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Abstract
Invariant tensors play an important role in gauge theories, for example, in dualities of N=1 gauge theories.
However, for theories with fields in representations larger than the fundamental, the full set of invariant
tensors is often difficult to construct. We present a new approach to the construction of these tensors, and
use it to find the complete set of invariant tensors of a theory of SO(3) with fields in the symmetric tensor
representation.
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The invariant objects in a gauge theory play an important
role. In a gauge theory, fields transform under various rep-
resentations of the symmetry. However, the observables are
gauge invariant and are hence invariant combinations of the
fields. Similarly, in a confining theory, the physical spectrum is
composed of gauge-invariant bound states of the fundamental
fields.

Similarly, the duality of supersymmetric gauge theories
was initiated by [1]; here two or more supersymmetric gauge
theories were conjectured to be equivalent at low energies. Test-
ing these duality conjectures requires detailed knowledge of
the theory being studied. This is required for matching the flat
directions, matching the spectra or the chiral rings, or for check-
ing ’t Hooft’s anomaly matching conditions [2]. For all these
tests, a knowledge of the gauge invariant operators is neces-
sary. Indeed, one might expect an exact equivalence of the op-
erators in these theories [3, 4, 5].

The invariant tensors of the fundamental representations
of the classical groups are known1. However, the tensors for
the other representations are not completely classified. For the
exceptional groups such as E6, it is not even known if the
full set of tensors for the fundamental representation has been
found [18].

Our goal in this paper is to present an approach to find-
ing the fundamental polynomial invariants of gauge theories
(this is sometimes known as a Hilbert basis). The elements of
the Hilbert basis are said to be (polynomially) independent. We
wish to find the invariant tensors for physically relevant groups
and representations, with the goal of eventually being able to
classify the tensors for the various representations of the excep-
tional groups.

Our approach is to successively reduce the symmetry
group to a tractable subgroup for which the invariant struc-
ture is known. We then find the necessary invariants in the full
theory that are required to reproduce the invariants of the sub-
group. This then yields all invariants of the larger group.

The method is more easily described by example. We be-
gin by applying it to two simple cases for which the answer
is known. These are the group SO(2) with fields in the funda-
mental representation, and the group SO(3) with fields in the
fundamental. The invariants of these theories are well known,
and we derive them by our method below.

1For a section of the mathematical literature relevant to invariant theory: [6]–
[17].

Finally, we apply our method to a nontrivial case: SO(3)
with fields in the symmetric tensor representation. The invari-
ants here are not well known. However, we are able to prove
that there are invariants of degree 2, 3, 4 and 5, and no others.
We are also able to explicitly find the form of the invariants.

SO(2) is the group of 2 by 2 orthogonal matrices (we are
here using the physicist approach to groups and algebras). A
general element can be represented as

g =

(
cos θ sin θ
− sin θ cos θ

)
, (1)

where 0 ≤ θ < 2π. The corresponding algebra is generated by
the single matrix

m =

(
0 −i
i 0

)
. (2)

The general group element is related to the algebra element as
g = eiθm.

The fundamental representation can be written as a column
vector of two elements

r =
(

a
b

)
(3)

(One could also impose a condition on the norm e.g. a2 + b2 =
1, but this is not necessary).

The group acts on the representation as

r → gr, (4)

while the infinitesimal transformations act on the representa-
tion as

r → (1 + iθm)r. (5)

The SO(2) algebra is isomorphic to a U(1) algebra. If we
define Φ = a+ ib, then the action of the group is just Φ→ Φeiθ .
If there are two different fields Φ1, Φ2, then the invariants are of
the form Re(Φ1Φ∗2) or Im(Φ1Φ∗2) (or products thereof). These
can be written in SO(2) language as rir′i or εijrir′j.

There are thus two invariants of degree 2 in this theory. As
we have seen, this is easy to show directly. Nevertheless, we
derive this using a more generalizable method.

