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In the paper, the experimental verification of stability of the optimal
compression springs is presented. The optimal cylindrical spring is sim-
ply supported at both ends and the distribution of helix angle (variable
pitch) ensures the maximal critical force. The theoretical results of opti-
mization presented by Kruzelecki (1995), (1996) are compared with the
experimental ones and buckling experiments confirm the theory presen-
ted.
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1. Introductory remarks

In the papers by Kruzelecki (1995), (1996) the problems of optimization
of helical springs under compression against instability are presented. The
first paper deals with variational whereas the latter one with parametrical
optimization of geometry of a simply supported spring loaded by an axial
compressive force. An initial distribution of helix angle and radius of a spring
are sought for which ensure maximal value of the critical force under equality
and inequality constraints. It turned out, that the optimal distribution of a
helix angle as well as a radius of a spring are described by piece-wise constant
functions. The main profit of optimization consists in optimal distribution of
the helix angle ag(£) along the spring axis. The influence of optimal variable
radius Rg(&) on the critical axial force is much lower.

In most structural optimization problems the improvments achieved are on
the level of several per cent. In these springs the results are much better. Ta-
king the critical force as optimality criterion and the volume of spring material
as a basic constraint, typical improvements (increment of the critical force)
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reach over 100%. Moreover, it is possible to obtain qualitatively new results,
especially for springs with small slenderness ratios, for which a classical spring
can buckle. After optimization such a spring does not lose its stability at all.
After obtaining such good theoretical results of optimization, it has been
decided to verify them experimentally. The experimental verification of the
theoretical results of optimization consists here in comparison between the
critical forces for the optimal spring and for the reference spring (with constant
ap), satisfying the imposed constraints, with the corresponding theoretical
solutions. This verification is also treated as a very important argument for
introducing of the optimally designed springs into engineering practice.

2. Geometry of the springs under consideration and their
characteristics

As the reference spring, which is used to compare the geometry and re-
sults with the optimal spring, we assume a spring with the mean radius
Rg = 0.015m, initial pitch hg = 0.014m, initial number of coils ng = 12

and total length Hy = 0.168m. This spring is made of a steel wire, of
the Young modulus £ = 2.06-10° MPa, Poisson ratio v = 0.3, and
admissible stress 73 = 750MPa and subjected to a heat treatment. The
diameter of wire is cross-section d = 0.0015m. It determines the constant
helix angle ap = 0.1475rad and the dimensionless volume of spring material
v = Vi /H3 = 0.000426. The compression rigidity is defined by

- P

Co= 7 (2.1)

where f is the axial reduction of spring length, equal to Co = 153.9N/m.
Optimization of a spring was carried out using the "recipe” presented by
Kruzelecki (1995) and (1996). Tt was decided that we considered a cylindrical
spring (Ro = const) and only a helix angle was subject to optimization. The
equality constraints are connected here with the volume of spring material V,,,
compression rigidity Cjy and slenderness ratio of spring Ho/Ro. The inequa-
lity constraints are geometrical conditions bounding the helix angle ag, namely
0.07417 < ap < 0.28878, and they are the active conditions of optimization
in this case. The lower ag = 0.07417 and upper «p, = 0.28878 bounds,
respectively, are assumed in such a way that the pitch referring to them for
the sectors of spring near to the supports equals a half (hy, = 0.007 m) whe-
reas in the middle sector the pitch (hgy = 0.028 m) equals twice the pitch hg
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of the reference spring. Then, neither the strength condition nor the closing
up condition of neighbouring coils are active. As a result of optimization the
spring of pich hgy = 0.028m (o2 = 0.28878) and four coils (ngz = 4) in
the middle sector of a spring and a pitch hg, = 0.007m (ag = 0.07417)
and eight coils (ng; = 8) in two sectors close to the supports was obtained.
A length of a smoth transitions between sectors with different helix angles ag,
and ag; is negligibly small.

Geometry of these springs was examined. The pitch and radius along
the spring axis, and also the number of coils were measured. Some initial
imperfections of geometry were found.

For the reference spring we obtained ng = 12.5. The diameter of spring
was practically constant, Dy = 2Ro = 0.03m whereas the pitch hy was
variable along the spring axis. A mean value of pitch hy = 0.013728m and
it leads to the mean value of helix angle o« = 0.1446rad and to the total
length Hg = 0.1716 m. The theoretical compression rigidity Co = 147.6N/m
and dimensionless volume v = 0.000416. The distribution of helix angle ag
obtained by measurements of the pitch is shown in Fig.1. Some deviations
from the assumed value of ag can be observed.

