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Abstract
We propose in this paper a quantization scheme for the real Klein-Gordon field in de Sitter spacetime.
Our scheme is generally covariant with the help of vierbein, which is necessary usually for the spinor
field in curved spacetime. We first present a Hamiltonian structure and then quantize the field following
the standard approach. For the free field, the time-dependent quantized Hamiltonian is diagonalized by
Bogliubov transformation, and the eigenstates at each instant are interpreted as the observed particle states
at that instant. The interpretation is supported by the known cosmological redshift formula and the on-
shell condition of 4-momentum for a free field. Though mathematics is carried out in terms of conformal
coordinates for the sake of convenience, the whole theory can be transformed into any other coordinates
based on general covariance. It is concluded that particle states, such as vacuum states in particular, are
time-dependent and vacuum states at one time evolve into nonvacuum states at later times. The formalism
of perturbation is provided with en extended Dirac picture.
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1. INTRODUCTION
Is it necessary to pursue a quantum field theory conforming
to the principle of general covariance and why should another
discussion be on the same topic? To the first question, the an-
swer seems affirmative. To answer the second, one needs to
evaluate lots of schemes that have been proposed as of today. It
seems to the present author that most of the discussions are not
as physically fruitful as conventional quantum field theories,
though various mathematical structures have been revealed.
And the topic of quantized scalar field in curved spacetime de-
serves revisits.

A unified theory that can explain all forces in nature in
quantized fashion has been a Holy Grail in physics for quite
long a time ever since Einstein. Yet, definite progress in relat-
ing to the real world is still called for considering the devel-
opments as of today in superstring/brane theories. Instead of
seeking a final theory in which all fields in nature are quan-
tized, a less ambitious endeavor has been paid to the quan-
tization of all fields except for gravity in curved spacetime, a
branch that has been one of the major foci in theoretical physics
for decades [1]-[4]. To understand the necessity of quantization
of matter fields in curved spacetime, one can consider a basic
question: pions in cosmic rays come down to the earth all the
way from distant universe, are they quantized particles when
they pass some region which may be strongly curved by grav-
ity? The answer is seemingly affirmative; i.e., we should have a
complete theory of quantum field theory in curved spacetime.
Due to the curvature of spacetime, the canonical quantization
of fields is not generally as applicable in curved spacetime as
in Minkowski spacetime. Because of this, quantization is im-
plemented in many cases by mode expansion directly and by-

passes the discussion of canonical structures. This inevitably
entails the difficulty of interpretation of concepts such as parti-
cles and vacuum states. Henceforth, observable quantities such
as energy and momentum are not clearly defined as in con-
ventional Minkowski spacetime quantum field theories. Since
we can choose any coordinate system and obtain a different
set of mode solutions, we need to verify the general covari-
ance as required by general relativity itself. As in the quantiza-
tion of Yang-Mills fields, one can work in different gauge con-
ditions. But the whole framework should prove to be gauge-
independent at the end of the day. Yet, general covariance is
either not proved or neglected in various quantization schemes
of matter fields in curved spacetime.

Another important issue in the quantization of matter fields
in curved spacetime is the specification of Fock space which
represents states of quantized particles. In conventional quan-
tum field theories in Minkowski spacetime, one of the axioms
of the LSZ framework of quantum field theory (QFT) is Pa|0〉 =
0 [5] where Pa is the total energy-momentum operator. Without
this condition, we can draw absurd conclusions. Suppose that
we have Heisenberg algebra [a, a†] = 1; we can have infinite
number of ways of implementing Bogliubov transformations
like a = uα+ vβ† and a† = u∗α† + v∗β with |u|2− |v|2 = 1. But
for a quadratic Hamiltonian, only one transformation can diag-
onalize the Hamiltonian, and the observed energy quanta are
represented by the creation/annihilation operators. Just as in
the BCS theory of superconductivity, the basic observed quanta
are the quasi-particles. Nevertheless, various approaches to the
quantization scheme of matter fields in curved spacetime lack
or neglict the Hamiltonian.

We propose in this paper a quantization scheme for real
Klein-Gordon field in de Sitter spacetime. Quantum field the-
ories in de Sitter spacetimes have been discussed in various
ways (for a survey, see [6]). To the present author, the merit lies
in a number of aspects. First, Minkowski spacetime is not a so-
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lution to the Einstein equation in the presence of non-vanishing
cosmological constant, and the simplest solution is de Sitter
spacetime. Second, de Sitter spacetime is a maximally symmet-
ric spacetime as is Minkowski spacetime. Though it is widely
recognized that discussions regarding Dirac field in curved
spacetime require vierbein representing the gravitational field,
we here also introduce vierbein even for the quantization of
Klein-Gordon field which is a scalar. The rationale behind is
threefold. First, it is necessary even in quantizing a 1D me-
chanical system. Consider a system of H = (1/2m)a2(s)q̇2(s)+
V(q). By redefining time variable as t =

∫
a−1(s)ds, the rest of

the procedure becomes standard. Though this example seems
trivial, it indicates that vierbein seems indispensable in quan-
tizing systems in curved spacetime. Second, we intend to put
the quantization of both scalar fields and spinor fields on the
same footing and keep the whole framework coordinate inde-
pendent. Third, we believe that quantization is about physi-
cal observables, as Heisenberg had realized some nine decades
before (a historical account for Heisenberg’s original thought
is provided in [7]). As is well known, Noether’s theorem re-
veals the intrinsic relations between conservation laws and
symmetry/invariances of the physical system under consider-
ation. Energy-momentum conservation corresponds to invari-
ance under spacetime translation whereas angular-momentum
conservation corresponds to invariance under spacetime rota-
tion. Yet, for general curved coordinate xµ, the invariance un-
der transformation with δxµ = Const does not correspond to
translation in general since it might realize a rotation should
it be an angular coordinate. Nevertheless, δxµ = eµ

a ba with
ba = Const always represents a local spacetime translation
since the projection δxµea

µ of δxµ on local frame ea
µ is a trans-

lation. This argument led to a generally covariant formulation
of energy-momentum conservation of matter-gravitation sys-
tem [8], a quintessential example showing the significance of
vierbein in general relativity. As has been discussed in [9]-[12],
observed time and space intervals are projections of coordinate inter-
vals onto the local Lorentz frame of the observer. The varying rate of
a field in space and time should be measured over the observed
space and time instead of the coordinates. Hence, vierbein is es-
sentially necessary for discussions of all kinds of fields.

Discussions of quantum mechanics in de Sitter spacetime
were initiated shortly after the birth of the relativistic mechan-
ics of electrons [13]-[22] and have been long since an impor-
tant topic of quantum theories in curved spacetime. Quantum
field theories have been formulated in different approaches
and different coordinate systems. Group-theoretic approaches
to quantum field theories in de Sitter spacetime are proposed
in [23]- [25]. Since de Sitter spacetime can be imbedded in 1+4
dimensional pseudo-Euclidean spacetime, quantum field the-
ories have been formulated in terms of 1+4 pseudo-Euclidean
coordinates [26]-[27], spherical coordinates [28]-[29], static co-
ordinate [30]-[36], and comoving coordinates [37]-[48]. Unlike
standard quantum field theory in the Minkowski spacetime
which is the Lorentz invariant, most of these theories have not
either general covariance or important concepts such as Hamil-

tonian and measurable particle states. In our present paper, we
seek a generally invariant formalism for quantization and de-
velop physical concepts such as particles and vacuum.

Our goals of this paper are threefold: (i) providing a gen-
erally covariant quantum theory of Klein-Gordon field in de
Sitter spacetime, in light of the fact that existing theories have
not general covariance either implicitly or explicitly, (ii) provid-
ing observable quantities of the field quanta, and (iii) providing
calculation approaches for scattering matrix.

