM

2sM (N3β + η)
+

1

2

[
δ2µ2

M

s2M (N3β + η)2
+

4β(N1b+N2γ)

(N3β + η)(b+ γ)

]1/2
. (3.9)
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The Jacobian matrix of model (2.1) at the disease free equilibrium is:

J0 =



−µM 0 −βsM
µM

0

0 −b− γ βsM
µM

0

0 N1b+N2γ δ − sM
µM

(N3β + η) 0

0
cMsT

eMsT + µT

cBsT
eBsT + µT

−µT


, (3.10)

and gives the following characteristic equation

(z + µT ) (z + µM )
(
z2 + Pz +Q

)
= 0, (3.11)

where

P = b+ γ − δ +
sM
µM

(N3β + η) ,

Q = [(−N2 +N3)γβ − b(N1 −N3)β + η(b+ γ)]
sM
µM
− δ(b+ γ).

Equation (3.11) admits at least two negative roots, z = −µT and z = −µM . The third root, z =

δ − b− γ − sM
µM

(N3β + η), is negative if b+ γ + sM
µM

(N3β + η) > δ. The last root is zero, if

[(−N2 +N3)γβ − b(N1 −N3)β + η(b+ γ)]
sM
µM
− δ(b+ γ) = 0, (3.12)

which is equivalent to R0 = 1.

Theorem 3.1. Under the condition b+γ+ sM
µM

(N3β + η) > δ, the disease free equilibrium E0 is locally

asymptotically stable if R0 < 1 and unstable if R0 > 1.

3.3.2. Existence of a backward bifurcation. Following Theorem 4.1 in Ref. [2], we first shift the disease

free equilibrium to the origin by letting x1 = Mu − sM
µM

, x2 = Mi − 0, x3 = B − 0, x4 = T − sT
µT

, and

φ = β − βT . Here R0(βT ) = 1 and

βT =
(−δµM + ηsM )(b+ γ)

sMγ(N2 −N3)γ + sMb(N1 −N3)
.

Then we compute the approximated center manifold for the system near the origin with one simple zero

eigenvalue at R0 = 1, and three negative eigenvalues. We choose a right eigenvector associated with

the simple zero eigenvalue, w, and the left eigenvector, v, satisfying vw = 1 as follows:

w =
1

n



(δµM − ηsM )(b+ γ)

µ2
M w̃

δµM − ηsM
µM w̃

1

sT {[(w̃cB − δcM )µT + (eM w̃cB − δcMeB)sT ]µM + ηcMsM (eBsT + µT )}
(eBsT + µT )(eMsT + µT )µMµT w̃


,

v =

[
0,

N1b+N2γ

b+ γ
, 1, 0

]
,
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where

n =
(N2 −N3)µMγ + [(N1 +N2 − 2N3)b−N2δ]µMγ +N2sMηγ

µM (b+ γ)w̃

+
(N1 −N3)b2µM −N1δbµM +N1sMηb

µM (b+ γ)w̃

and

w̃ = (N2 −N3)γ + b(N1 −N3).

Further, the flow of the center manifold y(t) truncated at the quadratic term is written as

ẏ = Ay2 + Bφy, (3.13)

A =
v

2

[
w′
(

∂f1
∂xi∂xj

)∣∣∣
E0

w, w′
(

∂f2
∂xi∂xj

)∣∣∣
E0

w, w′
(

∂f3
∂xi∂xj

)∣∣∣
E0

w, w′
(

∂f4
∂xi∂xj

)∣∣∣
E0

w

]′

=
An
Ad

,

An = ((Ã− [µT csM (N1 −N2)]bγ)Kδ − sM [(N2 −N3)γ + b(N1 −N3)]2(b+ γ)sT )µ2
Mδ,

− sMδKηµM Ã+KµT γbcs
3
Mη

2(N1 −N2),

Ã = −sT (N2 −N3)γ3 − bsT (N1 + 2N2 − 3N3)γ2 − b3sT (N1 −N3)