Accordingly, we take the approach where we try to reduce
the symmetry. We do this by choosing one particular funda-
mental and giving it a fixed value (i.e. what is called sponta-
neous symmetry breaking in quantum field theory). We choose
the fundamental r(0) and set

r(0) =
(

0
C

)
(6)
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where C is a constant. We will refer to this fixed value as the
vev (short for vacuum expectation value).

This vev is fixed; therefore, the remaining symmetries are
those that leave the vev fixed. In this case, there are no remain-
ing symmetries. The vev has broken the symmetry from SO(2)
to nothing non-trivial.

Now consider a second fundamental

r(1) =
(

c
d

)
. (7)

Now the symmetry is completely broken; and hence the SO(2)
structure has no meaning. This is really two independent fields
c and d with no symmetry linking them. The invariants are
therefore immediate; they are any combinations of c, d. Hence
when the symmetry is broken, the invariants are of degree 1
and are arbitrary combinations of the fields.

What does this tell us about the original theory, assuming
that we knew nothing of the invariants of SO(2)?

We must have that the invariants of SO(2) are such that af-
ter r(0) gets its fixed vev, they reduce to the degree 1 invariants
of the broken theory.

The simplest way this could happen is if there were degree
1 invariants in the SO(2) theory; it is easy to check that there
are not.

The next possibility is a degree 2 invariant such as r(0)i r(1)i
which would become a degree 1 invariant once r(0) is replaced
by a fixed value. Indeed, this is an invariant, and becomes Cd
once evaluated. Here C is just a constant, and is not relevant
for the purposes of matching invariants.

We still need something that will give us the field c. This is

the other degree 2 invariant εijr
(0)
i r(1)j which becomes −Cc.

These two invariants r(0)i r(1)i , εijr
(0)
i r(1)j are therefore capa-

ble of generating all invariants of the broken theory.

We can therefore assert that r(a)
i r(b)i , εijr

(a)
i r(b)j generate the

invariants of the full SO(2) theory, where r(a)
i and r(b)j are arbi-

trary fundamentals.
SO(3) is the group of 3 by 3 orthogonal matrices. The cor-

responding algebra is generated by the three matrices

m1 =

 0 −i 0
i 0 0
0 0 0

 m2 =

 0 0 −i
0 0 0
i 0 0


m3 =

 0 0 0
0 0 −i
0 i 0

 . (8)

The fundamental representation can be written as a column
vector of three real elements

r =

 a
b
c

 . (9)

The infinitesimal transformations act on the representation
as

r →
(

1 + i ∑
i

αimi

)
r. (10)

Again we try to reduce the symmetry. We do this by choos-
ing one particular fundamental and giving it a fixed value. We
choose the fundamental r(0) and give it a fixed vev

r(0) =

 0
0
C

 . (11)

The remaining symmetries are those that leave the vev
fixed. In this case, this would be a choice of αi such that

r(0) →
(

1 + i ∑
i

αimi

)
r(0) = r(0). (12)

It is fairly straightforward to go through the exercise and show
that the only possibility is α2 = α3 = 0, while α1 is anything.
This is a residual SO(2) symmetry. The vev has broken the sym-
metry from SO(3) to SO(2).

Now consider a second fundamental

r(1) =

 d
e
f

 . (13)

r(1) is in a reducible representation of SO(2); in fact the d and
e fields combine to form a fundamental of SO(2), while f is a
singlet of SO(2).

There are degree 2 invariants involving the fundamental,
as described in the previous section, as well as degree 1 invari-
ants from the singlets. More precisely, if we introduce a further
fundamental

r(2) =

 g
h
k

 , (14)

the invariants would be generated by the singlets f , k the bilin-
ear (dg + eh) and the bilinear (dh− g f ).

It must be that the invariants of SO(3) are such that after
r(0) gets its fixed vev, they reduce to these invariants.

