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Almost all new aircraft are equipped with the Inertial Navigation System
(INS). The accuracy in calculations of velocity, position and attitude of
aircraft depends on measurement instruments, initial alignment errors,
and navigation computer errors and can be improved by analysing and
solving of differential equation of error. Solution of the equations al-
lows one to correct output signals from the navigation system. In this
work, three error models for the Strapdown Inertial Navigation System
(SDINS) are derived — one into computed co-ordinate system in matrix
notation and two models in a local-level co-ordinate system, in matrix
and in quaternion notations, respectively. Some simplifications to be in-
troduced into error equations are proposed.
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es] -
lag] -

Notation

vector of gyroscope drift rates expressed in the B-frame
skew-symmetric matrix formed by the components of vector ep
skew-symmetric matrix formed by the components of vector ap
erroneous vector

see Ortyl and Gosiewski (1998) for the remaining part of notation.

Co-ordinate systems
C-frame - computed frame of reference with origin in computed

aircraft position

P-frame - Tanalytic-platform” frame of reference.
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1. Introduction

Testing and verification of SDINS is a very important phase in the inve-
stigation and synthesis of SDINS algorithms. SDINS error dynamics analysis
is the main one. Analysing INS errors brings us to the following obvious qu-
estions:

e How do the errors change in time?

e Can we measure all the error components?

e If we are able to measure only a part of them, can we estimate the rest?

e Is it possible to control the errors?

e How do the errors change during various phases of the INS operation?

To answer these questions, at the first step we derive the error propagation
equations. In this paper the error propagation equations for the SDINS system

are derived in the form of a set of first-order linear non-stationary differential
equations (state-space notation). The standard form of these equations is

z(t) = A(t)z(t) + w(t) (1.1)
where
z(t) - error state vector
A(t) - error state matrix
w(t) - excitation vector.

2. Frames of reference

Inertial frame I, earth-fixed frame FE, and true local-level frame T have
been described in Polish Standards [13] and are summarised in Ortyl (1996).
Others frames of reference, needed to derive appropriate error equations, are
presented below.

2.1. Body-fixed frame of reference B-frame

The frame is defined by sensor axes and rotates with them. We assume
that measurement axes of sensors (three accelerometers and three gyroscopes)
are perpendicular to each other. Furthermore, we assume that the B-frame
coincides with the aircraft-fixed frame Z or we know the transformation
matrix between these frames.
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2.2. ” Analytic-platform” frame of reference P-fraime

A navigational computer computes a transformation function (transfor-
mation matrix, quaternions, Huddle (1983)), which under ideal conditions,
transforms vectors from the B-frame to the 7T-frame. It is due to compu-
tation errors that this function does not transform vectors to the T-frame
but to the P-frame. This P-frame is called the ”analytic-platform” frame of
reference.

computed position

real position

Fig. 1. Localisation and orientation of the frames of reference 7', P, B and C

Relation between the P-frame and the 7T-frame is described by the equ-
ation (cf Benson, 1975; Huddle, 1983)

rp=(1~@))-rr 2.1)
where [®] is the skew-symmetric matrix
0 —¢z d)y
[é] = b2 0 — ¢z
—¢y Pz 0

the variables ¢, ¢, represent the tilt errors of analytic-platform frame of
reference, and ¢, is its azimuth error.

For a small angle ¢, ¢y, ¢, the transformations matrix between 7 and
B frames is described by the relation

DX =(1+ () D& (2.2)
From elements of the transposition matrix B = (D)7 we can calculate

the aircraft attitude angles: pitch, roll, and yaw (see Ortyl and Gosiewski,
1998; [13]).
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2.3. Computed frame of reference C-frame

The computed frame of reference €' is generated by a navigational com-
puter from the measurement data. Computation errors cause that instead of
T-frame computer generates C-frame. The origin of C-frame is attached to
a computed point on the earth surface. All axes are coincident with the true
local-level frame at this point. Numerical calculation errors, measurement er-
rors and other errors cause that C-frame differs in angular orientation from
the true local-level frame T' by three small independent rotations due to errors
in computed geodetic position (Huddle, 1983)

bp = o — pr = —60p (2.3)

is the error in the computed geodetic latitude; it is positive in counterclockwise
revolution about the east axis, and

dA=Ac — Ar (2.4)

is the error in the computed longitude; it is positive in counterclockwise revo-
lution about the Earth’s polar axis. This error can be projected onto the local
north and vertical axes for a given latitude ¢ as follows

60y = dAcos pr 86y = dAsinor (2.5)

