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A semi-infinite rod z > 0 is attached to an elastic foundation reacting
to axial displacements of the rod with forces proportional to the displa-
cements. Temperature field T(z) is applied to a portion of the rod at
time ¢t = 0. The stress disturbance produced by that temperature is di-
vided into two waves which propagate along the rod, one of them being
reflected from its end according to the support conditions. The solution
is written in an integral form, and it is analyzed in approximate manner
using both the analytical methods (integral transforms) and numerical
integration.
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1. Basic equations

Consider a one-dimensional problem of a semi-infinite elastic rod z > 0 of
constant cross-section A attached to the elastic foundation (Fig.1). Assume
that the surface stresses T exerted by the foundation on the rod are uniformly
distributed around its periphery ¢ and equal 7(2,t) = ku(z,t), where u(z,t)
denotes axial displacement of the rod and k — the constant characterizing the
foundation rigidity; thus, the horizontal force dX exerted on rod’s element of
length dz equals dX = klu(2,1)dz. Since the corresponding force of inertia
is dF = —pAd?u/dt*dz (p — mass density), and axial forces acting on the
cross-sections z and 2z + da equal Ao and —A[o + (do/0x)dx] respectively,
the condition of equilibrium of the element shown in Fig.1 yields the equation

do 0%u
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Making use of the well-known Duhamel-Neumann equations (cf e.g. No-
wacki (1962)) reduced to the one-dimensional case

U:E(%—ﬂT) (1.2)

(here g - linear thermal expansion coeflicient), and introducing two reduced
foundation elasticity coefficicnts

L ke P
T oA T\ EA

Eq (1.1) may be rewritten in the form

0w 0% 5, 50T
W —C JL—2 + K°u = —c¢ ﬂan(t) (1.3)
o 0? 19? orT
gu _ 20U 2, - 5%
0%z 2 912 hu= ﬂarc (1) (14)

Here ¢ = \/E/opis the longitudinal elastic wave propagation speed and symbol
n(z) denotes the Heaviside step function

0 for 2<0
nz)=4¢ 1/2  for a=0
1 for >0

Eq (1.4) is the nonhomogencous Klein-Gordon differential equation known
from mathematical physics (cf, e.g., Morse and Feshbach (1953)). Similar
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equations were also considered by Sokolowski and Wesolowski (1989), (1992),
in connection with a slightly different problem of a two-component composite
rod transmitting simple displacement pulses.

Eqs (1.3), (1.4) will be analyzed under two different boundary conditions
at the end 2 = 0 of the rod:

Case (A) —end z = 0 of the rod is fixed
u(0,1) = 0 (1.5)

Case (B) - end z = 0 of the rod is stress-free
a(0,t)=0 (1.6)
The initial conditions for u(t) are assumed to be homogeneous
u(2,0) = 4(z,0) =0 (1.7)

Assume now for simplicity that at time ¢ = 0 temperature T(2) is ap-
plied to a portion of the rod and that it is kept constant afterwards, i.e.
T = T(z)n(t), and consider Case (A) of the fixed end of the rod. Let us
apply to Eq (1.4) double integral transforms: the Laplace transform £ and
the Fourier sine transform Fy (c[e.g. Bateman (1954))

[ee]
L{u(z,t)} = 4a(x,p) = /u(:v,l)e—”[ dt

0

Fo{u(a, )} = us(a,t) = /u(.r,t)sin ax dx
0

It is known that under the initial conditions (1.7), the Laplace transform of
the second derivative of u equals

ﬁ{?jg} = pi(p)

and due to the boundary conditions (1.5), the Fourier transform

821L} 3

If, in addition, T(o0) = 0, we obtain from Eq (1.4) the formula for the double
transform of w(z,1)
aT,(a)

p(p? + K2 + a?c?) (1.8)

us(a,p) = CQ,H
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symbol T.(«) denoting the cosine Fourier transform of function T'(z)
/T cosax dx (1.9)
0

In Case (B) of a rod with a stress-free end = = 0 transforms £ and F,
must be applied to Eq (1.4), this time leading to the result
aTs(a)
p(p?+ K2 + a?c?)

ic(a,p) = —c*p (1.10)

under the additional assumption that 7°(0) = 0.
Apply now the inverse Laplace transform formula (cf Bateman (1954))
1 ctioo
u(z,t) = 7 / a(z,p)e’t dp

c—ioco

to the solution (1.8); using the reduced time-variable 7 = ¢t, in view of the
formula (cf Bateman (1954))

1 1 — cos At
-1 _
L {p(;ﬂ + A?)} - A?

the F, — transform of u(z,T) equals

aT.(a)(1 - cos £271)

e (1.11)

us(a,7) =0

where

2 =Va? 4 h?

