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A contact problem with frictional heating for a body with the functio-
nally graded materials (FGMs) is considered. The FGM body slides
on the surface of rigid half-space. The problem is reduced to one inte-
gral equation in pressure. The approximate solution was derived basing
on the representation of deformed solid surface by a polinomial surface.
The influence of the parameters which characterise nonhomogeneity of
a medium on a contact region size Is investigated.
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1. Introduction

Static contact problems for a half-space with frictional heating due to
sliding were considered by Barber (1976) and by Yevtushenko and Kulchytsky-
Zhyhailo (1995) and (1996). Thermoelastic deformation in the contact region
leads to interesting physical effects. So, unlike the isothermal case in the
absence of frictional heating (the Hertz contact problem), there is assumed
that at a fixed sliding speed with the increasing total load there exists the
critical value of the contact circle radius. Definitions of the critical values of the
contact area size in thermoelasticity contact problems are of great importance
because they enable practical sugestions about behaviour of the tribosystem
in the friction process (e.g. the thermoelastic instability) to be drawn.

In all the above-mentioned papers it was assumed that the sliders material
properties were thermally isotropic and homogeneous. In this paper, using the
method put forward by Yevtushenko and Kulchytsky-Zhyhailo (1996), we find
the approximate solution of the thermoelastic contact problem with frictional
heating in the contact zone for the body with the functionally graded materials
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(FGMs). The fracture problems for the FGMs under force loading were studied
by Ozturk and Erdogan (1993), by Chen and Erdogan (1996) and by Olesiak
and Yevtushenko (1989) and under thermal loading by Noda and Jin (1993),
by Jin and Noda (1994) and by Erdogan and Wu (1996).

2. Formulation of the problem

The elastic body and a rigid half-space under the action of the force P
so that a circle with the radius a is a contact region. The radius is small in
comparison with the curvature radiuses of the body. In addition, the body
slides at a constant speed v on the surface of the half-space. Owing to
the friction in the contact region thermal energy is generated. The steady
heat flow at the interface due to friction induces temperature gradients and
thermal stresses and cause the contact pressure distribution and the extent of
the contact region changes.

We introduce the dimensionless cylindrical coordinate axes 7, ¢, 2; the
z-axis coincides with the normal directed positively into the body and is fixed
rigidly to the moving body. In this coordinate system the contact region
0<7r <1, 2z=01s motionless.

The following assumptions were made:

o The elastic displacements normal to the body surface due to the tan-
gential trastions, are much smaller than those produced by the normal
tractions. Hence, the coupling effect between tangent and normal trac-
tions is negligible and friction influence on the contact area and pressure
only through thermal effects.

o The heat generated over the contact area is absorbed by one moving
body, and there is no heat transfer across free surfaces of the bodies.
The heat input ¢ to the moving body is equal to the rate of {rictional
heating throughout the contact area, i.e.

q= fop (2.1)
where [ is the coefficient of friction, p is the contact pressure.

e The body material is the functionally graded material (FGM) one. The
material reveals the following non-homogeneous properties
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E = Fge?* a = age’?
(2.2)

K = Kge"* v = const

where f§ = fga, 6 = dpa, v = yoa, F is the Young modulus, nu is the
Poisson ratio, « and I are the coefficients of linear thermal expansion
and heat conductivity, respectively, Fq, ag, Ko, Bo, ,5680, 7o, are the
madterial constants.

e The profile of the bodie surface in the region close to the origin is ap-

proximately of the form
ar?

h(r) = 2R (2.3)

where R is the radius of the surface curvature at the origin.