For a given wander azimuth o three errors of angular rotation can be
expressed in the true local-level frame (in this work we will assume that the
azimuth equals null)

80, cosa —sina 0 0N d0N
46, = | sina cosa 0 80g for o=0 0p (2.6)
80, |, 0 0 -1 60y ~60y

These three rotations describe completely the difference in the orientation
of computed frame C in relation to the true local-level framme T

re = (I = [88)rr (2.7)

where [§6] is the skew-symmetric matrix defined by the following formula

0 —é6, 46, 0 SAsin pr —bp
[66] = | 44, 0 =86, | = | —dAsingr 0 —dAcos pr
=00, 665 0 dp dAcos pr 0

(2.8)
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Fig. 2. Angular relations between the frames P, T, C (rotation only about z; axis)

and are used to construct the transformation rnatrix D(,: as a function of the
computed latitude and longitude [¢, A]c. The matrix D%((pc, Ac) describes
orientation of the C-frame relative to the F-frame

—singcsinAc cos Ao —cos e sin Ao
[Dg]c = | —sinpccosAc —SinAg —COS@CCos Ac (2.9)
—Cos e 0 sin e

Angular relations between the frames: true 7', computed C, and analytic-
platform P are presented in Fig.2.

3. General SDINS error equations

SDINS error equations can be derived in:
e Computed frame C (Pitman, 1962)
e True frame T (Benson, 1975).

Each approach contains two groups of equation; i.e., position and velocity
error, attitude error.

Taking either approach one can use transformation matrix, quaternion, or
other notation.

Besides these errors, we ought to calculate the gravity acceleration errors
(basing on a spherical or elliptical Earth model and on a gravity vector model)
and sensor (gyroscopes and accelerometers) errors (it is assumed that we know
total for each sensor — sum of bias, scale factor, non-orthogonality, etc.).

All the SDINS navigation equations which are needed to the error model
derivation are presented by Ortyl and Gosiewski (1998).
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3.1. Error model in the computed frame in terms of matrix calculus
3.1.1. FEquation of attitude error

The differential equation which describes a relation between the transfor-
mation matrix and measured angular velocity vector reads (Ortyl, 1996; Ortyl
and Gosiewski, 1998)

. B BOB—~T TI\TRB BnB—T T—IRB
where the following relation has been taken into account (Q;”[)T = —Qg_’[.
To solve Eq (3.1) computer uses the incorrect angular velocities. Instead

of wg“’f the term E)g_” is employed that is the measured angular velocity

vector obtained from the gyroscope outputs

wB T = wB>! 1 ep (3.2)

Wp
The following skew-symmetric matrix corresponds to the measured angular

velocity vector
~B—T

Qp =057 +[en] (33)

In practise, the second matrix of angular velocity in Eq (3.1) is known with
error. The computed erroneous position is used to derive this angular velocity
vector, as well as the the computed matrix of angular velocity vector Qg_’]
rather than the true vector Qg_’]. Using that erroneous matrix results in the
fact that instead the transformation matrix between the B and T-frames, the
one between the B and P-frame is calculated. Let us denote this erroneous

matrix by D%, then
- B ~B—]
D =DEQ,  —¢~'DB (3.4)

The matrix D5 defines the ”analytic-platform” frame. The error matrix is
defined as follows
AD=D2 - DB (3.5)

The matrix D2 in Eq (3.5) can be transformed to the factorized form
D3 = DEDB (3.6)

Assuming that the P and C-frames are rotated about each other through
small angles it is possible to express Dg as follows

DE =1+ (@] (3.7)
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where (W] is the skew-symimetric matrix constructed of the elements of vec-
tor ¥, which expresses small angles of the attitude difference between these
frames

0 _7/& 7/’,1/
Pcel=| %, 0 —9 (3.8)
—7/’1} 7/% 0

After complicated transformations (cf Weinred and Bar-Itzhack, 1978) we can

write )
o= —ec - Q870 (3.9)

or denoting the time derivative of @¢ by (%) when it is assumed that the
C-frame is a non-rotating coordinate system

PO = g W xw (3.10)
For the I-frame from Equation (3.10) we have
—oD —¢ (3.11)

what denotes that the change in time of ¥, observed from the I-frame, is
simply the generalised drift rate of the system gyros projected on the I-frame
axes.

Similarly to Eq (3.10) we have for T-frame

o) 4 T @ = ¢ (3.12)

The above equation describes the attitude error between the computed and
"analytic-platform” frames.