Term cos {27 seriously complicates the following procedure of inversion of the
transform Eq (1.11).
Application of the inverse F; transform

[o.0]
2
u(z,7) = —/us(a,r)sin az da
T
0

to Eq (1.11) yields

sin az da (1.12)

ﬁ]o a)(1 — cos £21)
T 02+h2
0
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Using Eq (1.2) we easily obtain the integral formulae for the stress

o(a,7) = —%Q[Fl(;r)+ﬂz(m,r)] (1.13)

with the notations

T.(a) cosax
N — )2
Fl(l)—h/ o 1 do

(1.14)

T a2 .
Fy(a,r) = / a Tc(algoi.;l);' cosax

0
Solutions (1.12) are clearly seen to satisfy the boundary conditions (1.5) of
Case (A),ie. u(0,7)=0.

To solve the other Case (B), the F, transform (1.9) replaces the formerly

used F,. A procedure similar to that used above in Eqs (1.8) = (1.14) leads
to the results

Wz, m) = _%_rﬂ_ / aTs(a)(lc:?:c_)sh.g)T) cosaz (1.15)
0
and
o(x,7) = —#[Fg(l‘)ﬁ-F,;(.’l:,T)] (1.16)
with

Ts(a) sin ax

d
a? 4+ h? “

Fy(z) = h2/
° (1.17)

Ooa2T3(a cos 27 sin ax
Fy(z,7) :/ 2‘,2 Y da
0

Solution (1.16) evidently satisfies the boundary condition (1.6) of Case (B),
o(0,7) = 0.

Presentation of the solutions (1.12) + (1.17) in a closed, explicit form is
possible in certain special cases only; let us discuss these cases.
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2. Explicit solutions of the problem
2.1. Statical solutions

In the statical cases of a semi-infinite rod resting on elastic foundation and
transmitting temperature-exited longitudinal stresses, the problem is governed
by the ordinary differential equation

d*u(2)
da?

dT(z)
dx

~ hu(z) =P (2.1)

obtained from Eq (1.4) by disregarding the second left-hand term. Applying
the Fg procedure in Case (A), we obtain

(2.2)

o(z) =

2E[3 /T(a cos ax
a? 4+ h?

It is seen that this coincides exactly with the first term of solution (1.13)

glz) = jﬂ

Fi(z)

the second term £, representing the dynamic effects of the process. With
t — oo the term Fy(z,7) in IIq (1.13) tends to zero for every & < oo, and
thus the final state of deformation and stress is identical with the statical
solution (2.2). It may also be rewritten in a inore convenient form

a(z) = —EQh [e_h”'/T(f)cosh h& d€ + cosh /m/T(f)e‘hE d{] (2.3)
0 T

In the particular case when T(2) = Ty for 0 < 2 < band T(z) = 0 for
z > b, ie. T(z)="Ton(b-2)

1 — e b cogh ha z<b )
o(x) = —_EETO{ sinh hbe=h z>0b (24)

Diagrams of function o¢(z) made for several values of the foundation ri-
gidity constant A are shown in Fig.2. It is seen that with increasing values
of h, the o(z) — curves approach the value —efTy for o < b, and 0 for
z > b; with a perfectly rigid foundation kA — oo, displacements wu vanish and,
according to Eq (1.2), the stress o = EBT(x). At the same time, it is also
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-o(x)IEBT, A
1

0.5

Fig. 2.

the initial value of stress o(x,0) of Eq (1.13), since simple transformation of
Eq (1.14) at 7 = 0 yields, under arbitrary T'(x) - distribution

v 2
«
Fi(z,0) + Fp(2,0) ![UZ+/L cr7+h2]TCLOSGl da

and

o(z,0) = —g/.’[}(a}cosaﬂ; da = -EpFT(2) (2.5)
0

thus it may be concluded that the actual dynamic wave propagation process
starts from the state (2.5) and ends up with (2.3), (2.4) at ¢ — oo.