Accepting these assumptions, the problem is axi-symmetrical and can be
reduced to the solution of the following equations of thermoelasticity for the
half-space z >0

1-2v 0%u 1 d*w  (L—=20)3/0u  Ow
‘ (3 *+ 57)

D12L+2 E E

(1~u2)a7+ 1—vdrdz  2(1—v?)
_1+l/ 0_T52
R

(2.4)
0w 1-2v 1 0 ow v
D ———D B—— Du =
0z2 + 2(1 —v?) ow+ 1—-vdz vt dz + 1—1/ﬁ “
1w 0T
= T ae {E + (8 + 6)T]
and the heat conduction equation
o*r aT
DoT A =0 2.5
ol + 5.2 + /82 (2.5)
under the following boundary conditions imposed on the surface z =0
— mechanical
_ ) —plr) < _
022_{0 r s g, =0 7> 0
(2.6)
(LT2
w=A—-— r<1
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— thermal
. oT oT
AO(?— = — fvap(r) r<1 7 0 r>1
‘ g (2.7)
u,w,t— 0 as 2422 — 0o
where 5 52 9
1 ( 1 1
D=—+= Di= ——+-——~-— 1=0,1
or * 7 dr?2  rdr 12
U, w — 7 and z components of the displacement vector, respectively
T — temperature
0:,,0,, — stress components
A — displacement of the elastic body as a rigid solid.

The contact pressure must satisfy the equilibrium condition

1
ora? /'r'p(r) dr =P (2.8)

0

3. Method of solution

The considered problem was solved using the Hankel integral transform of
zero and first orders defined as follows (see Sneddon, 1951)

FO= [ yfly)i(Cy) dy i=0,1

0\8

Fir) = / CTFA(C)Ji(Cr) de i=0,1
0

The solution of Eq (2.5) under the boundary conditions (2.7) has the form

o0

S | 2 Jo(r)e= VT g
N T

The thermoelastic contact problem can be handed by applying a superpo-
sition of the two solutions:

T(r,2)= e

1
/ () Jo(yO) dy  (3.2)
0 0
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1. For a thermal stresses and deformations induced in the body by a given
heat flow (2.1)

2. For the isothermal problem of the body and a rigid half-space contact.
In result the normal displacement of the bodie surface can be find as a sum
w(r) = wy(r) + wy(r) (3.3)

where w,(7) is the displacement due to distributed contact pressure p(r) and
wy(r) — due to distributed heat flow ¢(7).

Using standart transformations which we omit for the sale of simplicity
integral representations of the vertical displacements w,(7) and w¢(r) are as

follows
oo 1
2(1 — v? ' .
wy(r) = 2 O/cwp(<>Jo<r<> dco/yp(y)Jo(yg) dy
(3.4)
00 1
_ —ao(l+w)afv [20W,(¢)Jo(Cr) dC [
wr) = SR [ | wtoniotudy o
where
_ 1 “1p, [ (M2 + B)(mf — ¢* — k?3?)
Wil Q) = gy )] m S22 —
1 e o ((ma D(mE— 2 27| A,
Wi(() = 1_'/{ y) [Im(mq)] llm[ ml(nlzf—(Q) } _ 7}
A= (1= ()21 21B(12 - (%) + B2U% + K2C?) R =
Ay = (L+28)(12 — C?) + 1° 1:5_”"“"’;*4(2

my, my (Re(m;) < 0, ¢+ = 1,2) are the roots the following characteristic
equation
(m? — (2 4+ 2mB(m? — (3 + B2(m? + k(%) =0

and have the form

my = 2 [84 /B + 4@+ 1181s0)

m2l = —% [ﬁ + \/ﬁ2 +4(¢? - i(ﬁlﬂc)}
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It can be shown straightforward that these functions have the following
properties:

1. For B > 0 there exists a finite limit W,(¢ — 0), Wy(¢ — 0)

2. For 3 <0 W,(() behaves as (~?. Since in this case the integral in Eq
(3.4); is equal to infinity that’s why in the following we’ll suppose that
520

3. For ( — oo W,(() — 1/¢, Wi(() — 1/¢.
Let is examine particular cases:

e 3—0

The coefficients m; and m,, Eqgs (3.5), at 3 — 0 can be written down
in the following asymptotical form