3.1.2. Equation of velocity error

As a matter of fact the equations for the actual velocity are solved in the C-
frame in which the velocity components are also expressed so we should use the
velocity equations (see Ortyl and Gosiewski, 1998) in which the subscripts T
are changed by the subscripts C

ve+ QET + Q8 e — go = ac (3.13)
where
ve - computed velocity with respect to the earth expres-

sed in the C-frame
Qg"l,ﬂg‘” — skew-symmetric matrices.
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Excitation perturbations cause output perturbations so the true velocity
in Eq (3.13) is as follows

ve = ve + dve (3.14)
where
ve — velocity vector with three components indicated by the na-
vigation system
6Ve - velocity error in this approach.

Note that the direction and magnitude of the gravity vector relative to the
C-frame are functions of the computed latitude, longitude, elevation as well
as gravity random errors. This problem will be discussed in the next section.
Here, we assume that the actual gravity is described as follows

9c = 9¢ +49¢ (3.15)

where g is the computed (erroneous) value of the gravity.

The matrices of angular rates Q577 Q%71 are known precisely and the-
refore they are not perturbed in the C-frame. The same notion is true for the
transformation matrices to and from the C-frame.

In Eq (3.13) the excitation function ac is the one available as a value
of ap = Dg(ag + dap) in which measured signals ap are perturbed by
the measurement errors dapg (sum of bias, scale factors, etc.). The perturbed
equation (3.13) is

ve + (e + Q57 Vo — §o = Dh(ap + Sap) (3.16)

If the P-frame is rotated with respect to the C-frame through vector ¥, then
the specific force vector and its error expressed in the P-frame are described
by the following relations

DgaB = Dgac =ac — [¥ac
(3.17)

DB6ag = DS dac = dac — [¥éac ~ dac
Substituting Egs (3.14), (3.15), and (3.17) into (3.16), upon subtraction of
Eq (3.13) from the obtained result and omission of higher order terms, the

following equation of velocity error is obtained

fve + Q&7+ Q2w — 89 = —[Wlac + Sac (3.18)
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8.1.8.  Equation of position error

The exact position (in Cartesian coordinates) is given (for zero initial con-
ditions) by

t
TEp = /ngc dr (3.19)
0

A navigation system wv¢ replaces uses v¢ with to generate 7, while by
definition of the C-frame the matrix Dg 1s known without error, thus

t
R = / DS dr (3.20)
0

where Tp =1 + 67%.
Subtracting Eq (3.19) from the above equation we obtain the equation of
position error

t
Srg = /Dgavc dr (3.21)
0

or

¢
5rp = DEgry — DE /Dgavc dr (3.22)
’

Differentiation of Eq (3.22) yields

5t = -2 Forr + duc (3.23)

3.2. Error model in the T-frame in terms of matrix calculus

In this approach, the frame in which the navigation equations are to be
solved is the 7T-frame and the transformation matrix is used to determine
attitude.

3.2.1. Equation of attitude error

The navigation system assumes that the ”analytic-platform” axes are co-
incident with the T-frame. However, the computed angular velocity D%”[,
required for attitude computations, is available only with error wl >/ 45wl
The measured angular velocity does not equal the true angular velocity but is

perturbed by the gyro error — the so-called drift rate ep = D,BJEB.
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Taking above into account the angular velocity of P-frame rotating with
relative to the I-frame is described in the following form

P—)I T—T

wh "+ 6wk’ 4+ DBep (3.24)

Substituting Eq (2.1) into Eq (3.24) and neglecting higher order terms the
following relation is obtained

wh?T = Blwh™" + swh™>! + DBep (3.25)

The angular velocity wb™7 is the angular velocity of the P-frame relative to
the T-frame and for small angles it can be expressed as @, thus

wh?T =& = -082'® + swh?' + DBep (3.26)

3.2.2.  Egquation of velocity error

The exact velocity equation is as follows
or + Q77+ Q7 vr — gr = ar (3.27)

Due to errors in the navigation system the following variables appear in
the above equation

~T—1

¥ = vr + dur 0, =07 el (3.28)
gr = gr + 0897 ﬁTE” = QT it )

Instead of ar the true excitation is calculated from the relation
Dg(alg + dap), where the noisy acceleration ep + dap is measured using
accelerometers. Thus, the navigation system solves the following velocity equ-

10n
atio ~T—T ~FE—T

v+ (Qr —I—QT Yo — §r = DB(ap + dap) (3.29)

Substituting (3.28) and (2.2) into (3.29) and subtracting Eq (3.27) we obtain
the following equation of velocity error

