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The paper presents a matrix formulation of linear response of discrete
dynamic systems to propagating random excitations. Joint effects of
pseudo-static and dynamic response are considered. Characteristic fea-
tures of displacement and force response are pointed out. Direct and
mode superposition methods, respectively are considered. A simple,
practical example is analyzed for illustration.

1. Introduction

Theory of random vibrations can be applied in various fields of civil, me-
chanical and aeronautical engineering. Standard algorithms are now available
for response statistics of dynamic systems under random excitations (e.g., Lin
(1976), Sobezyk (1973) and (1991), Chmielewski (1982)). During the last two
decades these standard techniques were developed to include: first passage
problem, peak response, non-stationarity, non-linear random vibrations and
many other subjects. Among them there is a problem of random vibrations
of structures under propagating excitations. Such effects can be observed in
civil engineering for seismic excitations of bridges, life-lines, dams or for off-
shore structures excited by ocean waves. In aeronautical engineering these
can be excitations of aircraft components by pressure waves. In recent years
some solutions for more or less complicated structural systems and specific ty-
pes of structures have been proposed and analyzed (e.g., Harichandran, Wang
(1988) and (1990), Harichandran (1992), Hao (1991), Nadim et al. (1991),
Zerva (1991), Heredia Zavoni, Vanmarcke (1994)).

In this paper a compact, direct, matrix formulation of linear response of
discrete dynamic systems to random, propagating excitations is presented.
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[n addition. the mode superposition method which proves 1o be particularly
efficient in numerical computations. is presented using index notalion. Both
methods are derived in terms of the classic. correlation theorv ol stochastic
processes. A simiple example illustrates an application of derived formulas.

2. Equations of motion
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Fig. 1. A strocture under multi-support kinematic wave excitations

Consider a structure with n degrees of freedom for which wy.wa..iuy,
are degrees associated with support motion and the remaining s, degrees of

freedom represent the response of the structure (g, )

no=ny o (2.1)
A matrix equation of motion of such a svstem takes the lollowing lorm
Mg + C¢' + K¢ =0 (2.2)
where M. C. K are mass. damping and stiflness matrices. respectively. The
vector
/
0
(
' 12 5 -
q = . (2.3)
/
T

represents tofal displacements with a refercnce to flixed coordinates. Applving
Fq (2.1). Eq (2.2) can be written mn the sub-matrix {orm

o g .

Mss Msg qs Css ng qs Kss Ksy qs

+ + b=
M, M, i Cys Cyy u Kso Kyy u

N o
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where vectors

h 7
¢
U2 42
u=9 . g =9 (2.5)
. ¢
“'Tbg qn,

represent the free field motion (excitations) and structural displacements (re-
sponse) respectively. It should be noted that when excitations in some direc-
tions are not applied (e.g., support rotations or vertical excitations) it results
in removing respective rows and columns in matrices My, My, My, Cgs,
Csgs Cyyr Kys, Koy, Koo The total response ¢' can be divided into dynamic
displacements ¢ and pseudo-static displacements g¢P (also called quasistatic)

)¢ q
={ %)

Thus the total motion of the supports is determined only by the vector u.
while the total structural displacements consist of two parts: psetdo-static ¢°.
reflecting kinematic motion of the structure and displacements ¢ representing
dynamic response of the structure. In case of classic. uniform support excita-
tions the pseudo-static motion of the structure usually is not analyzed, as it
reflects only undeformed motion of the structure. For non-uniform excitations
however the pseudo-ststic motiou leads to deformations of the structure. Thus
the effects of pseudo-static motion are present even if one assumes that all the
masses are equal to zero (no dynamic effects). Substituting Eq (2.6) into the
equation of motion (2.4) and neglecting dynamic terms one obtains the vector
of pseudo-static motion

¢’ = —K'Ksyu (2.7)
where KZ! is the inverse matrix of K,,. Substituting again Eqs (2.7) and
(2.6) into Eq (2.4) leads to the following equation of motion with n, degrees
of freedom

Mss"]' + Cssq + Kssq - (2.8)

