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The higher order parabolic model of heat conduction is developed using
the gradient theory with internal state variable. "Uhe model can be vie-
wed as a parabolic regularization of the hyperbolic model of heat con-
duction developed in the earlier papers within the framework of modified
Fourier laws.

1. Introduction

Classical Fourier law of heat conduction leads in general case to a non-
linear system of the parabolic-tvpe equation. In order to get the finite speed of
propagation of thermal disturbances a modified Fourier law was presented by
Kosinski (1989), in which the heat flux vector was proportional to the spatial
gradient of an internal state variable, viewed as a semi-empirical temperature
(cf Cimmelli and Kosinski (1991)) and related to the absolute temperature
by an evolution equation. In this wav the internal state variable represents a
history of the absolute temperature. In that modification the resulting, final
system of equations is hyperbolic. The equations are quasi-linear and hence
they may involve some stability and uniqueness problems when nuerical so-
lutions of the wave-type is searched. In order to overconie these difficulties and
give more detailed description of the complex phenomena of heat conduction
more general model is required.

!The paper was presented during the First Workshop on Regularization Methods in Me-
chanics and Thermodynamics. Warsaw, Apnl 27-28, 1995
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Such a model has been just constructed within the framework of gradient
generalization of the internal state variable theory (cf Kosiniski and Wojno
(1995)). In this theory the evolution equation for interual state variables and
the energy balance equation lead to the final system of governing equations
which is of the third order and parabolic type.

Although the main purpose of that paper was to develop a general set-up
of the gradient theory, the first idea of parabolic regularization of the modified
Fourier law of the semi-empirical temperature theory has been also mentioned.
The aim of the present paper is just to present this regularization features using
the simplest possible reasoning.

Thus in this paper the primitive, modified Fourier law of semi-empirical
temperature has been perturbed by adding to the existing term proportional
to V43 a small term proportional to Vg: or in other words to V3. In fact
this can be done by allowing the heat flux vector to depend on the gradient of
absolute temperature, like in the classical Fourier law, and additionally on the
gradient of internal state variable 3. In this way the resulting heat conduction
constitutive equation, due to the second prolongation of the evolution equation
in 4 and the particular choice of the proportionality coefficients. can be
regarded as a generalization of the Fourier law. This simple perturbation
changes the type of the resulting field equations from hyperbolic to parabolic.
[t can be observed by appearance of the term with the third order mixed
derivative,

We would like to emphasize that the parabolic regularization properties are
features inherent of the gradient generalization of the internal state variable
theory developed by IKosiniski and Wojno (1993).

2. General framework

KNosifiski (1989) introduced, for the first time, the gradient of a scalar inter-
nal state variable as a state variable in response functions of a thermoelastic
material. In the course of examination of consequences following f{rom the
laws of thermodynamics he obtained a modified Fourier-type law and finite
speeds of propagation of thermal and thermomechanical waves. That new mo-
del differs from the corresponding model, developed by Kosiiski and Perzyna
(1972) by the form of the evolution and constitutive equations. The model
Las been mostly applied to rigid heat conductors in 1D and 3D cases, and
to thermoelastic solids in 1D case (cf Cimmelli and Kosinski (1991), (1992),
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(1993); Cimmelli et al. (1992); [rischmuth and Cimmelli (1995); Kosinski and
Saxton (1991), (1993)).

Kosiiski and Wojno (1995) solve some open problems of the new mode]
with the internal state variable gradient. One of them is the question of
the absence of the internal state variable from the constitutive function for
free energy. Moreover, in that model the gradient of absolute temperature
does not influence the response of the material. There were some reasc s lor
constructing such a model. namely. to keep the generalization as simple as
possible.

In the present paper we discuss the parabolic regularizaton existing in the
approach presented by Kosinski and Wojno (1995).