A quick check shows that we need a bilinear invariant

r(a)
i r(b)i and a trilinear invariant εijkr(a)

i r(b)j r(c)k . (One needs to
check that these are actually invariants, but that is also well

known.) Specifically, the bilinears r(0)i r(1)i , r(0)i r(2)i generate the

degree 1 invariants after r(0) gets a vev, the bilinear r(1)i r(2)i gen-

erates the bilinear (dg+eh), and the trilinear εijkr(0)i r(1)j r(2)k gen-
erates the bilinear (dh-gf).

We can therefore assert that r(a)
i r(b)i , εijkr(a)

i r(b)j r(c)j generate
the invariants of the full SO(3) theory with fundamentals.

The symmetric tensor representation can be written as a
tensor Tij where Tij = Tji and δijTij = 0.

Tij =

 T11 T12 T13
T12 T22 T23
T13 T23 − T11 − T22



The infinitesimal transformations act on the representation
as

Tij → Tij + i(∑
a

αama)ikTkj + i(∑
a

αama)jkTik. (15)
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We are looking for invariants; in this case, in fact, there
is no answer in the literature for the full set of invariants.
Note that we can contract the indices either using the invari-
ant tensor δij or the invariant tensor εijk. However, since an ele-
ment of the symmetric tensor representation has an even num-
ber of indices, there must be an even number of epsilon ten-
sors,tr which can then be converted to delta tensors. It follows,
then, that we may write a general invariant of this representa-
tion as the trace of an arbitrary (matrix) product of symmetric
tensors. We will denote such an invariant as tr(AB . . . N) =
AijBkl . . . Nmnδjkδlmδni.

Again we try to reduce the symmetry. We choose one fun-
damental T(0) and give it a fixed vev. However, there are many
possible choices which are physically inequivalent. We will
choose

T(0)
11 = 1 T(0)

22 = 1 T(0)
33 = −2.

That is,

T(0)
ij =

 1 0 0
0 1 0
0 0 −2

 . (16)

This breaks the SO(3) symmetry; the remaining continuous
symmetry is the SO(2) symmetry where α1 is nonzero, and the
rest zero. Any other tensor Tij then decomposes into 5 fields,
of charges 2, 1,0,-1,-2. The fields (with the charge labelled as a
subscript) are explicitly:

T2 = 2T12 + i(T11 − T22)

T−2 = T∗2

T1 =

(
i√
2
− 1√

2

)
(T13 − iT23)

T−1 = T∗1
T0 = T11 + T22,

and so may be written as

Tij =

 T0
2 + iT−2

4 −
iT2
4

T−2
4 + T2

4
iT−1

2 −
iT1
2

T−2
4 + T2

4
T0
2 + T2i

4 −
iT−2

4
T−1

2 + T1
2

iT−1
2 −

iT1
2

T−1
2 + T1

2 −T0

. (17)

In addition, there is a discrete Z2 symmetry which inter-
changes all indices 1 with an index of 2, so that for exam-
ple T13 ↔ T23. This symmetry removes the epsilon tensor of
the SO(2) symmetry. Under the discrete symmetry which in-
terchanges the 1 and 2 indices, we have, T2 ↔ T−2, T1 ↔
T−1, T0 ↔ T0.

We now want to construct all possible combinations of
these fields which are invariant under both the U(1) and Z2
symmetries.

For the U(1), the invariants combinations are those where
the charges sum to zero. These are T2T′−2, T1T′−1, T2T′−1T̃−1,
T−2T′1T̃1 and T0.

However, these are not all invariant under the Z2 symme-
try. Under the symmetry, for example, T2T′−2 → T′2T−2, so there
are two linear combinations: T2T′−2 + T′2T−2, which is invariant

under Z2, and T2T′−2− T′2T−2, which picks up a minus sign un-
der a Z2 transformation. The invariants are, then, either even
or odd under the Z2.