The present paper is arranged as follows. In Section 2, we
present the canonical structure of a real Klein-Gordon field in
de Sitter spacetime following the standard approach. Upon re-
defining canonical variables, the Hamiltonian equations of mo-
tion of canonical momentum to the field are simplified. In Sec-
tion 3, the system is quantized in Schrödinger picture. Sec-
tion 4 is a review of fundamental solutions of Klein-Gordon
field in de Sitter spacetime, as a preparation of second quan-
tization. Section 5 presents in detail the field 2nd quantiza-
tion and the quantized Hamiltonian both in Heisenberg pic-
ture and in Schrödinger picture. The Hamiltonians are diago-
nalized and quasi-particle creation/annihilation operators are
defined. Discussions of difference as well as things in common
in the two pictures are provided. Time-dependent vacuum and
particles states are defined. Particularly, the observed energy-
momentum is obtained based on our previous work, and the
on-shell relation for free particles is obtained. Some simple ma-
trix elements are calculated. In Section 6, we define a gener-
ating function which can be used to calculate various matrix
elements. In Section 7, transition amplitude between the two
states at different times is formulated. Section 8 is devoted to
the formulation of perturbation theory for the interacting field,
with the help of the Dirac picture. Section 9 is a conclusional
discussion and prospect of this work.

2. CANONICAL QUANTIZATION OF REAL
KLEIN-GORDON FIELD STATIONARY
SPACETIME

2.1. de Sitter Spacetime
As a special case of Robertson-Walker spacetime, the de Sitter
spacetime is most easily represented as the hyperboloid [1]

ηABzAzB = (z0)2 − (z1)2 − (z2)2 − (z3)2 − (z4)2 = −`2 (1)

embedded in 5-dimensional Minkowski space with metric

ds2
5 = (dz0)2 − (dz1)2 − (dz2)2 − (dz3)2 − (dz4)2. (2)

(The relation between the parameter ` and the cosmological
constant Λ is ` =

√
3/Λ.) We choose the coordinates (t, x) de-

fined by 
z0 = `sinh t

` +
1
2` et/`|x|2

z4 = `cosh t
` −

1
2` et/`|x|2

zi = et/`xi.
(3)

We consider the range covered by 0 ≤ t < +∞,−∞ < xi < ∞
since we take t = 0 as the inception of the evolution of the
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universe. The induced line element on the hyperboloid is

ds2 = dt2 − e2t/`
3

∑
i=1

(dxi)2. (4)

Now, we define a conformal time

ζ = `e−t/`, 0 < ζ < `, (5)

and then
ds2 = C(ζ)[dζ2 −∑

i
(dxi)2] (6)

with conformal factor C(ζ) = (`/ζ)2. We use x = (ζ, x) here-
inafter.

2.2. Hamiltonian Structure
We use the standard definition of vierbein gµν = ηabea

µeν
b . In

the present paper, e sometimes denotes vierbein, it sometimes
denotes e =

√−g, and it sometimes denotes the base of natural
exponential, depending on the contexts. Denoting that ∇̂a =

eµ
a∇µ (here eµ

a plays the role of parameter λ(t) in [49]) and∇µ is
the standard covariant derivative, Lagrange of a free real Klein-
Gordon field is

L =
1
2
(∇̂aφ∇̂aφ−m2

KGφ2)

=
1
2
(∇̂0φ∇̂0φ + ∇̂a′φ∇̂a′φ−m2

KGφ2). (7)

Defining [50]

Π =
∂L

∂(∇̂0φ)
(8)

and assuming the existence of the inverse (for our case, it is
apparent)

∇̂0φ = ∇̂0φ(φ, ∇̂iφ, Π; x), (9)

the Hamiltonian is defined in the standard way

H = ∇̂0φ ·Π−L . (10)

Thus,

∂H

∂Π
= ∇̂0φ + Π

∂(∇̂0φ)

∂Π
− ∂L

∂(∇̂0φ)

∂(∇̂0φ)

∂Π
= ∇̂0φ, (11)

∂H

∂φ
= Π

∂(∇̂0φ)

∂φ
− ∂L

∂(∇̂0φ)

∂(∇̂0φ)

∂φ
− ∂L

∂φ
= − ∂L

∂φ
. (12)

Using the Euler-Lagrange equation, we have

∂L

∂φ
= ∇µ

[
eµ

0
∂L

∂(∇̂0φ)

]
+∇µ

[
eµ

a′
∂L

∂(∇̂a′φ)

]
(13)

(here, the prime indices such as a′ run through 1, 2, 3) and we
have

∂H

∂φ
=−∇µ

∂L

∂∇µφ

=−∇µ

[
eµ

0
∂L

∂(∇̂0φ)

]
−∇µ

[
eµ

a′
∂L

∂(∇̂a′φ)

]
=−∇µ

[
eµ

0 Π
]
−∇µ

[
eµ

a′
∂L

∂(∇̂a′φ)

]
. (14)

Since

∂H

∂(∇̂a′φ)
=Π

∂(∇̂0φ)

∂(∇̂a′φ)
− ∂L

∂(∇̂0φ)

∂(∇̂0φ)

∂(∇̂a′φ)
− ∂L

∂(∇̂a′φ)

=− ∂L

∂(∇̂a′φ)
, (15)

we find

∇µ

[
eµ

0 Π
]
= − ∂H

∂φ
+∇µ

[
eµ

a′
∂H

∂(∇̂a′φ)

]
. (16)

Introducing the functional derivative

δ

δψ
=

∂

∂ψ
−∇µ

[
eµ

a′
∂

∂(∇̂a′ψ)

]
, (17)

we have
∇̂0φ =

δH

δΠ
, (18)

∇µ

[
eµ

0 Π
]
= − δH

δφ
. (19)

These can be cast into the conventional formalism. Defining
Cauchy surface Σ : f (x) = ζ =const, we have the functional

H[φ, Π; ζ] :=
∫

Σ
dσH , (20)

where

H =
1
2
(Π2 − ∇̂a′φ∇̂a′φ + m2

KGφ2), (21)

dσ|Σ :=dσµnµ =
1
3!

eεµναβdxν ∧ dxα ∧ dxβnµ

=C3/2(ζ)d3x. (22)

Here, nµ = C−1/2(ζ)(1, 0, 0, 0) is the unit normal to Σ. For two
functionals F[φ, Π; ζ] =

∫
Σ dσF and G[φ, Π; ζ] =

∫
Σ dσG , the

Poisson bracket is defined as

{F, G}P.B. :=
∫

Σ
dσ

(
δF

δφ(x)
δG

δΠ(x)
− δG

δφ(x)
δF

δΠ(x)

)
. (23)

Since φ(x) =
∫

Σ dσ′δ3(x − x′)C1/2(ζ)φ(x′) and Π(y) =∫
Σ dσ′δ3(y− y′)C1/2(ζ)Π(y′), we have then

{φ(x), Π(y)}P.B. = δ3(Zi) =
1
e′

δ3(x− y). (24)

Here, Zi are the local flat coordinates defined as Zi = ei
µ(x −

y)µ for y being very close to x and e′ = det(ea′
µ′ ). Hence, we

have

∇̂0φ = {φ(x), H}P.B.
x0=ζ , (25)

∇̂0Π = {Π(x), H}P.B.
x0=ζ −ω0Π, (26)

where
ω0 = ∇µeµ

0 =
1

C2(ζ)
∂ζ(C2(ζ)C−1/2(ζ)). (27)
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2.3. Appropriate Phase Space Variables
Since the equation for Π involves a term ω0Π, which does not
exist in conventional canonical equations of motion, we seek
new definitions of canonical variables. Defining π := eΩΠ
where ∇̂0Ω = ω0 which is a scalar, we have Ω = ln C3/2(ζ)

and then

eµ
0∇µπ =eΩ∇̂0Π + ∇̂0eΩeΩΠ = eΩ∇̂0Π + ∇̂0Ω · π

=eΩ
(
{Π(x), H}P.B.

x0=ζ −ω0Π
)
+ ω0 · π

= {π(x), H}P.B.
x0=ζ . (28)

In terms of φ, π, we have

∇̂0φ = {φ(x), H[φ, π; ζ]}P.B.
x0=ζ , (29)

∇̂0π = {π(x), H[φ, π; ζ]}P.B.
x0=ζ , (30)

{φ(x), π(y)}P.B. = eΩδ3(Zi) = δ3(x− y). (31)

It is worthwhile to point out the two benefits of using π in-
stead of Π. First, the classical equation of π does not have the
term ω0Π on the right. Second, the Poisson bracket equation
(31) does not depend on time, a nice feature when we trans-
form from Heisenberg picture to Schrödinger picture later on.
In Schrödinger picture, canonical conjugate fields do not de-
pend on time and hence should not do their commutators.