0.18
« [rad]
0.17

3060 90 120 150 180
x [mm]

Fig. 1. Measured distribution ol helix angle [or the reference spring

For the optimal spring the total number of cojls connected with the sectors

near supports equals ng, = 9.0 whereas the middle sector, where the helix
angle is larger, has mng, = 4.25. The diameter of the optimal spring is
constant, Dy = 2Ro = 0.03m. A pitch in each sector of a spring varies;

its mean value in the sectors near the supports is hor = 0.007339m, and in
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the middle sector hg; = 0.025141m. The mean values of helix angle in each
sector are: ag; = 0.0777rad and «p; = 0.2607rad, and the total length
Hy = 0.1729m. For such a geometry of spring the theoretical compression

rigidity Co = 139.8N/m and dimensionless volume v = 0.0004326. In
Fig.2 the distribution of helix angle for this spring is presented.
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Fig. 2. Measured distribution of helix angle for the optimal spring

Before the buckling experiments are conducted we should find real experi-
mental copression rigidities for both springs. These tests were done using the
INSTRON testing machine. The whole range of compressive force is 0+ 10N
and the accuracy equals 1%. The force of 10N leads to 40% reduction of
the spring length which is much larger than the value predicted in buckling
experiments. In Fig.3 the curves P = P(f) for both springs are shown.
They are obtained from compression tests. The characteristics are linear in
the whole range of the applied force. For a spring with constant «q it le-
ads to the compression rigidity Cp = 149.1N/m whereas for the optimal
spring Co = 139.3N/m. It should be emphasized that the theoretical and
experimental compression rigidities are practically the same. Because of the
different volumes of spring material V;, and the different Hy for both springs,
the dimensionless compression rigidities

_ Coll§

Co = EV,?L (2-2)

are also a little bit different, namely for the reference spring co = 0.0241 and
for the optimal spring co = 0.0209.
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Fig. 3. Experimental characteristics for the reference and optimal springs,
respectively

The parameters of the tested springs are shown in Table 1.

Table 1. Parameters of the tested springs

Type of Ro Ho | Ro/Ho oo 7o v-108[ Co co

a spring [m] [m] agl | o2 no1 | moz [N/m]
Optimal |0.0015(0.1729| 0.0868 [0.0777|0.2607| 9.0 | 4.25 4.33 139.3 |1 0.0209
Reference | 0.0015 | 0.1716 0.0874 0.1446 12.5 4.16 149.1 [ 0.0241

3. Buckling experiments

ST

Fig. 4. Practical realization of supports in buckling experiments

The buckling experiments were carried out using the INSTRON testing
machine with the assumed range of the compressive force P: 0 = 10N.
Tested springs are assumed to be the simply supported ones. This type of
spring support is realized by taking the beams with semicircular cross-sections
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which transmit compressive forces from the testing machine to the flat ends
of a spring, as it is shown in Fig.4. The loading (compressive force) is realised
by an axial displacement of one end of the spring with the second end fixed.
The compressive force and axial displacement (reduction of the length) are
recorded whereas a lateral dispacement is not recorded in tests. The optimal
spring after buckling fixed in the testing machine is shown in Fig.5.

Fig. 5. Optimal spring after buckling

Buckling of the spring manifests by occuring a corner at the curve
P = P(f). In Fig.6, there are presented the P = P(f) curves obtained
experimentally for the reference and optimal springs, respectively. For the
optimal spring we have obtained the critical force P, = 3.83N, or in the
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dimensionless notation

4

HEP
Per = 47 E“’n = 0.0422 (3.1)

and the axial critical displacement f.,, = 0.0188m. The reference spring
shows weaker resistance to buckling, namely P, = 235N (p. = 0.02765)
and f. = 0.0155m. The postbuckling path remains stable for both springs;
an additional reduction of the spring length required the appropriate a2 com-
pressive force increment.
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Fig. 6. Experimental P = P(f) curves

To conduct experiments of stability of helical springs subject to compres-
sion, and first of all, for visualisation of the optimization effects by direct
comparison between the behaviour of both springs the simple frame was de-
signed (Fig.7). The tested springs (or spring) are placed between the lower
fixed beam and the upper beam movable in the vertical direction only. For a
given constant compression rigidity (both springs have the same Cy) and for
assumed vertical displacement of the upper beam, the forces acting on springs
are known and they-have the same magnitudes. So, this simple equipment
neither needs direct measurement of the force nor a special measurement of
the displacement. It allows for very good estimation of the critical force P,
and the critical reduction f. the spring length. The springs under compres-
sion are shown in Fig.7. The reference spring has been buckled alredy and its
latteral displacements are quite large whereas the optimal spring is still in a
pre-critical state.