Similar reasoning applied to the Case (B) (stress-free end of the rod) leads
to the following resuits.

The time-independent, statical solution for a semi-infinite rod with stress-

free end x = 0is (in the case of T'(x) = Ton(b— x))

l—e ' —efginhha  z<b
o(z) = —E/)'To{ e=h(cosh hb — 1) x> (2.6)

Both solutions (2.4) and (2.6) are continuous with their first derivatives at

z =b.
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2.2. Stress waves in a rod without foundation

In case of h = 0 (no foundation), the classical problem of stress wave
propagation in a semi-infinite rod is described by Eq (1.3) reduced to the form
(cf Nowacki (1963)) )

2 2,
% - c2g? = —c%%n(t) (2.7)
Application of the Laplace and Fourier sine transforms (in Case (A)) leads to
the known results for the displacement u

u(z,T) = % / TC(Q)(I - cos ar)sin az da (2.8)
T «a
0
and stress -
o(z,7) = —#/TC(O‘) cosar cos ar da (2.9)
0

Using the decomposition
COS T COS (T = §[cos alz + 1) + cosa(r — 7))

and the known F-! transform formula

2 7 [ T(X)  for X >0
- /Tc(a) cosaX da = { T(-X) for X <0
0

we obtain the known result (cf Nowacki (1963))

o(z,7) = ——%Eﬂ[T(m+T)+T(m—T)] x>T
(2.10)

o(z,7)= —%Eﬂ[T(a;+T)+T(T—.r)] < T

If T(z) happens to be an even function of =z, the upper formula (2.10)
is sufficient. The stress disturbance —FEfST(z) is divided into two halves
propagating in opposite directions at speed e¢; one of the waves is reflected
from the fixed end of the rod.

In case of a free end z = 0, the solution assumes the form

o(z,7) = —%Eﬂ[T(.’lJ+T)+T(:I;—T)] r>T
(2.11)

o(z,T) = —%Eﬂ[T(m + 1) - T(r —z)] T<T
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The halfwave travelling to the left changes its sign upon refllection from the
stress-free end of the rod. Here again, if 7'(z) is an odd function of =z, the
upper formula of Eq (2.11) represents the complete solution.

Several stages of the wave propagation process described by Eqs (2.10) and
(2.11) are depicted in Fig.3.
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2.3. General case

Let us now return to the general solution derived in Section 1 Eq (1.13),
concerning Case (A), presents the stress o(z,7)as a sum of the static solution
(2.2) and the dynamic term involving the integral (1.14),

T a?T.(a) cos 21 cos ax
Fylz,7) = / ey da (2.12)
0
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with 2 = va? + h?. Cousider, for the sake of simplicity, the case when
T(z) = Ton(b—2),T. = To(sin ab)/a. Using the trigonometric decomposition
formula

sin ab cos ax = %[sin alb+2) + sina(b — 2)] (2.13)

Eq (2.12) is written as the sum

_E[/‘acosﬂrsma (b+z) +7acosf2rsina(b—:t)da]
BT=5 a? 4+ h? J a? 4+ h?

According to Bateman (1954), p 85, the integral

oo

a cos 27 sinaX T _nx .
/ a2 12 da = 3¢ (2.14)
0

for positive values of X > 7. The result cannot be, however, written in an
explicit form for 2z < 7. Substituting this result into the preceding formula
for F, we conclude that

_ﬁ_[ —h(b+zx) + e—hi(b— 1’)] for b>z, b—a>T1
F, = (2.15)

Iﬁﬂ[ —h(z+b) _ g—h{r— b)] for b<z, z2—-b>T

Thus,for 0<a<b—71

T
= %ﬁe"‘b cosh ha

and for > b+ 71 _
F = —%e T sinh hd

For b—7 < a <b+ 7, F; cannot be written in an explicit form.
Returning now to IXq (1.13) and using the result (2.4) (static solution
corresponding to T'(2) = Tyn(b — 2)), we obtain

1 for a<b-r71

0 for 2>b4+71 (2.16)

o(v,7) = —EBTy {

In the region b—7 < 2 < b+, due to the disturbances originating from point
z = b, explicit formula for stress o(a,t) is not known. However, outside that
region the stress preserves its original values and equals —EfTy for 2 < b—71
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and zero for z > b+ 7, out of the reach of the waves propagating from z = b;
at small values of 7 < b, the initial stress remains unchanged (cf Fig.4).