If one considers the following scalar hyperbolic quasi-linear equation

w4 glu), =0 {2.1)

with a nonlinear function g¢(u) of a scalar unkown function w(z,2), then a
global weak solution may not exist and not be unique, even for smooth initial
data. Then one can try to find an admissible unique weak solution to Eq (2.1)
as a limit of a sequence of approximate smooth solutions to Eq (2.1) generated
by parabolic regularization. The Cauchy problem for a "diffusion processes”
of the form

wy + glu)y = eD(u),y (2.2)

with a proper function D{w) has for any nonvanishing ¢ a smooth and unique
solution (c¢f Dafermos (1973): DiPerna (1983)). If a solution to Eq (2.1) is
searched as a limit of sequnce of solutions to Eq (2.2), then we say that a
parabolic regularization method has been applied to get the weak solution to
the primitive hyperbolic equation Eq (2.1). Let us note that Eq (2.2) opens
up the possibility of describing the structure of shock waves that is solutions
to Eq (2.1) with strong discontinuity jumps.

If the choice of the function D(u) is based on mathematical arguments
only, then one deals with the method called the artificial viscosity one. On the
other hand if the choice of D(u) results from physical arguments, in particular
due to a proper choice of constitutive equation fully supported by physics, then
we deal with a physical parabolic regularization.

The present paper tackles thermodynamic parabolic regularization of the
hyperbolic heat conduction equations. To this aim one has to point out that
the hyperbolic system of equations is of the secoud order. while its parabolic
regularized form contains terms with the third order derivatives of the unkown
function S.
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2.1. Basic equations

Consider a rigid heat conductor B with the internal structure described
by the influence of spatial gradient of the temperature on the response of a
generic material point X of B. According to the Kosiniski and Wojno (1995)
at any time t of any process restricted by the thermodynamic laws

% + divg = pr
(2.3)
dpn) | . oq _ pr
d[ + leUT Z 1—}

where
~  mass density

P
q heat flux vector
€ specific internal energy per units mass
r  — body heat supply
n specific entropy
v - absolute temperature.
the properties of such a conductor in terms of the free energy o, defined by

P =c—nd, (2.4)
are given by the constitutive relations
Y = (0,8, V) n = -9V, 3, V)

(2.5)
q=q(J,VV,3,V3)

in which g is the internal state variable and, at last. the symbol V denotes
the grad operator.

In what follows we think of V.3 as representing the history of V4. Hence
the internal parameter 2 must satisfy the initial evolution equation problem

B:F(ﬂ>Vﬂaﬂ7vlﬁ)a ﬂ(tO):/Bia (26)

in which ?g denotes an initial instant and f; is a correspondent initial distri-
bution of 3, assumed to be given for each X of B. The dot over the variable
3 denotes its ordinary time derivative. Let us notice that at this stage the
variable f can be either a scalar-valued or a vector-valued quantity.
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To be compliant with the second law of thermodynamics (2.:3),. the above
equations were proved bv Kosidski and Wojno (1995) to satisfv the orthogo-
nality conditions

Ova™ - Oggl =0 Ovav™ - ol =0 . (2.7)

and also to fulfill the dissipation inequality in the {form
— pOvaw - 0 FV B — pdyt F = p(dvpurdg F + —“J) VOO0 (28

o

When the orthogonality conditions (2.7) are satisfied nontrivially they ge-
nerally lead to constrains between /3, ¢ and their derivatives. In the case of
isotropy these constrains are always of a differential type. However. in some
anisotropic cases they can be of a function tvpe or, as it was exemplified by
Kosinski and Wojno (1995) for senii-linear constitutive equations. even do not
yield any relationships between the temperature ¢ and internal payameter J.

It is easy to notice that the conditions (2.7) can be fulfilled triviallv in
four ways, the most interesting of which is obtained when dwy/l = 0 and
dvpF = 0. Under these conditions the constitutive relations (2.5) simplifv to

= 7.4,V 3) = =0y (0. 4.V, F)
(2.9)
q=¢ (0, V9,3V,

and Eq (2.8) becomes

— pOupt - OgF Y ~ pdgu™ F — p( o009 F + ;%) VO >0, (210

while the evolution equation (2.6) admits the simpler form
3= F,0) (2.11)

Thus under the above specified conditions we arrive at the generalized
theory of conductivity in which the free energy function ¢ mayv he uncouven-
tionally enriched by the dependence also on V[, leaving al the same time
the function £ in the evolution equation in the classical form of the ordinary
differential equation, comparatively easy to integrate.