In general, for any O[φ, π; λ(x)],

O[φ, π; λ(x)] =
∫

Σ
dσO(φ, π; λ(x)) (32)

which is a function of ζ and a function of φ and π

d̂0O[φ, π; λ(x)](ζ) =
∫

Σ
eζ

0(x)∂ζ(dσ)O + {O, H}

+
∫

Σ
dσ

(
− δO

δπ(x)
ω0π +

δO

δλ(x)
∇̂0λ

)
,

(33)

where d̂0 is defined as eζ
0(ζ)d/dζ, bearing in mind that ζ =

const. defines the surface Σ; i.e., the l.h.s. depends on the sur-
face Σ. In particular,

d̂0H[φ, π; · · · ] =
∫

Σ
eζ

0(x)∂ζ(dσ)H

−
∫

Σ
dσ

(
δH

δπ(x)
ω0π +

δH

δeµ
a
∇̂0eµ

a

)
. (34)

In terms of canonical variables φ and π

H =
1
2
(e−2Ωπ2 − ∇̂a′φ∇̂a′φ + m2

KGφ2). (35)

Defining the new Poisson bracket

{F, G}new :=
∫

Σ
dσeΩ(x)

(
δF

δφ(x)
δG

δπ(x)
− δG

δφ(x)
δF

δπ(x)

)
,

(36)
then,

∇̂0φ = {φ(x), H[φ, π; ζ]}new
x0=ζ , (37)

∇̂0π =
{

Π̃(x), H[φ, π; ζ]
}new

x0=ζ . (38)

3. SCHRÖDINGER PICTURE
Upon quantization, the classical canonical variables φ and π

are replaced by the operators φ̂ and π̂ in a Hilbert space and
Poisson brackets become commutators. In standard quantized
Klein-Gordon field theory in Minkowski spacetime, the Hamil-
tonian is time-independent and three pictures can be utilized.
Similarly, we can define Schrödinger picture O = φ, π:

OS(ζ) =T̂−1ei
∫ ζ

` H(η)e0
ζ (η)dηO(ζ)T̂e−i

∫ ζ

` H(η)e0
ζ (η)dη , (39)

where T̂ is the time-ordering operator defined as T̂φ(ζ1)φ(ζ2) =

φ(ζ1)φ(ζ2)θ(ζ2 − ζ1) + φ(ζ2)φ(ζ1)θ(ζ1 − ζ2). The two pictures
agree at ζ = `:

φS(x) = φ(`, x). (40)

For Hamiltonian,

HS(ζ) =T̂−1ei
∫ ζ

` H(η)e0
ζ (η)dη H(ζ)T̂e−i

∫ ζ

` H(η)e0
ζ (η)dη

=H[φS(x), πS(x); eµ
a (x), Ω(x)](ζ), (41)

and HS(`) = H(`). Since

i∇̂0φS(x) = 0, (42)

φS and πS are time-independent, playing the roles of x and p
while φ and π play the role x±, p± in [59] :

H(t) = f (t)p2/2m + g(t)
1
2

mω2
0x2,

H+(t) = f (t)p2
+(t)/2m + g(t)

1
2

mω2
0x2

+(t),

dH(t)/dt = ḟ (t)p2/2m + ġ(t)
1
2

mω2
0x2,

dH+(t)/dt = ḟ (t)p2
+(t)/2m + ġ(t)

1
2

mω2
0x2

+(t).

Though the initial condition H(0) = H+(0), yet H(t) 6= H+(t),
since p+(t) and x+(t) depend on time t. The time dependence
of HS is

id̂0HS(ζ) = ieζ
0

∂

∂ζ
H[φS(x), πS(x); eµ

a (x), Ω(x)](ζ). (43)

Quantization is carried out by the correspondence

[φ̂(x), π̂(y)]x0=y0 :=i~ {φ(x), π(y)}new
x0=y0 = i~δ3(x− y). (44)

Quantum mechanical Schrödinger equation for the wave func-
tional

i∇̂0Ψ[φ(x), ζ] = HS[φ(x), π(x); ζ]Ψ[φ(x), ζ], (45)

where in HS (as in conventional quantum field theories, this is
not unique!) π(x) 7→ −i~δ/δφ(x). So,

HS(ζ)

=
1
2

∫
Σ

dσ
[
e−2Ωπ2(x)− ∇̂a′φ(x)∇̂a′φ(x) + m2

KGφ2(x))
]

=
1
2

∫
Σ

dσ
[
C−3(ζ)

(
−i~ δ

δφ(x)

)2
− ∇̂a′φ(x)∇̂a′φ(x)

+ m2
KGφ2(x)

]
. (46)
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This is slightly different from [61]. The Gaussian-type Schrödinger
wave functional Ψ[φ(x), ζ] = ηe−G[φ(x),ζ] is satisfied by equa-
tion (46):

HS[φ(x), π(x); ζ]Ψ[φ(x), ζ]

=
1
2

∫
dσ
[
C−3(ζ)

(
δ2G

δφ(x)2 − (
δG

δφ(x)
)2
)

− ∇̂a′φ∇̂a′φ + m2
KGφ2

]
Ψ[φ(x), ζ]. (47)

Assuming

G[φ(x), ζ] = iE(ζ) +
∫

d3x
∫

d3yφ(x) f (x, y; ζ)φ(y), (48)

then,

− 2C−3(ζ)
∫

dσd3yd3zφ(z) f (z, x; ζ) f (x, y; ζ)φ(y)

+
1
2

∫
dσφ(x)

[
eµ

a′ e
ν
b′η

a′b′∇µ∇ν + m2
KG

]
φ(x)

=ieζ
0(ζ)

∫
d3x

∫
d3yφ(x)∂ζ f (x, y; ζ)φ(y). (49)

Using the Fourier transformation f (x, y; ζ) = ∑k fk(ζ)eik·(x−y),
we get

−2C−1(ζ)(2π)3 f 2
k (ζ) +

1
2

C(ζ)(2π)3ω2
k(ζ) = i∂ζ fk(ζ), (50)

which is a Riccati equation and can be transformed into a
Bessel-type equation.