− (2N1 +N2 − 3N3)sT b
2γ + 2(N1−N2)µT csMbγ,

Ad = sMµ
2
M [(N2 −N3)γ + b(N1 −N3)]2(b+ γ)sTK,

and

B = v

(
∂fi
∂xi∂β

)
E0

w =
[(N2 −N3)γ + b(N1 −N3)]sM

(b+ γ)µM
,

where i, j = 1 . . . 4. The non-zero terms in

(
∂fk

∂xi∂xj

)∣∣∣
E0

, where i, j, k = 1 . . . 4, are

∂f1
∂x1∂x3

∣∣∣
E0

=
∂f1

∂x3∂x1

∣∣∣
E0

= − ∂f2
∂x1∂x3

∣∣∣
E0

= − ∂f2
∂x3∂x1

∣∣∣
E0

=
(δµM − ηsM )(b+ γ)

[(N2 −N3)γ + b(N1 −N3)]sM
,

∂f3
∂x1∂x3

∣∣∣
E0

=
∂f3

∂x3∂x1

∣∣∣
E0

= N3
∂f1

∂x1∂x3

∣∣∣
E0

− η,

∂f2
∂x2∂x2

∣∣∣
E0

=
2γµT c

sT
,

∂f3
∂x2∂x2

∣∣∣
E0

= −N2
2γµT c

sT
,

∂f3
∂x3∂x3

∣∣∣
E0

= −2
δ

K
,

∂f4
∂x2∂x4

∣∣∣
E0

=
∂f4

∂x4∂x2

∣∣∣
E0

=
cMµ

2
T

(eMsT + µT )2
,

∂f4
∂x3∂x4

∣∣∣
E0

=
∂f4

∂x4∂x3

∣∣∣
E0

=
cBµ

2
T

(eBsT + µT )2
.
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Theorem 3.2. Under the condition B > 0, we have Ad > 0. Then the model (2.1) at the disease

free equilibrium E0, when R0 = 1 undergoes (1) a backward bifurcation if An > 0 and (2) a forward

bifurcation if An < 0. Furthermore, An(c = 0, β = βT , b = bb) = 0, where

bb = γ
[(N2 −N3)sM +Kδ]µM − ηKsM
[(N3 −N1)sM −Kδ]µM + ηKsM

. (3.14)

3.3.3. Global stability analysis for the disease free equilibrium E0. Proposition 3.1 shows that state

variables Mu, Mi, B, and T are bounded for sufficiently large time. That is, there exists a time T > 0

such that Mu < Mmax, Mi < Mmax, B < Bmax, and T < Tmax. Applying the “fluctuation lemma” [5],

there exists time sequences τn →∞ and σn → +∞ such that

M∞i := lim supt→∞Mi(t) = limn→+∞Mi(τn) and limn→+∞
dMi(τn)

dt
= 0,

B∞ := lim supt→∞B(t) = limn→+∞B(σn) and limn→+∞
dB(σn)

dt
= 0.

(3.15)

The preceding equations are followed by

βMu(τn)B(τn)− bM∞i − γM∞i
T (τn)

T (τn) + cM∞i
= 0

=⇒ βMu(τn)B(τn) =

(
b+ γ

T (τn)

T (τn) + cM∞i

)
M∞i ≤ βMmaxB

∞

−→M∞i ≤
βMmaxB

∞

b+ γ
T (τn)

T (τn) + cM∞i

<
β

b
MmaxB

∞,

(3.16)

and

δB∞
(
1− B∞

K

)
+Mi(σn)

(
N1b+N2γ

T (σn)
T (σn)+cMi

)
−Mu(σn)B∞(η +N3β) = 0 =⇒

−δB∞
(
1− B∞

K

)
+Mu(σn)B∞(η +N3β) = Mi(σn)

(
N1b+N2γ

T (σn)
T (σn)+cMi

)
≤Mi(σn) (N1b+N2γ)