A similar approach can be applied to Case (B) of the stress-free end of the
rod. Stress (1.16) also constitutes a sum of the static and dynamic solution
F3 and Fy, and integration in I3q (1.17), with Ts(a) = Ty(1 — cosab)/« is
possible under the condition that 7 < 2 < b—71 and b+ 7 < 2, and leads
there to the results

1 for T<az<b-r1
oz, 1) = _EﬁTO{ 0 for b+1<a

In contrast to the results (2.16), the regions in which the stresses remain
unknown includes the neighbourhood of the rod end 2 = 0. The extents of

those regions in Cases (A) and (B) are shown in Iig.4.

3. Approximate evaluation of stresses

Let us now try to evaluate the integral (2.12) in an approximate man-
ner. The considerations will be confined to Case (A) and temperature
T(z) = Ton(b - z).

Formula (2.12) determining the time-dependent part of the solution is

[oe]

a cos 27 sin ab cos ax
F,=T

T da (3.1)

0

It is easily verified that, in a certain range of values of the parameter /£ and
variable 7 the following approximation of function cos £27 is possible

cosTVa? + h? = cosar — %Th2 smar (3.2)
a
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The error resulting from such an approximation is small provided both A and
7 are small enough; the error is of the order of 74h*/24 for small values of «
and decreases at increasing values of «. Thus with A7 < 1, the approximation
should prove to be eflective in evaluation of the improper integral (3.1).

Let us substitute the approximation (3.2) into the integrand of Eq (3.1).
Denoting by F, the resulting approximation of F,, we obtain

o0 o0

~ a cos aT sin ab cos az 1 ,, [sinarsinabcosaz

B =1 [/ oy dar = 57h / e | (33)
0

Simple trigonometric transformations lead, at 7 < b, to

o0 o0
~  Tor fasina(b+71)cosax asina(b— 1) cosaz
Fo= 2 [/ a? + h? dot / a? + h? da +
0 0
(3.4)
B ‘r_h? 7cos a(b— 1) cosaz doc + ﬂi 7cos a(b+ 1) cosaz da]
2 a? 4+ h? 2 a? 4+ h?

For 7 > b, the second right-hand integral in Eq (3.4) tnust be written in the
form

do

7asina(‘r —b)cosax
a2 4+ N2

Applying now the known formulae (c¢f Bateman (1954), pp 19, 21)

fasin aY cosaz 7 e~ cosh ha x <Y
a2 + h2 = 2] —e " sinh hY z>Y
° (3.5)
7 cosaY cos az 1 | e coshhe z<Y
/ a? + h2 CCEO0Y e hrcoshhY 2> Y
0
the approximate formula for the stress a(z,7) assumes the form
- 20 ~ .
gz, 7) = ogylz) - TﬂFQ(l‘,T) (3.6)

Here oy is the static solution (2.4) derived in the preceding section. On
using the results (3.5) and taking into account the behaviour of the solutions
in various regions of variability of 2 and 7, we obtain the final form of our
approximate results.
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e CaseI: 7 <)

For O0<z<b-1

G = —EﬂTo[l — F(hr)e™ cosh hw] (3.7)

For b—1<z<)

g = —EﬂTo[l ~ Ay cosh ha — Age_lw] (3.8)

For b<z< b4+ 1

& = —EBTy|As cosh ha — Ae™)] (3.9)

For b+ 17 <2<
& = —EBTof(hr)sinh hbe™h= (3.10)
e Case II: b< 1T <2b
For O<z<r1-10

5= —EﬂTo[l _ Aj cosh /z,a;] (3.11)

For r—b < 2 < b-ILq (3.8) holds true.

In the remaining intervals Eqgs (3.9) and (3.10) remain unchanged.

o Case IIl: 2b < r
For 0 < 2 < b formula (3.11) holds true.