= (MssK;sJ Kslq - Msg)u + (Css K;sl ng - ng )U = Peff
Forlightly damped structural systems or for the stiffness proportional damping
the contribution of the second term {on the right-hand side of Lq (2.8) is

negligible in the "effective” vector of excitations p.g. Thus the equation of
motion takes the form

Mg+ Cosg + Koog = (M KK — M )i (2.9)

11 — Mechanika Teoretyczna
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Analysis of Eq (2.9) results in a conclusion that the response of a structure to
non-uniform excitations is a response to weighted excitations of all n, moving
support directions. The contribution of an individual excitation component
u, to dynamic response (e.g., in displacements ¢;) depends on stiffness and
mass geometry of the structure.

The situation is however not so clear when analyzing the force response.
For all the analyzed degrees of freedom one may calculate the corresponding
generalized elastic forces. Assume again little contribution of damping forces
to total forces. In this case the generalized force vector depends only on the
stiffness matrix and structural displacements

f=Kg (2.10)

The forces f can be divided into structural f, and support f,, analogously
as it has been done for displacements in Eq (2.6)

fs _ Kss ng q.’; -
{fg }_[Kg.s Kgg:|{ u } (2.11)

wlere
A A
=0 =1 " (2.12)
fns f'rl]g

[t should be pointed out that the number of support forces ny, can generally
be greater or equal to the number of excitation directions ngy. This is due to
the fact that one may associate generalized forces also with inactive support
degrees of freedom, which are omitted when formulating equations of motion.
In this case the stiffness matrices Kg,, Ky and Ky, , should be enlarged in such
a way that the global matrix K is modified without changing structural sub-
maftrix Kg,. The inactive degrees of freedom can be e.g., rotational, torsional
or vertical excitations when they are omitted in the analysis. From Eq (2.11)
the structural forces are equal to

fo = Kssqs + Kgyu (2.13)
while the support forces are equal to
fo = Kool + Kogu (2.14)
Substituting from Eq (2.6) ¢ = ¢ + q and applying Eq (2.7) one obtains
[ =Kssq (2.15)

[y = Kgsq+ (Kgy — Ko KT K Ju (2.16)
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It is interesting to note from Eq (2.15) that the forces associated with
structural degrees of freedom depend only on dynamic displacements of the
structure which, in turn, depend on "averaged” excitations of the structure.
On the other hand the forces associated with support degrees of freedom, Eq
(2.16), depend on two terms: dynamic and pseudo-static. The generalized
elastic forces may be applied to calculate any desired inner {orces (shear. axial
or moments). In practice however il is better to calculate the forces in the
structure using classic formulae of the Finite Element Method (FEM) which
are more effective in numerical computations than the formulae (2.10)=(2.16).
Regardless of the applied method the calculated forces are linear combinations
of structural displacements and the stiffness properties of the structure. Unlike
the structural forces f, the support forces f, are directly affected by pseudo-
static motion. The combination of dynamic and pseudo-static motion of the
structure plays particular role in the wave passage effects on multi-support
structures.

3. Mean square response by direct method

Substituting
A =M K 'K, — M, (3.1)
into the equation of motion (2.9) gives

MSSé + Cssq + K‘ssq = Au (32)

The solution of this equation for zero initial conditions is given by the
Duhamel integral

t
g(1) = /h(r)Ail(z — ) dr (3.3)
0

where h(t)is the matrix of impulse response functions of the system.

Assume now that the system has constant deterministic coefficients {ma-
trices M, C, K) and that the excitation vector u is a stationary stochastic
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process with zero mean and the following, classic spectral representation

i (1) = j‘oefwt diig (w)

(o)
- — iwt 5
tin, (1) = [ ! diip,(w)

—
where iiy(w). tig(w),..., lin, (w) are random functions in frequency domain with
orthogonal increments, i.e.

(dii;(wn )d iy (w2)) = { éduj(w)duk(w)) = 9k(w) dw _]ler Z; ;5; =w
(3.5)

i = /-1, asterisk denotes complex conjugate, operator () stands for mathe-

matical expectation and S;i(w) is a complex cross-spectral density function.