=⇒ [Mu(σn)(η +N3β)− δ]B∞ ≤Mi(σn) (N1b+N2γ) =⇒

B∞ ≤Mi(σn)
N1b+N2γ

Mu(σn)(η +N3β)− δ
≤ N1b+N2γ

Mu(σn)(η +N3β)− δ
M∞i ,

(3.17)

where T (τn)
T (τn)+cM∞

i
≤ 1. Subsequently,

M∞i ≤
β

b
MmaxB

∞ ≤ β

b
Mmax

N1b+N2γ

Mu(σn)(η +N3β)− δ
M∞i . (3.18)

If
β

b
Mmax

N1b+N2γ

Mu(σn)(η +N3β)− δ
≤ 1,

or equivalently

Mu(σn) ≥ 1

η +N3β

[
βsM
bµM

(N1b+N2γ) + δ

]
:= Mmax

u , (3.19)

then M∞i = 0, implying B∞ = 0, and the disease free equilibrium E0 is globally stable.

Theorem 3.3. If b + γ + sM
µM

(N3β + η) > δ and R0 < 1, the uninfected macrophage population Mu

should satisfy Mu ≥Mmax
u to completely eliminate TB infection.
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Symbol Description (Unites) Value (Range) Source

sM recruitment rate of Mu (1/ml day) 5000 (0.33, 33) [13] [7] [4]

sT recruitment rate of T (1/ml day) 6.6 (3300, 7000) [13] [7] [4]

µM death rate of Mu (1/day) 0.01 (0.01, 0.011) [13] [7] [4]

b loss rate of Mi (1/day) 0.11 (0.05, 0.5) [13] [7] [4]

µT death rate of T (1/day) 0.33 (0.05, 0.33) [13] [7] [4]

β infection rate by B (1/day) 2× 10−7 (10−8, 10−5) [13] [7] [4]

η bacteria killing rate by Mu rate (1/ml day) 1.25 × 10−8 (1.25 ×
10−9, 1.25× 10−7)

[13] [7] [4]

γ cell-mediated immunity rate (1/day) 0.5 (0.1, 2) [13] [7] [4]

δ proliferation rate of B (1/day) 5× 10−4 (0, 0.26) [13] [7] [4]

cM expansion rate of T induce by Mi (1/day) 10−3 (10−8, 1) Estimated

cB expansion rate of T induce by B (1/day) 5× 10−3 (10−8, 1) Estimated

eM saturating factor of T expansion related to Mi 10−4 (10−6, 10−2) Estimated

eB saturating factor of T expansion related to B 10−4 (10−6, 10−2) Estimated

c half-saturation ratio for Mi lysis (T/Mi) 3 (0.3, 30) Estimated

K carrying capacity of B (1/ml) 10−8 (106, 1010) Estimated

N1 max MOI of Mi (B/Mi) 50 (50, 100) [13] [7] [4]

N2 max No. of B released by apoptosis (T/Mi) 20 (20, 30) [13] [7] [4]

N3 N3 = N1/2 (B/Mi) 25 (25, 50) [13] [7] [4]

Mu uninfected macrophages

Mi infected macrophages

B extra and intra-cellular bacteria

T CD4 T-cells

Table 1. Parameter Symbol, Descriptions, Values, and Sources [3]

The occurrence of a backward bifurcation destabilizes the globally stable disease free equilibrium

E0 under the condition R0 < 1 and an extra condition to regain stability is needed, i.e. b + γ +
sM
µM

(N3β + η) > δ, as shown in Theorem 3.3. In the next section, we verify the existence of a backward

bifurcation computationally and investigate the associated dynamical behaviors by numerical simula-

tions.