For b<z<rm-b

g = — BT sinh Izb[e“’”’ —e7h7 (1 + l—?—) cosh h:c] (3.12)

For 7—b< z <7+ bLEq(3.9) holds true.
For 74 b < z Eq (3.10) holds true.
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In Eqs (3.7)+(3.12) the lollowing auxiliary notations have been introduced

A = [1 - %(1 + %/I,T) e_’”]e"‘b

Ay = %[sinh h(b—71)+ %hr cosh (b — T)]
1 1 —h{b+7)
Az = 5(1 + §/zr)e (3.13)

Ay = sinh hd — %sinh hb—-T1)— %hr coshh(b—1)
flhr) =1 —cosh hr + %hr sinh At

Simple inspection of Eqs (3.7), (3.10) shows that in regions where, ac-
cording to Eq (2.16), the stress should be equal to —EfTy and 0, respec-
tively, the approximate formulae yield —EBTu[1 — f(hr)e=" cosh ha] and
—EBTof(hr)sinh hbe="*. It is casily verified, however, that function f(h7)
in Eq (3.13)5 for hr < 1is small of the order of 274 /24; upon multiplication
by functions e~ cosh hz and sinh hbe="* wlich are both less than unity in
the relevant intervals, the results obtained prove to be a good approximation
of the accurate ones.

Finally, another interesting conclusion may be drawn from the approximate
formulae (3.7)+(3.13). Points @ = b+7and 2 = b—7 (or z = 7—0) determine
the positions of the stress wave fronts. The corresponding stress jumps are
calculated by substituting (in Casc I, for instance) the value z = b + 7 into
the formulae (3.10) and (3.9) and subtracting the results. The other stress
jump occurs at 2z = b — 7 and it is evaluated by subtracting the stresses &
given by Eqs (3.8) and (3.7). In both cases (and also for 7 > b, Eqs (3.11),
(3.12)) the jumps are exactly equal to i%EﬂTg, i.e. they are tlie same as
those in the classical solutions shown in Fig.3, Eqs (2.10) and (2.11). A similar
phenomenon was also observed by Sokotowski and Wesolowski (1989), (1992),
where the value of the displacement jumps at the wave front propagating along
the composite rod remained constant throughout the process.

This observation is also confirmed by numerical integration. The results
are illustrated in Fig.5 = I'ig.7 showing the process of stress wave propagation.
The graphs are based on the approximate relations derived in this section and
on the results of numerical integration. The diagrams in Fig.5 and I'ig.6
(based on the approximate formulae derived above) are drawn in distorted
scale to demonstrate better the tendency of variation of the stress pulses, with
invariable values of the stress jumps at the wave fronts.
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o A (@) h=01

In Fig.7, presenting the results of numerical integration, we can observe
further evolution of the stress diagram shown in Fig.6, up to its final state
identical with the static solution (2.4). The results illustrated in Fig.8 are also
based on numerical integration of the formula (1.13). Actually, the diagrams
present the stress Ajo(x,7) being the difference

Ajpo(z, T) = o(x, T)h=5 - 0'('7“" T)h=0

between the stress (1.13) and that occurring in a foundation-free rod (2.9).
Also here the effect of propagation of disturbances from the point 2z = b (cf
Fig.4) may be observed.

2 — Mechanika Teoretyczna
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O termicznie wzbudzanych falach naprezenia w precie spoczywajacymn na
sprezystym podlozu

Streszczenie

Pdlnieskoriczony pret = > 0 jest przymocowany do sprezystego podloza
dzialajacego na pret silami proporcjonalnymi do jego przemieszczen osiowych. Do
czesci preta przyklada sie w chwili ¢t = 0 pole temperatury 7T(z). Wywolane
w ten sposéb zaburzenie stanu naprezenia rozprzestrzenia sie w postaci dwéch fal
sprezystych w obu kierunkach preta; jedna z tych fal ulega odbiciu od koiica preta
stosownie do warunkow jego podparcia. Rozwigzanie zostalo przedstawione w postaci
calkowej i zanalizowane w spos6b przyblizony w oparciu o metody analityczue (teoria
transformacji calkowych) oraz numeryczne.
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