Sop = —(QE T+ QL7 our — (6QET 1 6Q5 o + 697 — [Blar +dar (3.30)

3.2.8.  Equation of position error

The exact position (in Cartesian co-ordinates) is given (for zero initial
conditions) by

TR = /DTEvT dr (3.31)
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however, the navigation system generates
t
~ =T _
TE = /DE'UT dr (3.32)
0

~T -
where D = DL(1 4 [06)]), Fp = 1 + 0rp.
The difference between Eqgs (3.32) and (3.31) yields

t
o / DT (dur + 66lvr + [36)6vr ) dr (3.33)
0 ~0

or after transformation to the 7'-frame
¢
577 = DE / DT, (vr + [56lor) dr (3.34)
0

Differentiation of Eq (3.34) yields
§rr = QL2 F6rp + dur + [§0)vr (3.35)
The relations between the variables in both approaches are as follows

Sur = —[80)ve + dvg dgr = —[00]9¢c + dg9¢
(3.36)

SQET = 500577

Eq (3.36); expresses the relation between the velocity errors in 7 and
C-frames (Hutchinson and Nash, 1971). The term dvr is the true velocity
error along the true axes (locally-level in relative to Earth). One should note
that for low-speed vehicles the term [66]vc is negligible.

3.3. Error model in the T-frame in terms of quaternions calculus

In this approach, the frame in which the navigation equations are to be
solved is the T-frame and the quaternion calculus are used to determine the
attitude.
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3.8.1. Equation of position error

In this case the position error equation is derived in spherical coordinates.
To this end variation of the relation describing these coordinates is calculated
(Ortyl and Gosiewski, 1998)

yorven S R I
M+ N

o
G _ ! _ _ sec
ro = /.\ —KUT_ 0 mﬁﬁ 0 Vg
h 0 o 1L
Q go1| (6r)7 Q _
506 = [FE,F%) { o FO =K (3.37)

peRuM
9 Rij-{- 0 RME-‘F
0

where the calculation error of the curvature radius of Earth’s main cross-
sections is taken into account

OR M ORN

Ry = W = 3e%asinpcos By, = W = ae’singpcosyp

(3.38)

3.3.2.  Equation of attitude error

Substitution of indicated variables for the ideal ones into the proper diffe-
rential equations and next subtraction of the same equations with ideal varia-
bles leads to the error equations. Taking into account the errors the attitude
equation has the form

A7+ 67 = ME™ +en)(A +649) — MW"+ 60f ) (4R + 5AT)
(3.39)
where 6ATB is quaternion error of the transformation from the B-frame to
the T-frame. Taking into account definition of the P-frame it can be inter-
preted as an attitude quaternion of the P-frame in relation to the T-frame:
§AR = AL
Subtracting the ideal form (without errors) of Eq (3.38)y from the expan-
ded equation (3.40) and neglecting higher order terms we obtain the error
equation as follows (Ortyl and Gosiewski, 1998)

1
5AL = —M( B"’)M?——Q-M( T_’I)(MT+ Q(AT)EB——R(AT)é T=T (3.40)
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where R(A) is the matrix formed by the components of the quaternion Ag

—AL A =X
_ Ao Az~

R(A4) = s M A (3.41)
e =A1 X

Q(A) is the matrix formed by the components of the quaternion AZ

—A1 =Xy =3
B Ao =3 A

Q(4) = N A A (3.42)
X2 AL X

£Ep = [EI,Ey,Ez]g is the resultant drift of gyroscopes in the B-frame, and

6w%‘” = [bwn,dwE, 6wv]; represents the error vector of the calculated angu-
lar velocity of the T-frame relative to the /-frame expressed in the T-frame.

3.3.3.  Equation of velocity error

Substitution of indicated variables for the ideal ones into the proper dif-
ferential equations and next the subtraction of the same equations with ideal
variables leads to the error equation. Taking into account the errors the velo-
city equation has the form

Sir = —(QF + Q7 ovr — (00777 + 8077 r + 6gr + (3.43)
3.43

+ D(A+64)(ap + dap) — D(A)agp

where for simplicity we have written A = AZ.
Assuming considerably small errors and neglecting higher order terms Eq
(3.43) can be rewritten as follows (Friedland, 1978)

sor = —(QF7T + QL2 Ndur — (60T + 5077 ur + 697 + (3.44)
.44

+ [(6D/04)64)ap + D(A)dap

The component [(BD/BA)éA] ap = F(A,ap)dA, where the matrix F' is
defined as follows

7 — Mechanika Teoretyczna
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F'(4,ap) =