4. Bifurcation analysis and numerical simulations

Consider the n-dimensional nonlinear system with m parameter values

dx

dt
= f(x, p), x ∈ Rn, p ∈ Rm, f : Rn+m → Rn. (4.1)

The equilibrium solutions xe = xe(p) are derived from the equilibrium condition

f(xe(p), p) = 0, x ∈ Rn, p ∈ Rm. (4.2)

The local stability of the equilibrium points xe(p) is determined by the eigenvalues of the Jacobian

J(p) = [∂fi(xe(p), p)/∂xj ], which are the roots of the corresponding characteristic polynomial equation

Pn(λ) = det[λI − J(p)] = λ+ a1(p)λn−1 + a2(p)λn−2 + · · ·+ an−1(p)λ+ an(p). (4.3)

The necessary and sufficient conditions for zero-eigenvalue bifurcation (zero-singularity) are given in

Ref. [15].
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Figure 1. Bifurcation diagrams of model (2.1) with B vs b and simulations. E0 and

E1 are in green and red curves. Four zero-eigenvalue bifurcation are denoted as black

points as bT1, bT2, bT3, and bT4. Simulations are carried out for five fixed b values as

b = 0.0298, b = 0.035, b = 0.288, b = 0.31, and b = 0.4. The first three b values shows

bistability. The last three b values show different progression speed for the bacterial

population B.

Theorem 4.1. The necessary and sufficient conditions for system (4.1) to have a k-zero singularity at

a fixed point (equilibrium), x = xe(p), of the system are given by

an(p) = an−1(p) = · · · = an+1−k(p) = 0, (4.4)

which ai(p)’s are the coefficients of the characteristic polynomial (4.3). Further, if the remaining co-

efficients a1, a2, . . . an−k still obey the Hurwitz conditions for order n − k, then all the remaining

eigenvalues of the Jacobian have negative real parts.

Based on the results of the uncertainty and sensitivity analysis in Ref. [3], the model is significantly

affected by the change of macrophage loss rate b, the infection rate β, cell-mediated immunity rate γ,

and bacterial killing rate η. We thus choose the macrophage loss rate b as a bifurcation parameter to

verify the analytical result for the backward bifurcation discussed in Theorem 3.1. The other parameter

values are fixed and shown in Table 1.

Using Theorem 4.1, we numerically find four zero-eigenvalue bifurcation critical points at bT1 =

0.0295, with ET1 = (497833, 122, 8.7, 40), bT2 = 0.2993, with ET2 = (21089, 2664, 45417, 6952168),

bT3 = 0.1363, with ET3 = (20, 3055, 49998972, 7575684467), and bT4 = 0.3000036, which yields

ET4 = (500000, 0, 0, 20). The summarized bifurcation, equilibria, and their stability are shown in

Figure 1. Two values, i.e. b = 0.0298, b = 0.035, are chosen near bT1 and time series show that

bistability occur for both b values, with solutions landing onto different equilibria depending on their

initial conditions (see panel (A)). This is of interest because it means that the disease can die out or

persist to latency depending on the initial infection status. Interestingly, the progression to latency

shows different dynamics and lasts different periods of time for the chosen b values. The red and yellow

curves take different time to stabilize at their latency levels.
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We then take three b values, i.e. b = 0.288, b = 0.31, and b = 0.4, close to bT2 (see panel (B)). Again,

bistability occurs when b = 0.288 on the left of bT2. There is an obvious difference in the speed of

disease progression for the three different b values, as shown by the curves in the inset of Figure 1(B).

These examples of fast and slow disease progression dynamics seem to confirm the numerical findings

in Ref. [3] and are the object of current investigation.

5. Conclusion

In this paper, we analyze a four-dimensional within-host model (2.1) for tuberculosis infection, which

has been previously proposed and studied numerically in Ref. [3].

We carry out analyses for the well-posedness and boundedness for solutions, existence of the disease

free and infected equilibriums and local and global stability analysis. A bifurcation analysis for the

disease free equilibrium is also conducted, and a numerical continuation for the infected equilibrium

shows when a backward bifurcation occurs. Numerical simulations finally show how fast and slow

disease progressions take place close to the bifurcation, with examples of bistability behaviour. This is

important because different initial infections can lead to different disease progressions, with considerable

differences among latency times.

An in-depth analysis of the bifurcation scenario of this model is currently under progress, with the

aim of characterising the different, possible behaviours towards infection that TB shows.
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