4. FUNDAMENTAL SOLUTIONS FOR FREE
FIELD

4.1. Basis Solutions
As has been long since known, the equation (∇2 + m2

KG)φ = 0
in terms of comoving coordinates of de Sitter spacetime reads
[1]

C−2(ζ)∂ζ(C(ζ)∂ζ φ) + ∂i(C−1(ζ)ηij∂jφ) + m2
KGφ = 0, (51)

and the solutions are Φk = Yk(x)C−1/2(ζ) fk(ζ), where
Yk(x) = (2π)−3/2eik·x, k = k = (k1, k2, k3), (−∞ < ki <

∞). fk(ζ) satisfies

f̈k(ζ) +
[
k2 +

1
4
(

Ċ
C
)2 − 1

2
C̈
C
+ m2

KGC(ζ)
]

fk(ζ) = 0. (52)

For C(ζ) = Aζw,

f̈k(ζ) +
[
k2 +

1
4

w2

ζ2 −
1
2

w(w− 1)
ζ2 + m2

KG Aζw
]

fk(ζ) = 0. (53)

In our case w = −2, we have

f̈k(ζ) + (k2 −
2− `2m2

KG
ζ2 ) fk(ζ) = 0. (54)

Let fk(ζ) = ζ1/2 J(ζ); then (where z = |k|ζ),

J̈(z) +
1
z

J̇(z) + (1− ν2

z2 )J = 0 (55)

with
ν2 =

9
4
− `2m2

KG. (56)

(For electron, the Compton wave length λe = ~/mec = 3.86×
10−13m. So, `/λe ∼ 1040 � 1.) Therefore, for 9/4 > `2m2

KG,
(i.e., the complementary series), we have, for ν 6= n (denoting
k = |k|),

fk = ζ1/2
[
α1k H(1)

ν (kζ) + α2k H(2)
ν (kζ)

]
. (57)

For integer ν,

fk = ζ1/2
[
α1k Jn(kζ) + α2kYn(kζ)

]
. (58)

Hence, for noninteger ν we have

Φk ∼ (2π)−3/2eik·x ζ3/2

`

[
α1k H(1)

ν (kζ) + α2k H(2)
ν (kζ)

]
. (59)

As we choose ei(−ωt+k·x) in the Minkowski spacetime, we write
Φk(ζ, x) =: gk(ζ)eik·x, where

gk(ζ) = (2π)−3/2 A(k)ζ3/2H(2)
ν (kζ) (60)

where A(k) will be determined later by the normalization of
Klein-Gordon product. For ζ → 0,

gk(ζ) = (2π)−3/2 A(k)ζ3/2H(2)
ν (kζ)→ ζ3/2−ν ∼ 0, (61)

which is reminiscent of limt→∞ eiωt ∼ 0 in the sense Riemann-
Lebesgue Lemma of generalized functions. For 9/4 <

`2m2
KG (i.e., the principal series), letting ν = iµ, we have

fk = ζ1/2
[

β1k H(1)
iµ (kζ) + β2k H(2)

iµ (kζ)
]
. (62)

In this work, we consider the complementary series only and
zero-mass cases can be included.

4.2. Klein-Gordon Current and Mode Expansion
Conventionally, the Klein-Gordon current defined as [51]

Jµ

( fA , fB)
:= f ∗A(x)∇µ fB(x)− fB(x)∇µ f ∗A(x) (63)

is conserved.
∇µ Jµ

( fA , fB)
= 0. (64)

Hence, the quantity

( fA| fB)KG := i
∫

Σ
dσµ Jµ

( fA , fB)
= i

∫
Σ

dσ f ∗A(x)←→Ln fB(x) (65)

is constant over the foliations of surfaces Σ. We have

( fA| fB)
∗
KG = ( fB| fA)KG. (66)

Suppose that with coordinates x there are a complete set of so-
lutions fi and f ∗i to the K-G equation satisfying

( fi| f j)KG =− ( f ∗i | f
∗
j )KG = δij, (67)

( f ∗i | f j)KG =( fi| f ∗j )KG = 0, (68)
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and

∑
i
[ fi(x) f ∗i (y)− f ∗i (x) fi(y)] = 0. (69)

Completeness requires that any K-G solution g(x) can be ex-
panded as

g(x) = ∑
i
(gi fi + g∗i f ∗i ), (70)

where
gi = ( fi|g)KG, g∗i = −( f ∗i |g)KG. (71)

So, we have a resolution of identity

∑
i
| fi)( fi| −∑

i
| f ∗i )( f ∗i | = 1 (72)

or

i ∑
i

[
fi(x)( f ∗i (y)n

µ(y)∇µ − nµ(y)∇µ f ∗i (y))

− f ∗i (x)( fi(y)nµ(y)∇µ − nµ(y)∇µ fi(y))]|Σ = δ3(Zi). (73)

Since if fi(x) is a solution, so must be f ∗i (x), therefore we have

∑
i

[
fi(x)nµ(y)∇µ f ∗i (y)− f ∗i (x)nµ(y)∇µ fi(y)]|Σ

= iδ3(Zi). (74)

For free field, we can expand

φ(x) = ∑
i

[
ai fi + a†

i f ∗i
]
, (75)

and then
ai = ( fi|φ)KG, a†

j = −( f ∗j |φ)KG. (76)

Since

( fi|φ)KG =i
∫

Σ
dσnµ( f ∗i ∇

µφ− φ∇µ f ∗i )

=i
∫

Σ
dσ( f ∗i Π− nµφ∇µ f ∗i ), (77)

( f ∗j |φ)KG =i
∫

Σ
dσnµ( f j∇µφ− φ∇µ f j)

=i
∫

Σ
dσ( f jΠ− nµφ∇µ f j), (78)

hence,

[ai, a†
j ] = i

∫
ΣKG

dσ f ∗i
←→
Ln f j = ( fi| f j)KG = δij, (79)

Π(y) = nµ ∑
j
∇µ(aj f j + a†

j f ∗j ), (80)

[φ(x), Π(y)]|Σ

=∑
i

[
fi(x)∇µ f ∗i (y)− f ∗i (x)∇µ fi(y)

]
nµ(y) = iδ3(Zi). (81)

The K-G product on Σ defined by ζ = ζ0 is

(Φk|Φk′ )KG

=i
∫

ζ=ζ0

dσµ(Φ∗k∇
µΦk′ −∇µΦ∗kΦk′ )

=i
∫

δ(ζ − ζ0)(Φ∗k∇ζ Φk′ −∇ζ Φ∗kΦk′ )C(ζ)dζd3x.

(82)

Using the expression of Φk, we have

(Φk|Φk′ )KG

=i|A(k)|2δ3(k− k′)`2ζ0

[
H(2)∗

ν (kζ0)∂ζ0

[
H(2)

ν (kζ0)
]

− ∂ζ0

[
0H(2)∗

ν (kζ0)
]
H(2)

ν (kζ0)
]
.

(83)

For real or imaginary ν, the Wronskian of any two solutions Z1
ν

and Z2
ν to Bessel equation satisfies

zW[Z1∗
ν , Z2

ν ] = Const. (84)

So, we must have

z
[

H(2)∗
ν (z)∂z

[
H(2)

ν (z)
]
− ∂z

[
H(2)∗

ν (z)
]
H(2)

ν (z)
]
= Const. (85)

To find the constant, we can use the asymptotic behavior,

H(2)
ν (z) ∼

√
2/πze−i(z− νπ

2 −
π
4 ), and take limit for large z; one

obtains

z
[

H(2)∗
ν (z)∂z

[
H(2)

ν (z)
]
− ∂z

[
H(2)∗

ν (z)
]
H(2)

ν (z)
]

=
−4i
π

e
πi
2 (ν−ν∗), (86)

and hence

(Φk|Φk′ )KG = |A(k)|2δ3(k− k′)`2 4
π

e
πi
2 (ν−ν∗), (87)

which is apparently ζ0-independent. Therefore, we should
choose

A(k) =
√

π

2`
e−

πi
4 (ν−ν∗). (88)

5. SECOND QUANTIZATION: FREE FIELD
Here, we use discrete notation for mode expansion:

φ(x) =∑
k
(akΦk + a†

kΦ∗k), (89)

Π =eµ
0∇µφ = C−1/2(ζ)∑

p
(ap∇ζ Φp + a†

p∇ζ Φ∗p). (90)

We can calculate the basic commutator

[φ(x), Π(y)]

= C−1/2(ζ)∑
k

(
Φk(x)∇ζ Φ∗k(y)−Φ∗k(x)∇ζ Φk(y)

)
= (2π)−3/2C−1/2(ζ)

3
2

ζ1/2 ∑
k

[
Φ−k(x)A∗(−k)eik·y H(2)∗

ν (kζ))

−Φ∗k(x)A(k)eik·y H(2)
ν (kζ))

]
+ (2π)−3/2C−1/2(ζ)ζ3/2 ∑

k

[
Φ−k(x)A∗(−k)eik·y∇ζ H(2)∗

ν (kζ))

−Φ∗k(x)A(k)eik·y∇ζ(H(2)
ν (kζ))

]
. (91)

6
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The first term vanishes; hence,

[φ(x), Π(y)] = (2π)−3C−1/2(ζ)ζ3 ∑
k
|A(k)|2

×
[
eik·(y−x)H(2)

ν (kζ)∇ζ H(2)∗
ν (kζ))

− eik·(y−x)H(2)∗
ν (kζ)∇ζ(H(2)

ν (kζ))
]
.