(3.45)
Aoy — )\3ay + Asa, Asagy + )\an — e, —Xgag + )\L(Ly + Apay
Atz + Aoay + Aza;  Aaag — Alay — Aoa,  Azag + Agay — Aja,
—Xsa; + )\lay + Aga, Alag + )\Q(Ly + Aza, —Xpag + )\3ay — Apa,
—~ A3l — )\an + A1a, Agdg — )\3ay + Xa, Ajagp+ )\Q(Ly + Aza,

Multiplying F' by D(A) we have

F'(4,a5)D(A) = 2P(A)A(ap) (3.46)
where
~Qr —Qy —q
_ a}
A(ap) = 0 —-a;, ay | =] -..
ay 0 -—a (aB]
—ay Gy 0
(3.47)
-—)\0 _)‘L —-)\Q —)\3

S VD Y I VI W
—)\2 )\3 )\0 _)\l
R R U RD YR

P(4) = = [~A,Q(4)]

Multiplying both sides of Eq (3.46) by D' and next transposing the result
we obtain

F(4,a5) = F5 = 2D(A)AT (ap)P " (A) (3.48)

Using the elements of introduced matrices we rewrite Eq (3.45) as follows
§or = —(QE7T 4+ QI Doy — (0QE7T 4 6QL Yy + dgr + |
(3.49

+ 2D(A)AT(ap)P'(A)dA + D(A)dag

4. Nominal gravity errors

In Eqs (3.18), (3.33) and (3.49) there are the terms of gravity errors dgc,
dgr. In each case those errors are sums of the two components: computation
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error of nominal gravity value AG (because of limited knowledge of the vehicle
present position) and a gravity anomaly Ag, which is difference between the
true value of gravity and the reference value based on some model of the Earth.

4.1. Gravity anomalies

The gravity anomaly vector is the portion of the gravitational force which
is not accounted by the formula used to calculate the gravity. In the 7T-frame,
the gravity anomaly vector may be expressed as (cf Nash et al., 1971; Jordan,
1973; Benson, 1975; Mandour and El-Dakiky, 1988)

Agr = |gr€, grn, —Ag]" (4.1)
where

&,m - north and east components of the vertical deflection; random
processes statistically nonisotropic

Ag - gravity anomaly defined as a difference between the magnitude
of the true gravity vector and the magnitude of the reference
gravity vector in the direction normal to Earth surface

gr - gravity acceleration (Ortyl and Gosiewski, 1998).

4.2. Computation errors of the nominal gravity value

Because of limited knowledge of the vehicle present position (navigation
computer errors) the computed value of nominal gravity is known with an
error. We assume that for C-frame this error is expressed as follows

AGe =gr —9c (4.2)
The nominal gravity vector in the C-frame is expressed by
9c = DCgr = 97 — [66l97 (4.3)

Latitude and longitude errors can be expressed by the position errors with
using the following relations

dz = (R+ h)dp dy = 6A(R + h) cos o1 (4.4)
Upon substitution of Eq (4.4) into Eq (2.8) and next to Eq (4.3) we have

dzg/(R + h)
gc = | dyg/(R+h) (4.5)
g
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The computed gravity vector in the 7T-frame can be expressed as follows
(Ortyl and Gosiewski, 1998)

0 0
gr = 0 = 0 (4.6)
goR*/(R+ he)? 9 —29Sh/(R + hc)
Substitution of Eqs (4.5) and (4.6) into Eq (4.2) yields
géz /(R + h)
AGe = | —goy/(R+h) (4.7)

—2g8h/(R + h)
Using Eq (4.1) and §h = —d2z we have

—g/(R+h) 0 0 oz &g
69c = 0 —g/(R+h) 0 oy | + | mg
0 0 2g/(R+h) 0z c —Ag
' \_V_/
(9] Age
(4.8)

For the T-frame the following relation is true
AGr =gr —gr (4.9)
Using Eq (4.6) in Eq (4.9) we obtain

0
AGr = 0 (4.10)
—2g0h/(R + h)

Using Eqgs (4.10) and (4.1) we have

£g
ogr = ng (4.11)
—Ag —2g0h/(R+ h)

where R - mean earth’s radius.