Substituting the spectral decomposition (3.4) into Eq (3.3) gives

t (o]
q(t) = /h(T)A / elw(t=T) da(w)dr (3.6)
o] —00

wlere (liAl(w) = {(lfil(bu).,dﬁg(w), ...,d?ing(w)}.r and the svmbol T stands for
transposition. Changing the order of integration. assuming stationarity and
taking advantage ol the fact that h(?) = 0 for 1 < 0 leads to the response in
frequency domain

qlt) = / H{w)Ae™! dii(w) (3.7)
where -
H(w) = /h(r)e"i‘” dr (3.8)

is a transmittance matrix (matrix of frequency response functions of the sy-
stem). Eq (3.7) together with the orthogonality condition (3.5) can be used
to obtain any required response statistics. For example, the covariance matrix
of dynamic displacements can be written as follows

D, = / H(w)AS(w)ATH () dw (3.9)
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where S(w) = S;(w) is a matrix of complex cross spectra of accelerations .
It should be noted that the spectral densities without sub- or superscripts i
denote here spectral densities of accelerations.

Now one can introduce the matrix I'(w) of complex coherency functions
Yij(w)

Yij(w) = A—— " 10)

where S;(w)and 5;(w) are real point spectra. Assuming spatial stationarity
(homogeneity) of excitations i.e.. 5;(w)= 5;{w) = 5(w) we have

S,
7z'j(w): 5'1(5:))) (3.11)
D, = /H(w)AI‘(w)ATH*(w)S(w)dw (3.12)

Similar analysis can be made for the pseudo-static response resulting in
Sg NSS

D, = / K2 K;ySu(w)KT KD duo (3.13)

Taking into account that the elements of spectral matrix of excitation
displacements S, (w) can be calculated from the acceleration spectral densities

I s [ 1 ) .
St w) = J'SU'(W) = L‘;I’Sij(w) = F”/’ij(w)'s(w) (3.14)
and including Eq (3.11) yields
T | 1
D, = / KoK gD () K K =) do (3.15)

Finally consider mean square support forces. Introducing into Eq (2.16)
matrix
B=K K,K'K (3.16)

99 sg

yields
fo = Kysq +Bu (3.17)
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and then

D;, = /(KgsH(w)AS{;_(w)ATH*(w)KgTS + KysH(w)AS ;. (w)BT +

(3.18)
+ BS.i(w)ATH*(w)K], + BS,(w)BT) dw
Taking into account Eq (3.14) and having in mind that the elements of the
matrix of cross spectral densities displacements-accelerations are equal to
wii i L ocaa ! & ! .
S w) = 5 (w) = —ﬁ% (w) = _Esij(w) = ——75(w)S(w)  (3.19)

one obtains

1

EKgsH(w)AI‘(w)BT +

D;, = /[KgsH(w)Ar(w)ATH*(w)K;—

(3.20)
—~ éBr(w)ATH*(w)K; + uleBI‘(w)BT}S(w) dw

4. Mean square response by mode superposition method

Assume now that the eigenproblem of the analyzed structure is solved and
the natural circular frequencies of the structure wy, wo, ..., w,, are known
together with corresponding eigenvectors wy, wa, ..., w,, which form eigen-
matrix W. Applying modal transformation

g =Wg (4.1)
to the equation of motion (2.9) and pre-multiplying it by w] vields
w] M Wg + w] C,,Wq + w] K, ,Wg = w| (M, KK, — My, )i (4.2)

where @ stands for response vector in normal coordinates. Taking into account
the orthogonality conditions

‘wlTMss’U)]' =0
for i # j (4.3)
wl-T KSS’U)]' =0
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and assuming the same for damping matrix
w, Cw; = 0 for 1 # j (4.4)

reduces Eq (4.2) to following system of uncoupled equations of motion

mg; + cig; + kig; = Pill) for 1 <4<mn, (4.5)
where
m; = wz-TMsswz- ¢ = wiTCSS’U)i = QEiwimi
(4.6)
k;, = wiTKsswi = w?mi P = wiT(MSSK;SI ng — Msg)él

For real structures, the assumption (4.4) can only be treated as a certain
approximation. It gives however a possibility of specifying damping ratios &
separately for various modes of vibration of the structure.