(92)

Using equation (86), we have

[φ(x), Π(y)]|Σ = iC−3/2(ζ)δ3(y− x). (93)

Similarly,

[Π(x), Π(y)]

=C−1(ζ)∑
k,p

[
ap∇ζ Φp(x) + a†

p∇ζ Φ∗p(x), ak∇ζ Φk(y)

+ a†
k∇ζ Φ∗k(y)

]
=C−1(ζ)∑

p

[
ġp(ζ)ġ∗p(ζ)e

ip·(x−y) − ġ∗p(ζ)ġp(ζ)e−ip·(x−y)
]
= 0.

(94)

5.1. Heisenberg 2nd Quantized Hamiltonian
As in time-dependent harmonic oscillators, H 6= H±[59], we
need to discuss Hamiltonian in Heisenberg and Schrödinger
picture separately. Denoting ∂ζ gk(ζ) = ġk(ζ),

H =
1
2

∫
C3/2(ζ)d3x[C−1(ζ)∑

k,p
(ap ġpeip·x + a†

p ġ∗pe−ip·x)

× (ak ġkeik·x + a†
k ġ∗ke−ik·x)

+ C−1(ζ)∑
k,p

(ip) · (ik)(apgpeip·x − a†
pg∗pe−ip·x)

× (akgkeik·x − a†
kg∗ke−ik·x)

+ m2
KG ∑

k,p
(apgpeip·x + a†

pg∗pe−ip·x)(akgkeik·x + a†
kg∗ke−ik·x)].

(95)

We write

H(ζ) =
1
2 ∑

k
εk(ζ)(a†

kak + aka†
k)

+
1
2 ∑

k

[
∆k(ζ)aka−k + ∆∗k(ζ)a†

−ka†
k

]
, (96)

where

εk = (2π)3C1/2(ζ)
[
|ġk|2 +

(
k2 + C(ζ)m2

KG

)
|gk|2

]
, (97)

∆k = (2π)3C1/2(ζ)
[

ġ2
k +

(
k2 + C(ζ)m2

KG

)
g2

k

]
. (98)

Our expression is slightly different from [52]. The Hamiltonian
H(ζ) can be diagonalized by the Bogliubov transformation:

ak = u∗−kbk − vkb†
−k, a†

k = u−kb†
k − v∗kb−k, (99)

where

uk =

√
εk + ωk(ζ)

2ωk(ζ)
, vk =

∆∗k
εk + ωk(ζ)

uk, (100)

and ωk(ζ) =
√

ε2
k − |∆k|2. We have

H(ζ) =
1
2 ∑

k
ωk(ζ)

[
b†

k(ζ)bk(ζ) + bk(ζ)b
†
k(ζ)

]
. (101)

According to the standard quantum theory of many-body sys-
tems [62], b†

k(ζ) generate observed quasi-particles/excitations.
From the inverse

bk(ζ) =uk(ζ)ak + vk(ζ)a†
−k, (102)

b†
k(ζ) =u∗k(ζ)a†

k + v∗k(ζ)a−k, (103)

we have the commutation relations

[bk(ζ1), b†
p(ζ2)] =(uk(ζ1)u∗k(ζ2)− vk(ζ1)v∗k(ζ2))δ

3(k− p),
(104)

[bk(ζ1), bp(ζ2)] =(uk(ζ1)vp(ζ2)− vk(ζ1)up(ζ2))δ
3(k + p).

(105)

So, bk(ζ1) and bk(ζ2) do not commute if ζ1 6= ζ2. The momen-
tum operator is

P = ∑
k

ka†
kak = ∑

k
kb†

kbk. (106)

C−1/2(ζ)k is the measured momentum. Again using equation
(86)

ġ∗kgk − ġkg∗k =(2π)−3`−2ζ2(−i) (107)

and the expression

ω2
k =− (2π)6C(ζ)

(
k2 + C(ζ)m2

KG

)
(ġ∗kgk − ġkg∗k)

2, (108)

we have

ω2
k(ζ) =C−1(ζ)(k2 + C(ζ)m2

KG). (109)

5.2. Schrödinger 2nd Quantized Hamiltonian
In the Schrödinger picture, canonical fields are constant and
agree with the fields of the Heisenberg pictures at the chosen
time ζ = `. The Hamiltonian is then equation (46) with

φS(x) =∑
k
(akΦk(`, x) + a†

kΦ∗k(`, x)), (110)

πS(x) =∑
p
(ap∇ζ Φp(`, x) + a†

p∇ζ Φ∗p(`, x)). (111)

Thus, we have

HS =
1
2

C3/2(ζ)(2π)3 ∑
k
[C−3(ζ)(ġ−k(`)ġk(`)a−kak

+ aka†
k ġk(`)ġ∗k(`) + a†

kak ġ∗k(`)ġk(`) + a†
−ka†

k ġ∗−k(`)ġ∗k(`))

+ (C−1(ζ)k2 + m2
KG)(a−kakg−k(`)gk(`) + aka†

kgk(`)g∗k(`)

+ a†
kakg∗k(`)gk(`) + a†

−ka†
kg∗−k(`)g∗k(`))] (112)

As in the Heisenberg picture, we write

HS(ζ) =
1
2 ∑

k
εS

k(ζ)(a†
kak + aka†

k)

+
1
2 ∑

k

[
∆S

k(ζ)aka−k + ∆S∗
k (ζ)a†

−ka†
k

]
, (113)

7
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where

εS
k =(2π)3C1/2(ζ)

[
|ġk(`)|2
C2(ζ)

+
(

k2 + C(ζ)m2
KG

)
|gk(`)|2

]
,

(114)

∆S
k =(2π)3C1/2(ζ)

[
C−2(ζ)ġ2

k(`) +
(

k2 + C(ζ)m2
KG

)
g2

k(`)
]

.

(115)

By the same token, one can calculate

ωS2
k (ζ) =− (2π)6C−1(ζ)

(
k2 + C(ζ)m2

KG

)
× (ġk(`)

∗gk(`)− ġk(`)g∗k(`))
2. (116)

At ζ = `, ġ∗k(`)gk(`) − ġk(`)g∗k(`) = (2π)−3(−i). Hence,
ωS2

k (ζ) = ω2
k. The Bogliubov transformation is

bS
k(ζ) =uS

k(ζ)ak + vS
k(ζ)a†

−k, (117)

bS†
k (ζ) =uS∗

k (ζ)a†
k + vS∗

k (ζ)a−k, (118)

with

uS
k =

√
εS

k + ωk(ζ)

2ωk(ζ)
, vS

k =
∆S∗

k

εS
k + ωk(ζ)

uS
k. (119)

The Schrödinger picture Hamiltonian is

HS(ζ) =
1
2 ∑

k
ωk(ζ)(b

S†
k (ζ)bS

k(ζ) + bS
k(ζ)b

S†
k (ζ)) 6= H(ζ).