We then find that the following expressions are invariant
under both the U(1) and the Z2 symmetries

O1 = T0 (18)

O2 = Re(T2T′−2) ≡ T2T′−2 + T′2T−2 (19)

O3 = Re(T1T′−1) ≡ T1T′−1 + T′1T−1 (20)

O4 = Re(T2T′−1T̃−1) ≡ T2T′−1T̃−1 + T−2T′1T̃1 (21)

On the other hand, there are combinations which are invari-
ant under the U(1), but odd under the Z2, which are

Im(T2T′−2) ≡ T2T′−2 − T′2T−2

Im(T1T′−1) ≡ T1T′−1 − T′1T−1

Im(T2T′−1T̃−1) ≡ T2T′−1T̃−1 − T−2T′1T̃1

We can find new invariants by taking pairwise products of
these. There are 6 possible pairwise products

(i) Im(T1T′−1)Im(T1T′−1) (ii) Im(T1T′−1)Im(T2T′−2)

(iii) Im(T1T′−1)(T2T′−1T̃−1 − T−2T′1T̃1)
(iv) Im(T2T′−2)Im(T2T′−2)

(v) Im(T2T′−2)(T2T′−1T̃−1 − T−2T′1T̃1)

(vi) (T2T′−1T̃−1 − T−2T′1T̃1)(T2T′−1T̃−1 − T−2T′1T̃1).
In principle, all these are further invariants. However,

many of these can be reexpressed in terms of the previously
found O1−4. In fact,

Im(T2T′−2)Im(T2T′−2) = Re(T2T′−2)Re(T2T′−2)

−Re(T2T−2)Re(T′2T′−2)

Im(T1T′−1)Im(T1T′−1) = Re(T1T′−1)Re(T1T′−1)

−Re(T1T−1)Re(T′1T′−1)

Im(T2T′−2)Im(T2T′−1T̃−1) = Re(T2T′−2)Re(T2T′−1T̃−1)

−Re(T2T−2)Re(T′2T′−1T̃−1)

Im(T1T′−1)Im(T2T′−1T̃−1) = Re(T1T′−1)Re(T2T′−1T̃−1)

−Re(T′1T′−1)Re(T2T−1T̃−1)

+Re(T1T̃−1)Re(T2T′−1T′−1)

−Re(T′1T̃−1)Re(T2T−1T′−1)

Im(T2T′−1T̃−1)Im(T2T′−1T̃−1) = Re(T2T′−1T̃−1)Re(T2T′−1T̃−1)

+
1
2

Re(T2T−2)Re(T′−1T̃1)Re(T′−1T̃1)

−1
2

Re(T2T−2)Re(T′−1T̃1)Re(T′−1T̃1)

−1
2

Re(T2T−2)Re(T′−1T′1)Re(T̃−1T̃1).

However, the operator

O5 = Im(T2T′−2)Im(T1T′−1)

cannot be expressed in terms of the O1−4. The ring of operators
is therefore generated by the operators O1−5.

We would now like to use these operators to pick from the
sea of possibilities the unique SO(3) invariant operators that
allow us to generate the full space of SO(3) invariants. So now,
the question is whether we can generate all these invariants of
the broken theory from SO(3) invariant combinations of ten-
sors when one SO(3) tensor, which will be denoted T(0), gets a
vev as in equation (16).
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We start with the simplest possibilities for the SO(3) invari-
ants.

No SO(3) invariant of degree 1 exists (i.e. tr(T) = 0 for
symmetric tensors).

There is one SO(3) invariant of degree 2 i.e. the trace
tr(AB), where A, B are tensors. It is convenient to write this
trace in terms of the SO(2) fields. From the correspondence
(17), we have

tr(AB) = (A−1B1 + A1B−1) +
1
4
(A−2B2 + A2B−2) +

3A0B0
2

.