;3 (
mI:—{—§(1+iﬁ) mQZ—C—g(l—im)
and, hence
Ay =117 = ) A= (7= (%) Im(m;) = #§
(my+ B)(m? — (2 — k23%)) KB
m| mi(mi = ¢?) = C(L + K2)
(mg — 1)(m? - * — k23?) kB[2C + (1 — r?)]
Im[ 2 -2 J == 9,72 .
ma(mi — ¢?) 202(1 + K2)
Finally )
. 1 _ ' 0
Wp(¢) = c Wi(() = i< (3.6)

In addition, when v = 0, 6 = 0 then [ = —( and from Eqs (3.6) it
results for the surface vertical displacement in homogeneous half-space
(cf Yevtushenko and Kulchytsky-Zhyhailo, 1996a)

W,(0) = Wi(¢) = 7

e v=0,6=0
In this case [ = —(, 4, = —(B?, A = 2C?/(1 — v) and in result
Wi(¢) = 1/¢.
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Substituting Eqs (3.3) and (3.4) into the boundary condition (2.6) we

obtain the following integral equation
2
o (3.7)

wp(r) + wy(r) = A - oR

4, Numerical solution and analysis

we use the technique proposed

To find an approximate solution Eq (3.7
by Yevtushenko and Kulchytsky-Zhyhailo (1996b). We represent the contact

pressure in the form
p(r) = pold + 1.25(3 - 2d)r?]V/1 — 12 0<r<i1
(4.1)
- P
Po= oz
. We note that the contact

where d = p(0)/po is an unknown parameter.
pressure (4.1) satisfies the equilibrium condition (2.8)
Substituting Eqs (4.1) into the integral representations (3.4) we find
15(3 — 2d)(1 — r% + 0.3757%) .

21— W2)P /15 3dy1- 0.5
wn="p (7 -5) 5 - =
15 3d 15(3 — 2d)
Y= Yooy _ 29\ T 28 .
(- 5

QA oR (25 3y - 120220

ap
wfr)= - == |7~ 3
where
wl)(r) = —127; JIEW(©) = 16 H40 (Ol
Q
L RO, ()
2 Jo d
0= 7 | S e«

p,t, 1= 1,2 we represent by a polynomial to

The displacements wgi), g
the fourth degree of approximation as

3

(4.3)

R
Hol
=
N o~
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The unknown coefficients w](-f;)c, j=pt,2=1,2, k=0,1,2 we determine
from physical conditions

w(0) = @)(0) wi(1) = a1
‘ (4.4)
1 l'
v\ () dy = 590 di
yw; (y) dy yw; (y) dy
0 0

Substituting wy(r) and w(r), Eqs (4.2), into the contact condition (3.7),

taking into account Eq (4.3) and comparing the coefficients at 72 and =, we
obtain
9d 15 15 3d
326 (Z - 7)(105,}1) - gaHa()wE’ll)) +
15(3 = 2d 3ad
+BC D00 gaaou) = 48
(4.5)
45(3 — 2d 15 3d 1 1
B85 Il gt
15(3 - 2d
+‘—(4—)(w7()22) — gayaowifz)) =0
where
a 3 3PR(1 - 1/2) f’l)a"()Eo
ag = — ay = —— g ="
ax 4Fq 2Ko(1 — v)

a is the radius of the contact circle in the isothermal Hertz problem under
fixed load P (cf Johnson, 1985).

Thus, the initial problem has been reduced to the solution of the system
of two non-linear algebraical equations for determination of the dimensionless
parameters «g and d. The input parameters of the problem are the dimen-
sionless values: [ga*, voe*, doa*, gagyg and v, where «* — some characteristic
linear size.

At first, we investigate the solution of the problem in the isothermal case
(g = 0). The dependence of the dimensionless radius of the contact region ag
on the dimensionless parameter fGpay is given in Fig.1. If the value of foagy
increases, then the radius g decreases. According to the numerical analysis
carried out the dependence of the solution on the parameter v is negligible for
v = 0.25 - 0.45. In further calculations we use v = 0.25.