(120)
The relation between quasi-creation/annihilation operators
bk(ζ) and bS

k(ζ) is

bS
k(ζ) =

[
uS(ζ)u∗k(ζ)− vS

k(ζ)v
∗
k(ζ)

]
bk(ζ)

+
[
vS(ζ)uk(ζ)− uS

k(ζ)vk(ζ)
]

b†
−k(ζ), (121)

bS†
k (ζ) =

[
uS∗(ζ)uk(ζ)− vS∗

k (ζ)vk(ζ)
]

b†
k(ζ)

+
[
vS∗(ζ)u∗k(ζ)− uS∗

k (ζ)v∗k(ζ)
]

b−k(ζ), (122)

and the inverse is

bk(ζ) =
[
u(ζ)uS∗

k (ζ)− vk(ζ)v
S∗
k (ζ)

]
bS

k(ζ)

+
[
v(ζ)uS

k(ζ)− uk(ζ)v
S
k(ζ)

]
bS†
−k(ζ), (123)

b†
k(ζ) =

[
u∗(ζ)uS

k(ζ)− v∗k(ζ)v
S
k(ζ)

]
bS†

k (ζ)

+
[
v∗(ζ)uS∗

k (ζ)− u∗k(ζ)v
S∗
k (ζ)

]
bS
−k(ζ). (124)

These relations are important to perturbative calculations, as
will be discussed later on. The measured energy-momentum is
[11]

pa(ζ) = (ωk, C−1/2(ζ)k). (125)

So, we have an-shell relation of the measured 4-momentum
pa(ζ)pa(ζ) = m2

KG, as in the Minkowski spacetime. We have
accordingly the redshift relation

ωk(ζ1)

ωk(ζ2)
=

√
C−1(ζ1)(k2 + C(ζ1)m2

KG)

C−1(ζ2)(k2 + C(ζ2)m2
KG)

. (126)

This relation seems new to the best of our knowledge. Since
many existing discussions lack both unique and invariant
definitions of observable quantum particle states, concepts
such as energy are not well defined. The impact of a curved
spacetime on the measured energy of particles was discussed
via phase analysis [10], and the behavior of ωk(ζ) here
agrees exactly with the geometric-optics limit [11]. This red-
shift relation agrees with the conventional relation ωB/ωA =√

g00(xA)/g00(xB) in the zero-mass limit.
Similar to the vacuum state of the Fock space of operators

ak and a†
k

|0〉 = ∏
k
|0k〉, ak|0k〉 = 0, (127)

we define |O; ζ〉S s.t.

bS
k(ζ)|O; ζ〉S = 0, ∀ k, (128)

i.e.,
|O; ζ〉S = ∏

k
|Ok; ζ〉Sk, (129)

where
bS

k|Ok; ζ〉Sk = 0. (130)

Since

〈0|H(ζ)|0〉 = ∑
k

εk > S〈O; ζ|H(ζ)|O; ζ〉S = ∑
k

ωk(ζ), (131)

|0〉 is not the ground state. Here, we have a system of time-
dependent oscillators, as the cases discussed in [54]-[60]. The
vacuum states are time-dependent. The vacuum state at one
time will evolve into a nonvacuum state at a later time. Thus,
particles can be generated.

In the remaining part of this section and the next, states and
generation/annihilation operators b†

k(ζ) and bk(ζ) can be in ei-
ther Schrödinger picture or Heisenberg pictures since the math
structures are essentially the same. Denote that

|{nk}; ζ〉 = ∏
i

{ 1√
nki !

[
b†

ki
(ζ)
]nki |Oki

; ζ〉ki

}
, (132)

and |1k; ζ〉 = |k; ζ〉. Using the results in [53], we have

|O; ζ〉 = Â(ζ)|0〉 = ⊗k|Ok; ζ〉k, (133)

where

Â(ζ) = A(ζ)e−
1
2 ∑k

vk (ζ)
uk (ζ)

a†
−k a†

k (134)

with
A(ζ) = ∏

k

′Ak(ζ), (135)

where ∏k
′ means that only one of the two factors correspond-

ing to k,−k appears in the product and Ak(ζ) = 1/uk(ζ). De-
noting

γp(ζ) =
vp(ζ)

up(ζ)
=

θ∗k(ζ)

|θ∗k(ζ)|
th|θk(ζ)|, (136)

then
Â(ζ) = A(ζ)e−

1
2 ∑k γk(ζ)a†

−k a†
k = ∏

k

′ Âk(ζ) (137)
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with
Âk(ζ) = Ak(ζ)e

−γk(ζ)a†
−k a†

k = Â−k(ζ). (138)

For a particlular k,

|Ok; ζ〉k = Ak(ζ)e
−γk(ζ)a†

−k a†
k |0〉k ⊗ |0〉−k = |O−k; ζ〉−k. (139)

We can calculate 〈O; ζ1|O; ζ2〉. First, we have

k〈Ok; ζ1|Ok; ζ2〉k =
1

uk(ζ1)uk(ζ2)− v∗k(ζ1)vk(ζ2)
. (140)

Then,

〈O; ζ1|O; ζ2〉 = ∏
k

1√
uk(ζ1)uk(ζ2)− v∗k(ζ1)vk(ζ2)

. (141)

Using the following expectations,

〈O; ζ ′′|akap|O; ζ ′〉

=

{
0, p 6= ±k, p = k,

〈O; ζ ′′|O; ζ ′〉 −1
1−γ∗k(ζ

′′)γk(ζ ′)
, p = −k, (142)

〈O; ζ ′′|aka†
p|O; ζ ′〉

=

{
0, p 6= ±k, p = −k,

〈O; ζ ′′|O; ζ ′〉 1
1−γ∗k(ζ

′′)γk(ζ ′)
, p = k, (143)

one can calculate

〈O; ζ ′′|bk(ζ
′′)b†

k(ζ
′)|O; ζ ′〉

=〈O; ζ ′′|O; ζ ′〉 × k〈Ok; ζ ′′|Ok; ζ ′〉k. (144)

Hence,

k〈Ok; ζ ′′|bk(ζ
′′)b†

k(ζ
′)|Ok; ζ ′〉k =

[
k〈Ok; ζ ′′|Ok; ζ ′〉k

]2 . (145)

Similarly,

k〈Ok; ζ ′′|bk(ζ
′′)b−k(ζ

′′)|Ok; ζ ′〉k

= k〈Ok; ζ ′′|Ok; ζ ′〉k
1− γ∗k(ζ

′′)γk(ζ ′)

[
γk(ζ

′′)− γk(ζ
′)
]

. (146)

6. GENERATING FUNCTION OF VACUUM
EXPECTATIONS

We define the generating function

Z[λ, λ∗; ζ, ζ ′]

:=∏
k

′
k〈Ok; ζ|e

∫
dηλk(η)bk(η)e

∫
dηλ−k(η)b−k(η)

× e
∫

dη′(λ∗k(η
′)b†

k(η
′)e
∫

dη′λ∗−k(η
′)b†
−k(η

′)|Ok; ζ ′〉k. (147)

λk(η) and λ∗k(η) are considered as external fields and are in-
dependent of each other, instead of being mutually complex

conjugate . For a particular k, we define

Zk[λ, λ∗; ζ, ζ ′]

:=〈Ok; ζ|e
∫

dηλk(η)bk(η)e
∫

dηλ−k(η)b−k(η)

× e
∫

dη′(λ∗k(η
′)b†

k(η
′)e
∫

dη′λ∗−k(η
′)b†
−k(η

′)|Ok; ζ ′〉k
=k〈Ok; ζ|e

∫
dηλk(η)[uk(η)ak+vk(η)a†

−k]

× e
∫

dηλ−k(η)[u−k(η)a−k+v−k(η)a†
k]

× e
∫

dη′λ∗k(η
′)[u∗k(η

′)a†
k+v∗k(η

′)a−k]

× e
∫

dη′λ∗−k(η
′)[u∗−k(η

′)a†
−k+v∗−k(η

′)ak]|Ok; ζ ′〉k. (148)

Denoting

αk[λ] =
∫

dηλk(η)uk(η), βk[λ] =
∫

dηλk(η)vk(η), (149)

Zk[λ, λ∗; ζ, ζ ′] =k〈Ok; ζ|eαk ak · eβk a†
−k · eα−k a−k · eβ−k a†

k

×eα∗k a†
k · eβ∗k a−k · eα∗−k a†

−k · eβ∗−k ak |Ok; ζ ′〉k. (150)

Using coherent states |zk, z−k〉 = ezk a†
k+z−k a†

−k |0〉, one can calcu-
late

Zk[λ, λ∗; ζ, ζ ′]