(22)

If one of these tensors obtains a vev, i.e. B = T(0), this is

tr(AT(0)) = 3A0 = 3O1. (23)

We then conclude tr(AB) must be part of the chiral ring of
SO(3), and that the operator O1 is generated from this element
of the ring when a tensor gets a vev and breaks the group to
SO(2). That is,

O1 =
1
3

tr(AT(0)). (24)

The element tr(AB) also yields a SO(2) bilinear when nei-
ther obtains a vev. This can be written as

Re(A1B−1) +
1
4

Re(A2B−2) = tr(AB)− 3A0B0
2

. (25)

Thus, the specific combination of bilinears Re(A1B−1) +
1
4 Re(A2B−2) can also be generated by combinations of the bi-
linear element of the SO(3) chiral ring. However, the other lin-
ear combinations of the bilinears cannot be produced by using
the SO(3) bilinear. We need to use another element of the SO(3)
chiral ring.

The next possibility is the invariant of degree 3: tr(ABC).
Using the decomposition (17), we find

tr(ABC) = −A−1B−1C2
4

− A−1B0C1
4

− A−1B1C0
4

− A−1B2C−1
4

+
A−2B0C2

8
− A−2B1C1

4
+

A−2B2C0
8

− A0B−1C1
4

+
A0B−2C2

8
− 3A0B0C0

4
− A0B1C−1

4

+
A0B2C−2

8
− A1B−1C0

4
− A1B−2C1

4
− A1B0C−1

4

− A1B1C−2
4

− A2B−1C−1
4

+
A2B−2C0

8
+

A2B0C−2
8

.

If C gets a vev, then we can set C0 = 1 and the other Ci=0. This
then generates the bilinear operator

tr(ABC(0)) = −A−1B1
4

+
A−2B2

8
− 3A0B0

4
− A1B−1

4
+

A2B−2
8

This implies that the trilinear tr(ABC) is part of the SO(3) chi-
ral ring. Then the bilinear operator Re(A2B−2) − 2Re(A1B−1)
can be generated in terms of elements of the SO(3) chiral ring.
In combination with the bilinear (), all operators O1−3 can be
generated.

The trilinear tr(ABC) also yields a trilinear in the SO(2)
fields if none of the tensors has a vev. This trilinear can be writ-
ten as

tr(ABC) = −1
4

Re(A−1B−1C2 + A−1B2C−1 + A2B−1C−1) + ...

where the ellipses are combinations of O1−3. Hence the com-
pletely symmetric trilinear is generated. To generate the other
trilinears, we must consider a new SO(3) invariant.

The next possibility is an invariant of degree 4; tr(ABCD).
However, we can narrow our search a little. The completely
symmetrized trilinear has already been generated, and, so,
we need to look for invariants where at least two tensors are
antisymmetrized. There are exactly two such possibilities; (a)
tr([A, B][C, D]) and (b) tr(ABCD) − tr(CBAD). However the
second can be shown to be zero for symmetric tensors.

We therefore include tr([A, B][C, D]) in the Hilbert basis.
We allow the field to get a vev (i.e. D0 = 1 and the other Di=0.).
We then find

tr([A, B][C, D(0)]) =
3
2
(Re(A−1C−1B2)− Re(B−1C−1 A2)) + ...,

(26)

where the ellipses are combinations of O1−3. We thus gener-
ate the trilinear operator (Re(A−1C−1B2) − Re(B−1C−1 A2)).
We also find that the tr([A, C][B, D]) generates (Re(A−1B−1C2)
−Re(C−1B−1 A2)). Along with the completely symmetric trilin-
ear, we have generated all trilinears from O4. This implies that
the operator tr([A, B][C, D]) is part of the SO(3) chiral ring.

We now turn to the generation of all terms of the form
O5. It is useful, however, to first work out what structures
we are looking for. The O5 terms have the general form
Im(A1B−1)Im(C2D−2). There are other such forms related
by a permutation acting on ABCD. There are 6 such in-
dependent permutations which are Im(A1B−1)Im(C2D−2),
Im(A1C−1)Im(B2D−2), etc.