2.2. Regularization properties

Let us think of the conductor as being isotropic and obeving the orthogo-
nality conditions (2.7). Next concentrate attention to the case iu which the
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constitutive equations (2.9) admit the form
&=, 8,1V5) n=—0y0"(J.5,[V3])
(2.12)
q = Cady F(9,8)VY + [¢(9, 8. |VB|) + Cadp F(V, B)|V 3
where the function F' is given by Eq (2.11) and a.( > 0 stand for a dimen-

sional coefficient and a nondimensional parameter, respectively. With this
constitutive equations (2.8) becomes

—pOvpy™(V, 8.1VB|)- O (9, B)V S — pdsy™ (9, B.|VB])F(I,8) +
! [q(z?.ﬁ, (V3[) - Cadg F(Y, 5)]%9 VA + (2.13)

—p[aww*w,,e. IV B)ds (9. 3) + ga(p-ﬂrlamw.qua} VY >0

Although the above equation for heat flux vector does not describe the
most general properties of the isotropic heat conductor its simple form is
just sufficient to show the natural regularization properties of the formulated
theory which can be used to obtain numerical solutions for singularly loaded
heat conductors with semi-empirical temperature (cf Cimmelli et al. (1992}).

For this purpose, let us consider the system (2.3);, (2.11) of the energy
balance and the evolution equations. First, {from the initial two prolongations
of Eq (2.11) we obtain the expressions

)= 1(0,8)(8~ s FB)
(2.14)

Vo = (0, 8)(VS — dsFV )

for the first derivatives of . Next by use of the constitutive equations (2.12)
and Eqs (2.14) we can give to the energy equation (2.3), the form

peud. B, VBT, B)B + p[0pe (9, 6.1961) - e,(0. 8, VBT, 3) X

X0 F(0, B)] 6 + pdvae*(9,8,198))- VB + Calp + q(9, 8.V B )AB +

+ [%q(ﬁ,ﬂ» (Vo)T(¥, B)0sF(0,3) + Ipql(. 3. {wm]w V5 + (2.15)
£09q(0. 5. |VB)T (9, )95 - V5 + dvpq(d. B,V6|) 0 VB - VB = pr

where

r(9,6) = [05F(9.8)]
(9,8, |VB]) := 09¢"(9. 8,V B))
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denotes the specific heat. Eqgs (2.15) and (2.11) make now the system of two
partial differential equations (PDEs) in the dependent variables 9 and .J.

Let us assume that g F(9.3) # 0. If so, the evolution equation (2.11)
can be solved with respect to o). The solution makes it possible to express Eq
(2.15) as the PDE with respect to the parameter 3 only. At last this PDE
can be presented as a first order quasi-linear system of four PDEs in terms of
B.v=73,p=Vp.z= Vo It was shown by Kosiiski and Wojno (1995) that
because of the presence of the term CaAp in Eq (2.15), the system obtained
this way is a parabolic one. Thus for any ¢ > 0 its solution will depend
continuously on the parameter (., we can therefore write

V=92, ) # =0, t:¢) (2.16)

Now let us think of ( as being small and consider the limit case of the
above problem as ¢ — 0. Denoting the limits Eqs (2.16) by

Uo = 9*(x,1:0) fo = B*(x,1;0) (2.17)
from Eqs (2.12) and (2.13) we have the limit constitutive equations

vo = ¥ (Yo, Ho, [V 0l ) o = —0g (Vo 3o, [V 3]) »
(2.18)

0 = ¢(Jo, 3o, [V 5o[) V0 ,
constrained by the inequality
—pOv ™ (Yo, Bo, [Viol) - O F (Do, 30)V B — pdsi™ (Yo, Po. |V Bol|) X
x F'(do, o) — P[avﬁ?/)*(ﬂo,ﬂo» [V ol)0s F(Do, Bo) + (2.19)
+(pdo) ™ (Yo, o, |V ol )V o) Vo > 0

Cimmelli et al. (1992) showed that the above inequality yielded for the
heat flux vector ¢, the equation of the Fourier-type in V[,

go = —a*(Jo, Bo, V5o )V o (2.20)
with the coefficient «o* = —¢(9Jo,fo,|VBo|) defined by the thermodynamic
potential

a* (g, Bo, [V Bol) := pPo| Vo] ™1 89 F (P, J0)01v 51" (Yo, Bo, [VBal)  (2.21)