Thus Eqs (4.5) can be re-written in the standard form

Gi + 26wig; + wig, = tad for 1 <i<mn, (4.7)
m;
Introducing the matrix
G—dlag[—]WT M,.K 'K,y — M,,) (1.8)

m;

where diag[1/m,] represents a diagonal matrix with the elements 1/m; on its
diagonal, gives the modal response in the following form
g
G; + ‘2&'&.11'?]5 + w?F]i = Z Gju; for 1 <1< ng (4.9)
7=1
The elements Gj; of matrix G may be called modal excitation participation
factors. They control the participation of jth component of excitation in the
vibrations of ith mode.
The response in the ith normal coordinate can be given by the Duhamel
integral

Z/h )Gisiig(t— 7) dr (4.10)
J=17

where h; is an impulse response function of the ith normal mode

1
—————exp(—&uw;t) sin(w;?)
w1 — €2 (

hi(t) = (4.11)
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The corresponding frequency response function of the /th normal mode takes
the form

= /hg(r)e“‘” dr = : (4.12)

2 >
w? —w? + 2iwiw

Substituting the spectral decomposition

i (1) = / WL (w) (4.13)
from Eq (3.4) into Eq (4.10) gives
%) = Z/h T)Glj/ =T i (w)dr (4.14)
J=lg —co

Taking into account the left part of Eq (4.12), after similar transformation as
in Section 3, one obtains the response in normal coordinates

g

7,(1) = Zc,” / Hi(w)e™ dii;(w) (1.15)
Consider now again the modal transformation (4.1) in index notation
=) WG, (4.16)

where £ is the nodal coordinate number. Substituting Eq (4.15) into (4.16)
gives the following formula for the spectral decomposition of the response

Nw g eo
Y WY Gy [ Hi(w)e di(w) (4.17)
=1 7=1 0o

where n, has been replaced by n, < ng, which makes it possible to ap-
ply only a necessary number of modes, reducing numerical effort in practical
computations.

This formula, together with Eq (3.5) can be used to obtain anyv required
statistics of the nodal displacements. For example, mean square displacements
are equal to

Ny Ny g Ng

=Y WiWiy / Hi(w) B )Y Y GGy Silw) do (4.18)

1=1 p=1 1=1r=1
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Taking into account Eqs (2.16} and (4.17) gives the spectral decownposition of
force response

Tw T Tty

=S RE Z W, Za, / Hi(w)e™ duj(w) + Z K, / T, (w)
p=1 =1 o
(4.19)

where Ix';‘j; denotes the elements of matrix K,s and AY are the elements of
matrix K, given by the following [ormula

K, = K, — KKK, (4.20)

Applying Egs (4.19) and (3.5) one may derive the mean square force response

afk =
g Mg Nw Tw ng ng
&~ Z Z lkp Z Z W]vzw mn /H ZZ Suu )dw-{—
=1m=1 i=1n=1 p—
p . (4.21)
Ilg
Z ‘LPZM ZGLIZALT / RQ[H( )5'““(00)] dw +
7Lg TIg
+20 2 NGB, / S (w) dw
1=1r=1
5. Example

Consider a simple multi-support structure; a dynamic one degree of free-
dom system with double support excitations (Fig.2). Two support points A
and B are excited horizontally by plane waves propagating with the same
apparent velocity in the entire frequency domain. In addition to propagation
effects a loss of coherency due to wave refraction and attenuation occurs at the
distance |AB| = d. These two effects are described by the coherency matrix
of two excitation accelerations #4 and g