=
Ak(ζ

′)A∗k (ζ)
1− γ∗k(ζ)γk(ζ ′)

× exp
[
− β∗−k(α

∗
k + β−k)− βk(α−k + β∗k)

+
1

1− γ∗k(ζ)γk(ζ ′)
(A∗k Ak + A∗−k A−k

− A∗−kγk(ζ
′)A∗k − Akγ∗k(ζ)A−k)

]
, (151)

with which the following amplitudes can be evaluated:

k〈1k; ζ|1k; ζ ′〉k =
δ

δλk(ζ)

δ

δλ∗k(ζ
′)

Zk[λ, λ∗; ζ, ζ ′]|λ=λ∗=0

=
1[

uk(ζ)uk(ζ ′)(1− γ∗k(ζ)γk(ζ ′)
]2 , (152)

and

k〈1k1−k; ζ|O; ζ ′〉k

=
δ

δλk(ζ)

δ

δλ−k(ζ)
Zk[λ, λ∗; ζ, ζ ′]|λ=λ∗=0

=
Ak(ζ

′)A∗k (ζ)[
1− γ∗k(ζ)γk(ζ ′

]2 (γ(ζ)− γ(ζ ′)). (153)

7. TRANSITION OF STATES OF FREE KG
FIELD

As in conventional quantum field theories [63], suppose that at
time ζ1, the system is in a vacuum state, and the state at ζ2 has
some computable probability to contain multiple particles. In
the Schrödinger picture, the state

|Ψ0(ζ2; ζ1)〉S = T̂e−i
∫ ζ2

ζ1
HS[φ(x),π(x);η]e0

ζ (η)dη |O; ζ1〉S (154)

9



Letters in High Energy Physics LHEP-162, 2020

is a formal solution to

i∇̂0|Ψ0(ζ; ζ1)〉S = HS[φ(x), π(x); ζ]|Ψ0(ζ; ζ1)〉S (155)

with initial condition |Ψ0(ζ1; ζ1)〉S = |O; ζ1〉S. The transition
amplitude from state |{nk}; ζ1〉S to state |{mk}; ζ2〉S is given
by

T (|{nk}; ζ1〉S → |{mk}; ζ2〉S)

= S〈{mk}; ζ2|T̂e−i
∫ ζ2

ζ1
HS(η)e0

ζ (η)dη |{nk}; ζ1〉S. (156)

For a particular k,

T (|mk, m−k; ζ1〉Sk → |nk, n−k; ζ2〉Sk)

= S
k〈nk, n−k; ζ2|T̂e−i

∫ ζ2
ζ1

ωk(η)[bS†
k (η)bS

k(η)+bS†
−k(η)b

S
−k(η)+1]e0

ζ (η)dη

× |mk, m−k; ζ1〉Sk. (157)

Slicing the time as η0 = ζ1, ηj = ηj−1 − ∆, ∆ = ζ1−ζ2
N , and

ηN = ζ2,

T (|mk, m−k; ζ1〉Sk → |nk, n−k; ζ2〉Sk)
= lim

N→∞
S
k〈nk, n−k; ζ2|

× e−iωk(ηN−1)[bS†
k (ηN−1)bS

k(ηN−1)+bS†
−k(ηN1 )b

S
−k(ηN−1)+1]e0

ζ (ηN−1)∆

× e−iωk(ηN−2)[bS†
k (ηN−2)bS

k(ηN−2)+bS†
−k(ηN2 )b

S
−k(ηN−2)+1]e0

ζ (ηN−2)∆

× · · · eiωk(η1)[bS†
k (η1)bS

k(η1)+bS†
−k(η1)bS

−k(η1)+1]e0
ζ (η1)∆

× e−iωk(η0)[bS†
k (η0)bS

k(η0)+bS†
−k(η0)bS

−k(η0)+1]e0
ζ (η0)∆|mk, m−k; ζ1〉Sk.

(158)

Using coherent states j = 0, 1, · · · , N,

|zjk, zj−k〉 = ezjkbS†
k (ηj)+zj−kbS†

−k(ηj)|Ok; ηj〉k, (159)

T (|mk, m−k; ζ1〉Sk → |nk, n−k; ζ2〉Sk)

= lim
N→∞

e−i
∫ ζ2

ζ1
ωk(η)e0

ζ (η)dη
∫  N

∏
j=0

dzjkdz∗jk
2πi


×

znk
Nk√
nk!

z∗mk
0k√
mk!

exp [−z∗0kz0k]

×
N

∏
j=1

exp
[
−z∗jkzjk + z∗jkzj−1,k − iωk(ηj−1)z∗jkzj−1ke0

ζ(ηj−1)∆
]

×
∫  N

∏
j=0

dzj−kdz∗j−k

2πi

 zn−k
N−k√
n−k!

z∗m−k
0−k√
m−k!

exp
[
−z∗0−kz0−k

]
×

N

∏
j=1

exp
[
− z∗j−kzj−k + z∗j−kzj−1,−k

− iωk(ηj−1)z∗j−kzj−1,−ke0
ζ(ηj−1)∆

]
, (160)

which can be written as a path integral by shorthand. It is easy
to see that starting from a vacuum state at ζ1, the state will
evolve into a mixed state at later time ζ2, which is not un-
usual for systems in external fields in the Minkowski quan-
tum field theories [63] and time-dependent harmonic oscilla-
tors [54]-[60].

8. PERTURBATION
The full Lagrangian of λ4-theory is

L =
1
2
(∇̂aφ∇̂aφ−m2

KGφ2 − λ

4!
φ4), (161)

and the full Hamiltonian is

H =∇̂0φ ·Π−L = H0 +HI (162)

H[φ, Π; ζ] =H0[φ, Π; ζ] + HI[φ, Π; ζ], (163)

where

H0 =
1
2
(Π2 − ∇̂a′φ∇̂a′φ + m2

KGφ2) (164)

HI =
1
2

λ

4!
φ4. (165)

The Schrödinger state follows

i∇̂0|Ψ(ζ)〉S = H[φS(x), πS(x); ζ]|Ψ(ζ)〉S. (166)

Defining the Dirac picture state

|Ψ(ζ)〉D := T̂−1ei
∫ ζ

` HS
0 (η)e

0
ζ (η)dη |Ψ(ζ)〉S, (167)

hence the two pictures coincide at time ζ = `, |Ψ(`)〉S =

|Ψ(`)〉D and we thus have the equation of motion

i∇̂0|Ψ(ζ)〉D =HD
I (ζ)|Ψ(ζ)〉D, (168)

where

HD
I (ζ) =US−1

0 (ζ, `)HS
I (ζ)U

S
0 (ζ, `) (169)

with

US
0 (ζ
′′, ζ ′) = T̂e−i

∫ ζ′′
ζ′ HS

0 (η)e
0
ζ (η)dη . (170)

The Dirac picture field and operators are defined as

φD(ζ, x) :=US−1
0 (ζ, `)φS(x)US

0 (ζ, `), (171)

HD
0 (ζ) :=US−1

0 (ζ, `)HS
0 (ζ)U

S
0 (ζ, `), (172)

from which it follows that

ieζ
0(ζ)

∂

∂ζ
φD(ζ, x) =[φD(ζ, x), HD

0 ], (173)

ieζ
0(ζ)

∂

∂ζ
πD(ζ, x) =[πD(ζ, x), HD

0 ]. (174)

Hence, φD(ζ, x) and πD(ζ, x) follow the equation of motion of
a non-interacting field, of which the time dependence was dis-
cussed previously. Defining

UD
0 (ζ ′′, ζ ′) =T̂e−i

∫ ζ′′
ζ′ HD

0 (η)e
0
ζ (η)dη , (175)

we have

UD†
0 (ζ ′′, ζ ′) =T̂−1ei

∫ ζ′′
ζ′ HD

0 (η)e
0
ζ (η)dη

= UD−1
0 (ζ ′′, ζ ′) (176)