5. Detailed error equations

5.1. Computed frame

The detailed error equations can be derived using the appropriate expan-
sion of Egs (3.10), (3.18) and (3.23) combined with proper relations.
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In the C-frame we have assumed that the appropriate angular velocities
are known without errors

- 0 PV  —PE
Q7= -py 0 pn (5.1)
pe —pn 0

where
v =Aeosp = =" pp ==~
- " Ry+h Y " Ryl
N MTE (59
c VE
_— R u—
ov Asin @ Biv i an ¢
and
0 f2v + pv —pPE
—Qg_)l = | —(2v + pv) 0 QN + pN (5.3)
PE ~(£2n + pN) 0
where
Qn = 2cosy 2y = —sing (5.4)
and (2 =7.292116 - 1075 is earth angular speed
0 28y + pv —PE
H=-052"-QE>" = | —(20v + pv) 0 208 +pn | (5.5)
PE —(2025 + pN) 0

The specific force matrix expressed in the C-frame may be written in the
form

ac ~ap = DgaB

(5.6)
0 —a, ay
[a]c ~ [DBap]| a, 0 —ag
—ay Oy 0 c
The final form of error equations in this approach is as follows
—Q&7F 10 0 0
. [0g) H Iq] 0 DB 031
[“;”J: 60 o0 -5 -pB o [”;f‘ + | Age
¢ 0 0 0 0 0 ¢ Ogx1
0 0 0 0 0

15x15
(5.7)
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ag | .p| £ [8 |
4 pp %D}
\;T_J SO ‘,,,7,
‘ac \‘Ep
o Tl o]
{ [Y’”‘T 5 e L2571 |
|Sag —r L ‘ ﬂ-\_‘__—;——rﬁ‘
o see + L. v [T Sve + . Sk [ 1 |6,
| Dp D5 5 CIEewm 1 e,
L | ;,f jiﬂ.i ‘Ti .
g, t I :
— = i
#r——t",-;") ’?26*14_ E-I HJ L €k Hir_(:s
[ N > C C { ( C | ]
\Ag, [ — = — ‘

| Anomaly gravity | |

S, |
S, F———J¥/~—— -
| error model [ ]

Fig. 3. SDINS error model in the C-frame

where Ty = [(5I75y,(52, 5U1V75UEa5UVaquwy7wZ]T) Z, = [Eg7da£]T7
dap = [V, Vy,V,]T - resultant accelerometer errors expressed in the B-

frame, ep = [eg, Ey, ez]T - resultant gyro drift rates expressed in the B-frame.

5.2. True frame in terms of matrix calculus

In this case Eqgs (3.26), (3.30), and (3.35) are used. Computation errors of
angular velocities can be found by means of perturbation of the appropriate
angular velocities equations

5w¥—»1 — Wév v = [6p, 0k, bun, &)E]T (5.8)
oz
§p = T+ dh = -4z (6.9)
_PNBNy pN 1
“ Wt h ~Rn+h 0 Ry +h
~ | _reBm __pE _ __1 :
Wl SRR rgEr om0 |60
v tan an
Wi B 0 “Rn+h
swf ! = [Qydp, 0, ~Qwbp]" (5:11)

where
pNRN, tanp

Wi = — 02y — pnsec? @ +
31 N — pNSEC @ Ry +h
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Others expansion relations are as follows

0 ~a; Gy
alr = [Dfapl=| e, 0 —a, (5.12)
—ay Qg 0
3—,‘6% 0 —PE
Fii= —-pv %]Z:Pv - %PN PN (5.13)
0 0 0
—(202n + pn sec? p)up+ R ]
[ _ R +PE7)VRM 0 TANPY T R+ R
PNPV N RM A
FS = | (202n + pw sec? p)uny + 202y o+ von — proy [914)
R Ry +h
+(pvon — pNUv)EN—Nﬁ N
| —22vvp + ppRuy + pi BNy 0 pY + Pk ]
_ Qg 1 _
Far = Fgldlag{RM n h’O’ 1} (5.15)
—%PE 2(82v + pv) —pE
Foo = | —=(20v +pv) 3opn — ghpv 205 +pn (5.16)
2pE —2(02n + pnN) 0
Fa1 = [_I—Wn-osxl _WiQ} (5.17)
Ry +h ' ’
Fao = Wiz, Wia, 031 (5.18)
0 pv + 2y —PE
Fas = | —(pv + f2v) 0 2N + pN (5.19)
PE —(2n8 + pn) 0
Finally, the error equations are as follows
Fio | 0 0 o0
i Fou Fy, [DPag] 0 D} z 031
[ i'ﬂ } =|Fy Fyp Fy D 0 [ .'L'fQ + | Agr | (5.20)
a 0 0 0 0 o @ 0ot
0 0 0 0 0