F(W)Z[ ! “B] (5.1)
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[\i[%

Fig. 2. One degree of freedom structure under double support excitations

where v4p is defined by Egs (3.10) and (3.11). The coherency function can
be written in terms of modulus and phase as well as real and imaginary parts

v4B = |vaBle"
(5.2)

vaB = Revap +ilmyap

The modulus of coherency |y4p]| is called the loss of coherency (lagged co-
herency) and is a measure of similarity of signals at the points A and B
excluding the effect of travelling waves. The effect of wave propagation is in-
cluded in the phase . Real value of coherency Revup is called unlagged
coherency. It includes both the effect of signal attenuation and wave propa-
gation. Assuming plane waves propagating at the same apparent velocity for
all frequencies one may write the phase term in the following form

wd
¢ =pw,d,vy) = — (5.3)

Vg

where v, is the apparent wave velocity.
The complex coherency function takes the following form

vap(w,d,vg) = |1aB(w, d,vy)[e“4/vs (5.4)

Introducing the reduced apparent wave velocity v, = vy/d which represents
wave propagation in terms of support distances yields

YaB(w,d,v;) = [7aB(w, d, v,) ]/ (5.5)
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The point spectral density function of horizontal accelerations will be a broad-
band spectrum taken {from seismic engineering following Kanai (1957), Tajimi
(1960) as well as Ruiz and Penzien (1969)

4 2,2 ,2 4
Wy + 4§gwgw w

(W2 — w?)? + 4620202 (Wi — W2)? + 4€iwiw?

S(w) = So (5.6)

where Sq is an intensity factor and wy, = 4w, £, = 0.6,wy = 1.636, & = 0.619.

To calculate the mean square response the direct method from Section 3
will be applied. For this system n, = 1. n, = 2 and n = 3. The main
equation of motion (2.4) takes form

m 0 0 gt c ~5 =3 qt
0 00 ig |+ -5 5 0 ug |+
0 00 ip - 0 5 LB
(5.7)
B A R 0
T —Z,E % ) \\CIIA = 0
k
-3 0 0} up 0

with the structural sub-matrices My; = [m], Css = [¢], Kss = [k]. Separating

dynamic ¢ and pseudo-static ¢P motion according to Eqs (2.6) + (2.9) and
introducing the matrix A from Eq (3.1)

_ 1] & k

A = MSSKslesg - MS!/ - 771% |:_§; _5

gives the following equation of motion

L e [mo om] s |
nw+wq+kq—Au~[ i¥ 2][u3} Mg tin)  (59)

Introducing natural frequency wp = \/k/m, and damping ratio & = ¢/(2muwy)
gives the equation of motion normalized with respect to unit mass

G+ 26wog + woq = —5(iia + iip) (5.10)

For the above equation the frequency response function takes the form

1
w2 — w? + 2ilwow

H(w) = (5.11)
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Thus, following Eq (3.12), the mean square response is given by the following
formula

Dy = ] :_Z [%J [_% ‘%] [v:\;(m T ]

o

(5.12)

and then

o = % / |H(w)|2[1 n ReyAB(w)] S(w) dw (5.13)

The pseudo-static response ¢* is equal (in this example) to the mean value of
support displacements

1 k k U4 1
p_p_ _ 2| M O_F _ i , y
r=1= A[ 2 2“1@}_2(“"‘“3’ (5.14)

From Eq (3.13) the mean square pseudo-static response is

21 [ L[k k 1 qaslw) | [ -£] 10
DqP = [qu} = / Z |:—§, —5 7:1B(w) 1 _é —CJS(W) dw
(5.15)
and then -
1 71 , , X
o =5 / J[l-FRe’yAB(w)]S(w)dw) (5.16)

Now, consider the mean square support forces. The support forces in
this example are equal to the respective column shear forces f4. fp (Fig.2).
Calculating the matrix B

o | !

and applying Eq (3.18) yields

Ol

(5.17)

| S
| — |
|
e
|
| e
| I—
il
| —— |

|

ol O
|t 2
|
FNESTNES
_ 1
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1 qaslw) || -2 [H*w)] [_5 _5] \
Yaplw) 1 -2 m 202
(5.18)
1 —k H(w) m m 1 vap(w E_k
_E[iH all 7’_7“ ) [ E T
2 ' ’)AB 4 1
AL | el || -3 [H*(m} {_5 _@]+
w2 | -3 § Yap(w) 1 -3 m 202
Ll 5 -4 1 yap(w) k%
+ — : : , i 4 S(w) d
s L L e
After some algebra the covariance matrix of force response is equal to
o, - [ H()*(1+ Revaplw))+
fg 8 1 ] /
2. ImH(w) iReH(w)
B ﬁhn"W(w)[—iReH(w) CnA(w) | T (5.19)