Further, by the definition equation (172) of HD
0 (ζ), we have

HD
0 (ζ)e0

ζ(ζ) = US−1
0 (ζ, `)i∂ζUS

0 (ζ, `). (177)

10
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Therefore,

i∂ζUS−1
0 (ζ, `) = −HD

0 (ζ)e0
ζ(ζ)U

S−1
0 (ζ, `). (178)

Hence, we have the following relations:

US−1
0 (ζ, `) =T̂ei

∫ ζ

` HD
0 (η)e

0
ζ (η)dη , (179)

US
0 (ζ, `) =T̂−1e−i

∫ ζ

` HD
0 (η)e

0
ζ (η)dη , (180)

T̂e−i
∫ ζ

` HS
0 (η)e

0
ζ (η)dη =T̂−1e−i

∫ ζ

` HD
0 (η)e

0
ζ (η)dη , (181)

and we have the inverse transformation

HS
0 (ζ) = T̂−1e−i

∫ ζ

` HD
0 (η)e

0
ζ (η)dη HD

0 (ζ)T̂ei
∫ ζ

` HD
0 (η)e

0
ζ (η)dη , (182)

|Ψ(ζ)〉S = T̂−1e−i
∫ ζ

` HD
0 (η)e

0
ζ (η)dη |Ψ(ζ)〉D. (183)

Suppose that at the initial time ζ = `, the system is in the
eigen-state |A; `〉S0 of HS

0 (`); then, interaction is turned on adi-
abatically. At time ζ = 0, the interaction is turned off and the
state evolves into a state which can be expanded in terms of
eigen-states {|B; 0〉S0} of HS

0 (0). The prob of the transition is the
square of the amplitude S

0〈B; 0|US(0, `)|A, `〉S0 [64, p.323], where
the Schrödinger picture evolution operator is

US(ζ2, ζ1) = T̂e−i
∫ ζ2

ζ1
HS(η)e0

ζ (η)dη . (184)

For a free field, we have

S
0〈B; 0|US(0; `)|A, `〉S0 = S

0〈B; 0|T̂e−i
∫ 0
` HS

0 (η)e
0
0(η)dη |A, `〉S0,

(185)
which was discussed previously. In the interacting case, in
terms of the Dirac picture,

|Ψ(ζ)〉D = T̂e−i
∫ ζ

` HD
I (η)e

0
ζ (η)dη |Ψ(`)〉D, (186)

|Ψ(ζ)〉S

=T̂−1e−i
∫ ζ

` HD
0 (η)e

0
ζ (η)dη T̂e−i

∫ ζ

` HD
I (η)e

0
ζ (η)dη |Ψ(`)〉S. (187)

Hence, we have the expression of the Schrödinger picture evo-
lution operator using only Dirac picture operators:

US(ζ, `) =T̂−1e−i
∫ ζ

` HD
0 (η)e

0
ζ (η)dη T̂e−i

∫ ζ

` HD
I (η)e

0
ζ (η)dη , (188)

and |Ψ(ζ)〉S = US(ζ, `)|Ψ(`)〉S. We have the transition ampli-
tude [64, p.484]

S
0〈B; 0|US(0, `)|A; `〉S0

= S
0〈B; 0|T̂e−i

∫ 0
` HS

0 (η)e
0
ζ (η)dη T̂e−i

∫ 0
` HD

I (η)e
0
0(η)dη |A; `〉S0 (189)

This is the basis for perturbational calculations since the second
factor can be expanded in terms of powers of coupling constant
λ. In this relation, the dependence of fields in HD

I on time is
the same as in the Heisenberg fields in the noninteracting case
while HS

0 is the same as in the Schrödinger fields in the nonin-
teracting case. HD

I is supposed to be expressed in terms of b†
k(ζ)

and bk(ζ) while HS in terms of bS†
k (ζ) and bS

k(ζ). These two sets
of quasi-particle operators are related to ak and a†

k.

9. DISCUSSIONS
General relativity and QFT are two pillars of modern theoreti-
cal physics. As a preamble of a complete unified quantum the-
ory of gravity and matter system, quantum field theories in
classical curved spacetimes have long been called for. In this
paper, we proposed a generally covariant framework for quan-
tizing the real Klein-Gordon field in de Sitter spacetime. The
framework is formulated in a conformal coordinate which is
specifically chosen. It can be transformed into other coordinate
systems x′. The fundamental solutions will still be labelled by
quantum numbers k but the functions will take a more com-
plex appearance depending on the coordinates x′. The surfaces
Σ will be defined by functions ζ = ζ(x′) = Const. In the new
coordinate system x′, the time dependence becomes actually Σ-
dependence.

It is found that this framework provides many quantum
concepts in parallel with the standard quantum field theories
in the Minkowski spacetime. The key ingredient for the sake of
general covariance is the introduction of vierbein, which fur-
nishes the shift from the local coordinate system to the tangent
space. It is well known that concepts such as particle generation
and annihilation, particle states, vacuum states, the transition
amplitude are very important for quantum theory to explain
experiments. The vitality of each physical theory lies in its ex-
planatory power as well as predictive power. The framework
proposed in this work has no exception. Primarily, we obtained
a reasonable expression of measurable energy and momentum.
There are many other topics within this framework to be dis-
cussed, topics such as particle generation and perturbative cor-
rections.

Our framework also enjoys three traditional pictures:
Heisenberg, Schrödinger, and Dirac in an extended fashion.
The Hamiltonians in Heisenberg and Schrödinger pictures are
not identical anymore and so the noninteracting Hamiltonians
of the Dirac and Schrödinger picture are not equal. Yet, we can
nevertheless devise a way to calculate perturbatively the im-
pact of interaction provided that the coupling is weak.

Though de Sitter spacetime is of de Sitter symmetry, it is
yet to be investigated whether the symmetry can be realized
by quantized fields per se. The generators of de Sitter algebra
ξAB = zA∂zB − zB∂zA satisfy

[ξAB, ξMN ] = ηBMξAN + ηANξBM − ηAMξBN − ηBNξAM.
(190)

Since at any instant of time ζ, the space is the same as that of
the Minkowski spacetime and one can directly find operators

ξ̂ij(ζ) : = ∑
p

b†
p(ζ)(pi∂j − pj∂i)bp(ζ), (191)

we realize the spatial part of the de Sitter algebra. We do not
know at this moment whether the full de Sitter algebra can be
realized by field operators since there might be quantum sym-
metry breaking.

Lastly, we expect that this framework can be applied to the
quantization of spinor fields, and vector fields in de Sitter space
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as well. Yet, for other spacetimes such as Robert-Walker space-
time, the application of this framework might entail some addi-
tional steps. The difficulty in the Robert-Walker case is that the

known basis solutions Π(±)
kJ (χ)YM

J (θ, ϕ), k = (k, J, M), where θ

and ϕ are angular coordinates [1], are not ”plane-waves” any-
more, as in the de Sitter spacetime. Hence, extra effort is needed
to associate the basis solutions to ”free particles”. In general, we
have to find an appropriate coordinate system in which we can
find a complete set of basis solutions, which can be interpreted
as (or associated with) ”free particles”. Once this is achieved,
the framework can be transformed to any other coordinate sys-
tem and thus made generally covariant.
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[15] F. Güsey & T.D. Lee, Proc. N. A.S. 49 (1963):179-186.
[16] C. Fronsdal, Rev. Mod. Phys. 37 (1) (1965):221-224.
[17] K.C. Hannabuss, J. Phys. A 2 (1969):274-277.
[18] C. Fronsdal, Phys. Rev., D10 (2) (1974):589-598.
[19] C. Fronsdal & R.B. Haugen Phys. Rev., D12 (12)

(1975):3810-3818.
[20] C. Fronsdal Phys. Rev., D12 (12) (1975):3819-3830.
[21] T. Brugarino, Ann. Inst. Henri Poincaré, XXXII (1980):277-
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