In Cimmelli et al. (1992) no dependence of ¥ on 3 was present, however. this
does not influence the final result (2.20). It was also shown that Eq (2.18),
and the limit form of the evolution equation (2.11)

Bo = F(¥o,Bo) (2.22)
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must still satisfy the inequality

— (0005 F(90, Bo)) " 03 F (V0. Bo)a* (Yo, Bo, |V Bo| )| V3o|* +

(2.23)
—p0g* (Yo, Bo. |V ol ) F (Do, Bo) >
The limit form of the energy equation (2.15) can be written as
(B0, Bo. |V 8ol )7 (0, B0} + p | D¢” (. Ho. [V 3al) +
= (o o, [V 3o )T7(o. F0) 05 £ (Uo,do)}:‘;o-r
+p0v5¢ (Y0, Bo, |V 0]y Vo + [Daa( Do, Bo, |V Fol) (2.24)

x7*(1o. 80)9p F (Do, o) + Dpal Do, o, [V o]} Vo - Vg +

+09q(Y0, Bo, |V BT (F0, Bo)V Bo - Vo + dvpq(do, Bo. [Vol) @
\)}JVJO . VVﬁO = pr

Similarly to Eq (2.15) this equation can now be expressed as a system of
three PDEs in terms of o, vo = fo, po = V3, which was proved by Kosinski
and Wojno (1995) to be no longer the parabolic but a hyperbolic one, with
the speed of generally nonsymmetric propagation given by the relation

(o, Bo, |V Bo)T*(Po, B0)A? = pdvze*(Vg. Jo. [V Fol) - mA +
+0190( 190 /jo lVL30| UU ,jo)VBO nA — ()\—ﬁa 190./30.|V;‘ju|)‘f-_r (2.25)
Vi nen — o (do, 30, Vi) n-n=0

where n is the unit normal to the wave front.

The above limiting process reveals natural regularization properties of the
theory introduced in Section 1 for isotropic heat conductors. This properties
can be particularly useful for finding numerical singular solutions to the quasi-
linear systems, which come from the thermodynamics of heat conductor with
semi-empirical temperature.

To make this comment reliable let us assume that we must find.numerically
the singular solution to the problem given by the equations (2.3)1, (2.11) and
(2.12); o together with the heat flux vector

Go = —a"(9. B. [V (2.26)
where the coefficient a* is expressed by the thermodynamic potential

a(9, B, VB|) := pd| VBT B F(9, 8)0)w 5107 (9. 3, |V 3]) (2.27)
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which yields the hyperbolic set of PDIs. If according to Eq (2.12)3 we replace
Eq (2.26) by the heat flux vector

g = Cady F(9, )V = [a*(9, 8,1V |) ~ Cadp F(9, B)| V3 , (2.28)

then the resulting problem, which in the light of Eq (2.13) must be constrained

now by the inequality

- [905F(0.5)] " 9P (9. B1a" (9.5, VBNV +
—pOpd™ (V. B, VI F(Y, 3) + (2.29)
+Ca(¥)! [aﬁf‘w,mw _ a,,Fw,,d)w} N> 0.

can be reduced to the parabolic set of PDEs. If only the parameter ( is suffi-
ciently small then its numerical solution smoothly approximates the singular
solution giving thus regularization of the problem under investigation.

It is worth to notice, that owing to the prolongation (2.14), the heat flux
vector can be written in the simpler form

q = (VP — a*(9.8,|VH])V (2.30)

This form reveals that as a matter of fact the heat fux vector (2.26) has been

2l

perturbed by adding to one small ”viscosity” term (aVgj or equivalently the

term CaV 3.
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O paraboliczne] regularyzacji hiperbolicznego przewodnictwa ciepla
w clele sztywnym

Streszczenie

W pracy pokazano, jak paraboliczny model wyzszego rzedu dla przewodnictwa
ciepla, wprowadzajacy gradientowg teorie wewnetrznych zmiennych stanu, moze byé
wykorzystany do naturalne) parabolicznej regularyzac) hiperbolicznego modelu prze-
woduictwa, sformutowanego we wezesniejszych pracach w ramach zmodyfikowanego
prawa Fourlera.
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