15x15

where zgy = [0z,dy,0z,6un, dvE, dvy, dq, (;Sy,qbz]T.
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Fig. 4. SDINS error model in T-frame in terms of matrix calculus

5.3. Error model in the 7-frame in terms of quaternion calculus

Expanding Eq (3.40) by the use of Eqs (3.41), (3.42), (5.10), equation
(3.49) and taking into account Eqs (3.37)234 we obtain

1 1
Fil = =5 RAWa, 041, RAW o] Fi = 5 (M@B™) - Mwi ™)
(5.91)

1
F$ = —5RAWis, RAWii, 0] F =Fa
Finally, the error equations are as follows

F1Q1 F% O3x4 0O3x3 0343

} 0
{ Zf3 } _| R OFE FR 103x3 D(A) [ Zps | 43;;
Zq FS, FR FS 3Q4) Oy T, 0ions
Osx3 Ogx3 Osxa Osxz  Opxs
(5.22)

where Z;3 = [0, 8,6k, 6un, Svg, dvy, A0, 8A1, A9, 0A3] 7. The SDINS error
model in terms of quaternion calculus is presented in Fig.3.

6. Simplifications of errors equations

Simplifications aim at lowering the requirements imposed on the computer
memory and a duty-cycle. Simplifications generally fall into the following two
categories (Huddle, 1983).
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Fig. 5. SDINS error model in the T-frame in terms of quaternion calculus

The first category deals with the question of how many of the instrument-
error states need to be included as the states in the Kalman filter. The decision
which of these states are incorporated in the Kalman filter design model is
made after several design iterations in which the performance with and without
various states present in the design model is evaluated and "filter tuning” to
accommodate absence of the states in the design model is performed. Such
a design process is usually rather lengthy and requires highly sophisticated
simulation software.

The second category of simplifications addresses the error dynamics of the

navigation system errors. The two types of simplification are of interest:
e Reduction of the modelled error states as previously mentioned

e Reduction of the dynamic coupling between the error states that reta-
ined.

The simplifications that have proved especially useful in operational filter
design are the following:

e Altitude influence for the Schuler frequency elimination
e Vertical axis model elimination

e Level-axes Coriolis acceleration elimination (in a function of the vertical
axis variables)

e Using spherical Earth’s model — mean Earth’s radius instead of radiuses
of Earth’s main cross-sections.
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6.1. Computed frarmne model

One of the first simplifications is the assumption that the aircraft is moving
near the earth surface h < R, so instead of relation g/(R + h) we can use
g/R. This relation describes the so-called Schuler frequency

g g 6371000m
vo=1/2 o T=02m /T ~or, [P0 s06as 6.1
R R 9.81m/s’ (6.1)

the SDINS error model in the C-frame is presented in Fig.1.

6.2. True frame model in terms of matrix calculus
6.2.1.  Elimination of vertical azis

From Eq (5.20) and other error-model equations that describe the error
propagation for the vertical axis of the T-frame using a spherical earth model
we have

0z = dvy
(6.2)
. 20vpsing U,ZV + v%; 2UN 2un
Joy = ————Lfp — N ——E 5y - —— - = -2 v
WETRTE TR T RELOY [R+h cos @) dur +
aC,
t o h6z+ay¢z—+—az¢y D85al,

where 6C, is the vertical component error of the computed Coriolis accelera-
tion.

Example 1. Consider the influence of the normal gravity on the computed
altitude error. In this case the aircraft does not change its position (vy =
vg = 0,a; = ay = 0), so Eqgs (6.2) are as follows

dz = dvy (62)

.2

The solution of Egs (6.3) has the following form (cf Andreev, 1966)

52(t) = —% + (62" + 2V—) cosh(v2v,t) + —=L sinh(v/2ust)  (6.4)

f 2
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Fig.6 presents the chart of error function for the following initial condi-

tions
v =/9/R g =9.81 m/s> R = 6371000 m
§2°=3m 5v), =1m/s . =107% m/s*
5000 T ! T T T
E o oy
S 4000f—fet b g L}
LT
] ]
3000F————————————— —
2000 - , %r—m —
— L //
1000} 1 |~
— = ,,HTNWL N
0 400 800 1200 s 1600
! |s

Fig. 6. Computed altitude error caused by accelerometer error and normal gravity

Rapid increase in the altitude error during the system work-time is seen
both from Eq (6.4) and in Fig.6. Taking into account the other error com-
ponents, we can expect much quicker error change. Therefore in the inertial
navigation system the external source of altitude (e.g. — barometric altimeter)
is used as the reference. Further, since there is a weak cross-coupling between
the vertical and level axes, we can omit the vertical axis error states in the mo-
del to obtain a fair estimation of the level-axis error states. This is explained

in the following sample case.