It is useful to separate these into combinations which are
(anti)symmetric when we interchange the two pairs of fields. In
the symmetric terms, we further isolate the expression which is
antisymmetric under any pairwise exchange. These are

Im(A1B−1)Im(C2D−2)± Im(C1D−1)Im(A2B−2)

Im(A1C−1)Im(B2D−2)± Im(B1D−1)Im(A2C−2)

Im(A1D−1)Im(B2C−2)± Im(B1C−1)Im(A2D−2)

If no field gets a vev, the operator tr([A, B][C, D]) generates
an operator of the form O5:

tr([A, B][C, D]) = −(Im(A1B−1)Im(C2D−2)

+Im(A2B−2)Im(C1D−1)) +
1
2
(Im(A1D−1)Im(B2C−2)

+Im(A2D−2)Im(B1C−1))−
1
2
(Im(A1C−1)Im(B2D−2)

+Im(A2C−2)Im(B1D−1)) + ... (27)

Similarly, we also have

tr([A, C][B, D]) = −(Im(A1C−1)Im(B2D−2)

+Im(A2C−2)Im(B1D−1))−
1
2
(Im(A1D−1)Im(B2C−2)

+Im(A2D−2)Im(B1C−1))−
1
2
(Im(A1B−1)Im(C2D−2)

+Im(A2B−2)Im(C1D−1)) + ... (28)

4
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Since we have

tr([A, B][C, D])− tr([A, C][B, D])− tr([A, D][C, B]) = 0 (29)

the completely antisymmetrized structure cannot be gener-
ated. The operators tr([A, B][C, D]), tr([A, C][B, D]) thus gen-
erate two combinations of the O5 form which are symmetric
under interchange of (AB), (CD), but not the fully antisymmet-
ric combination. We therefore still need new SO(3) invariants.

We must consider invariants of degree 5. These are of the
form tr(ABCDE) where one field gets a vev, since we must
generate a quadrilinear. We can take E to be the field getting
a vev; there are then 24 possible permutations of the remaining
field in this invariant.

We first try to generate the completely antisymmetric (in
ABCD) structure. It is relatively easy to see that this requires
the SO(3) chiral ring to include the structure tr(ABCDE) where
all five tensors are completely antisymmetrized.

We then generate the structures in which (AB), (CD) are an-
tisymmetric, and where the structure is odd under pairwise in-
terchange of (AB), (CD). The only possible nonzero candidate
structure is

tr(A[C, D]BE)− tr(C[A, B]DE) (30)

We include the last candidate as part of the chiral ring, and find
its decomposition once E gets a vev. This is

tr(BE(0)A[C, D]− DE(0)C[A, B]) =
3
2
(Im(C1D−1)Im(A2B−2)

−Im(C2D−2)Im(A1B−1))

tr(CE(0)B[D, A]− AE(0)D[B, C]) =
3
2
(Im(A1D−1)Im(B−2C2)

−Im(A2D−2)Im(B−1C1))

tr(CE(0)A[D, B]− BE(0)D[A, C]) =
3
2

Im(A2C−2)Im(B−1D1)

−Im(A1C−1))Im(B−2D2)

which, indeed, generates all the required O5 structures.
In summary, we have found the Hilbert basis for the SO(3)

group with symmetric tensors. These are:

S1 = tr(AB) (31)

S2 = tr(ABC) (32)

S3 = tr([A, B][C, D]) (33)

S4 = tr(ABCDE) antisymmetrized in ABCDE (34)

S5 = tr(A[C, D]BE)− tr(C[A, B]DE) (35)

In this note, we have presented a new approach to con-
structing the invariant tensors for theories with arbitrary rep-
resentation content. We have applied this method to simple ex-
amples and shown that the known results are reproduced. We
have also applied this method to a theory where the chiral ring
was not known - a SO(3) theory with symmetric tensors - and
shown that we can extract the chiral ring by our methods.

While we have worked with relatively simple groups here
we expect that our methods can be generalized straightfor-
wardly to other groups and representations. In particular, it
would be interesting to find invariant tensors for SU(N) ten-
sors with adjoint representations, which are interesting for

the physics of strong interactions, and for exceptional groups,
which are important for applications to dualities in supersym-
metric theories.
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