10 — Mechanika Teoretyczna
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Fig. 7. Optimal and reference springs under compression

A direct quantitative comparison between the ellects of optimization can
be done if the equality coustraints imposed on the structure are satisfied. In
the case of optimization of the helical springs subject to compression against
instability (cf Kruzelecki, 1995, 1996) these constraints are connected with
the volume of a material spring v, slenderness ratio Ho/Ro and compression
rigidity ¢g. As it is shown in Table 1, these quantities are a little bit different
for both springs. The optimal spring has a larger v and Hy but a smaller
compression rigidity c¢o than the reference spring. Because of that, we have
to recalculate the force p (reduction of length f).

Employing the definitions of dimensionless force p and dimensionless com-
pression rigidity ¢g we can eliminate the volume V,, of spring material. Then,
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we have s
P = 47T(‘0H—0 (32)
and from Eq (3.2) the total differential takes the form
dCo df d]fo
dp=p{l—+ = - — .
p=p( ) (3.3)

For small changes of ¢ and Ho (V;, has been alredy eliminated) we can
estimate their influence on the load p (or on reduction of the length f) of the
spring. When the increments of ¢o and Hg are larger, then the appropriate
formula takes the form
B _ (14 2%) LY AJ/T (3.4)
Co 1+ A]fo/Ho

which for small increments A leads to Eq (3.3).

We obtained the theoretical predictions of the buckling loads for both
the real springs under consideration; namely, for the optimal spring
per = 0.03928 (f, = 0.02605m) whereas for the reference spring
Per = 0.02723 (f,, = 0.01548m).

Taking the reference spring with constant «g as a basic structure, we
can find what change in the force p magnitude causes the increment of
degfco = —0.1328 and the increment of dHo/Ho = 0.0076 when the
spring is subject to the same reduction of length f, (df = 0). In this
case dp/p = —0.1414 what means that the reference spring, which has
the same parameters as the optimal one, loses 14.16% of its critical force
(for the same f). The new recalculated critical force p,, = 0.02337 and
we should compare it with the critical force obtained for the optimal spring
(per = 0.03928). 1t gives the hipher critical force of over 68%.

Similarly, we can find the influence of parameters ¢o and Hy deviation on
the critical reduction of the spring length f... In this case, on the assumption
that dp = 0, we have df/f = 0.1264. It means that for the reference spring
of the same parameters as the optimal one, f.. = 0.01744m whereas for the
optimal spring f.,, = 0.02605m. It gives the improvement of about 50%.

It is also interesting to compare the theoretical results with those obtained
from the experiments. The both types of results are presented in Table 2.

Table 2. Results of calculations and experiments
Type of Per fer /o
a spring theor. | exp. theor. | exp.
Optimal | 0.03928 | 0.0422 | 0.1507 | 0.1666
Reference | 0.02723 | 0.0276 | 0.0902 | 0.0903
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A good agreement between the theoretical and experimental results is ob-
served. For the reference spring the results are practically the same. For the
optimal spring the difference between the critical forces is on the level of a few
per cent only.

4. Conclusions

The theoretical results of optimization of the helical springs presented by
Kruzelecki (1995) and (1996) look very promissing. They are confirmed by
the buckling experiments. This experimental verification gives also an addi-
tional argument for introducing the optimally designed helical springs into
engineering practice.
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Eksperymentalna weryfikacja statecznosci optymalnych éciskanych
sprezyn $rubowych

Streszczenie

W pracy przedstawiono doswiadczalna weryfikacje statecznosci optymalnych
sprezyn srubowych. Optymalna sprezyna podparta jest swobodnie na obu koncach.
Poslada ona taki rozklad kata wzniosu, ktéry zapewnia jej maksymalnasile krytyczna.
Wyniki teoretyczne optymalizacji pokazane w pracach Kruzeleckiego (1995)71 (1996)
poréwnano z eksperymentalnymi. Doswiadczenia potwierdzily uzyskane rezultaty te-
oretyczne.
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