+ u%[l—Reﬂmg(w)} { _i i }}S(w)dw

In Fig.3 and Fig.4 the spectral density of displacements ¢ (Fig.3) and
force  fs (Fig.4) of the analyzed system (integrands from Eqs (5.13) and
(5.19) are shown for no loss of correlation (|yap| = const = 1) and two values
of v, = 0.5and v, = 4.0 (a.b) as well as for the total loss of correlation (c¢)i.e.,
for |yap| = const = 0 and for coherent excitations (d), the natural frequency
wo = 2w rad/s and damping ratio £ = 0.05. It can be seen from these two
figures that unlike the displacements the force spectra display a low frequency
hump left to the resonance peak. It results from pseudo-static contribution
in the force response. Its contribution increases with decreasing velocity and
is greatest when the total loss of coherency is assumed (Fig.4c). In Fig.5 the
root mean square (RMS) displacements (Fig.5a) and force f4 (Fig.5Db) are
shown vs. the apparent wave velocity for no loss of coherency (|y45| = 1).
In addition two values not depending on velocity are shown:

— Result for total loss of coherency (solid straight line)
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(@)

o o o

S o =

& o ©
1 1

0.04
0.02-

0.00+r—

(b)

0.10
0.08+
0.06-
0.04J

0.02+

0.004—+—

T T T
012345678910 012345678910

T T

frequency
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Fig. 3. Spectral densities of the displacement response ¢ for no loss of coherency
and v, = 0.5 (a), v, = 4.0 (b) as well as for total loss of coherency (¢) and coherent
excitations (d)

0.03] (a) 1(v) j
0.021 {

0.011 E L
0.00 P—J .

0.034(¢) 1(d) )

speciral density

0.02 ]

0.011

spectral density

0.00 v
012345678910
frequency

012345678910
frequency

Fig. 4. Spectral densities of the force fa response for no loss of coherency and
v, = 0.5 (a), v, = 4.0 (b) as well as for total loss of coherency (¢) and coherent
excitations (d)
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0.5

0.4

0.3

0.2

RMS displacements

0.1

00—« v 4 v 4 . L

0.4

0.3

RMS force

0.2

00l e v vy

velocity

Fig. 5. RMS displacements (a) and force (b) vs. the apparent wave velocity for no
loss of coherency, total loss of coherency (horizontal solid line) and for coherent
excitations (horizontal dashed line). respectively

— Result for coherent excitations (dashed straight line).

It can be seen from Fig.5 that for low propagation velocity the RMS re-
sponse oscillates about the results obtained for the total loss of coherency.
As the velocity increases the RMS response goes asymptotically to the classic
results obtained for coherent excitations (dashed line) as could be expected.

6. Conclusions

A matrix formulation of the linear response of discrete dynamic systems
to propagating, random excitations has been presented. A simple structural
system has been analyzed for illustration. Joint action of pseudo-static motion
and dynamic response results in unique phenomenona which are not present for
coherent excitations. It is interesting to note that the classic ”coherent” results
are conservative for the RMS displacements and may become unconservative
for force response and low propagation velocity (Fig.5).
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Drgania losowe ukladéw dyskretnych przy kinematycznym wymuszeniu
falowym

Streszczenie

W pracy przedstawiono macierzowe sformutowanie dynamiki ukladéw dyskret-
nych poddanych propagujacym sie wymuszeniom losowym. Rozwazono laczne
efekty pseudostatyczne] i dynamicznej odpowiedzi ukladow. Podkreslono réznice w
rozwiazaniach dla sredniokwadratowych przemieszczen i sil. Zastosowano metode
bezposrednia oraz metode superpozycji postaci drgan. Prace zilustrowano prostym,
praktycznym przykladem.
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