Example 2. For the following very large values

R = 6371000 m S2ppr = 10 m vy = 300 m/s
vy =30 m dz =10 NM = 18520 m dy =z
h=0 dun = dvp =3 m/s

the following time derivative of the position error is obtained

. 4 UN —(_ 1n—4
0t = o h6m+R+h6z+6UN (—0.0872076+44.7088-10"" +3) m/s
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From the above relation it can be proved that the influence of the position
error 0z, when compared to that of the velocity error duvy, is negligible.
Also, if the vertical velocity was very large (note, that in most aircraft
applications the vertical velocity equals almost zero, except for a small
percentage of the flight time) and position error was also very large
then the Coriolis components of the acceleration error are rather small.
The situation in the second local-level axis is the same. With regard to
above we can come to the conclusion that the vertical axis model can be
eliminated (in the part computing the position).

6.2.2. Elimination of level axis Coriolis acceleration

The Coriolis acceleration component errors in the computed level axes are
as follows

2
UNVYy — VR tan g vy UN
C ] ] —4
0Ca(vv, bvy, 02) (R+ h)? bzt oot o
(6.5)
20vy sing ve(vy + vy tanp)
0C, (vy,dvy,b2) = ———— b2+ — ———40
ylvv,ovy, 02) R+h 0t (R + h)? ‘
vy vE ’
+m5UE + <R+ 5 + 2(2 cos ap)éu.v
The following example will be solved to illustrate the above.
Example 3. For the data
R =6371000 m 02per = 10 m vy = vg = 300 m/s
vy =30 m/s bz = dy = 10 NM = 18520 m @ = 45°
h=0 dvy = dvp = 3m/s dvy =1m/s

the following result can be obtained
0C, =~ 6 ug 0Cy = 1.5 pug

These values, in comparison with the gravity-model uncertainty
40 =+ 50 pg, are negligible.

This type of analysis can be extended to cover the Coriolis error compo-
nents in local-level axes. For example, the component 2f2cospvpdz/(R + h)
for the previous data have the magnitude about 9 ug, which is much smaller
than the gravity-model uncertainty.
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7. Conclusions

To the best of authors’ knowledge in the Jiterature there are neither full,
detailed, ready to use, SDINS error models and the analysis of their simplifi-
cations available. In the paper there have been developed some SDINS error
models for two local-level frames with two notations and examples of simpli-
fications. These error models can be used for the following purposes.

e Error estimation and SDINS output correction.

e Synthesis of the integrated navigation system, which consists of the
SDINS and other non-autonomous navigation information source.

e Synthesis of SDINS self-alignment model.

e Evaluation of the influence of the full accelerometer and gyro error mo-
dels on the SDINS performance. It leads us to the requiremnents which
gyro and accelerometer should satisfy.

e Evaluation of the influence of the gravity, its anomaly, and Earth’s shape
model on the SDINS performance.

This work was done under Grant 9T12C03010 of the State Committee for Scien-
tific Research (KBN).
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Polska Norma PN-83/1-01010.01. Mechanika lotu samolotéw i $miglowcéw.
Terminologia

Inercjalny bezkardanowy system nawigacji. Czes¢ 2 — réwnania bledéw

Streszczenie

Wiekszoé¢ wspdlczesnych statkdw powietrznych wyposazona jest w Inercjalne
Systemy Nawigacji (ISN). Dokladnoéé wyznaczenia predkosci, pozycji oraz orienta-
¢ji przestrzennej zalezy od bleddw elementéw pomiarowych (giroskopéw, przyspie-
szeniomierzy), bledéw wstepnej orientacji oraz bledéw obliczen realizowanych przez
komputer nawigacyjny. Dokladnoéé te mozna poprawié¢ przez analize i rozwigzanie
roézniczkowych réwnan bledow. W artykule zostaly wyprowadzone trzy modele réw-
naf bledéw dla Inercjalnego Bezkardanowego Systemu Nawigacji (IBSN). Pierwszy
model wyprowadzony zostal w wyliczonym ukladzie wspélrzednych z wykorzystaniem
macierzy cosinuséw kierunkowych. Dwa pozostale wyprowadzono w normalnym ukla-
dzie wspolrzednych z wykorzystaniem odpowiednio: macierzy cosinuséw kierunkowych
i kwaternionéw. Pokazano mozliwo$ci uproszczen rownan bleddw.
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