Now we analyse the influence of parameters fp, dp, yo on the critical
radius of the contact circle. Note that the critical radius is the hmiting value
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Fig. 1. Dimensionless radius ag versus the parameter fpay (1 — v = 0.05,
2—v=0253-vr=045)

of the contact circle under an infinite rise of the force P. From the solution
of the contact problem with frictional heating for the isotropic, homogeneous
body the critical contact radius can be determinated as follows ., = 2/g (cf
Yevtushenko and Kulchytsky-Zhyhailo, 1995).

Dependence of the dimensionless value @.,/a. (@ is the critical value
of the contact area in the contact problem for the FGM body) on the dimen-
sionless parameters Botc., doQcr, Yoler 1S presented in Fig.2. Basing on these
figures the following conclusions can be drawn:

e Except for some domain {2 of the coordinate angle II (épa. < 0,
~oter > 0) levels can be approximated by straight lines which form with
the line 8y = —7vo an angle of nearly 90°

e In the domain (2 the maximum values @.,/a., are lie on the line, which
makes with the bisector of the coordinate angle II an angle not more
than 15°

e The value of @, /a. decreases as fg/a. increases. This effect takes
place in the domain 2.
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Fig. 2. @, [a., versus the parameters dpae,, Yot (v = 0.25, (a) - foa,, = 0.1,
(b> - ﬂOacr = 1» (C) - ﬁOacr =3

References

1. BaArRBER J.R., 1976, Some Thermoelastic Contact Problems Involving Frictio-
nal Heating, Q. J. Mech. Appl. Math., 29, 1-13

2. CHEN Y.F., ERDoGAN F., 1996, The Interface Crack Problem for a Nonho-
mogeneous Coating Bonded to a Nonhomogeneous Supstrate, J. Mech. Phys.
Solids, 44, T71-787

3. ErpoGanN F., Wu B .H_, 1996, Crack Problems in FGM Layers under Thermal
Stresses, J. Thermal Stresses, 19, 237-2654



6.

10.

11.

12.

R.KULCHYTSKY-ZHYHAILO 289

JINZ.-H., Nopa N., 1994, Edge Crack in a Nonhomogeneous Half Plane under
Thermal Loading, J. Thermal Stresses, 17, 591-599

Jounson K.L., 1985, Contact Mechanics, Cambridge University Press, Cam-
bridge

Nopa N.. Jin Z.-H., 1993, Steady Thermal Stresses in an Infinite Nonhomo-
geneous Elastic Solid Containing a Crack, J. Thermal Stresses, 16, 181-196

OLESIAK Z., YEVTUSHENKO A., 1989, Effect of Material Nonhomogeneity on
Stress Disribution in the Vicinity of Thin Elastic Inclusion, fut. J. Engng. Scu.,
27, 149-159

OzTurRK M., ErRDOGAN F., 1993, The Axisymmetric Crack Problem in a
Nonhomogeneous Medium, Trans ASME, J. Appl. Mech., 60, 406-413

SNEDDON I.N., 1951, The Use of Integral Transform, McGraw Hill. New York

YEVTUSHENKO A.A.. KULCHYTSKY-ZHYHAILO R.D., 1995, Determination of
Limiting Radii of the Contact Area in Axi-Symmetric Contact Problems with
Frictional Heat Generation, J. Mech. Phys. Solids, 43, 599-604

YEVTUSHENKO A A., KULCHYTSKY-ZHYHAILO R.D., 1996, Two Axisymme-
trical Contact Problems with the Steady-State Frictional Heating, J. Theorel.
Appl. Mech., 34, 767-779

YEVTUSHENKO A A., KULCHYTSKY-ZHYHAILO R.D., 1996, Approximate So-
lution of the Thermoelastic Contact Problem with Frictional Heating in the
General Case of the Profile Shape, J. Mech. Phys. Solids., 44, 243-250

Termosprezyste zagadnienie kontaktowe z generacja ciepla
spowodowanego tarciem dla stempla o ciagle) niejednorodnosci

Streszczenie

Rozpatrzono kontaktowe zagadnienie z uwzglednieniem generacji ciepla dla stem-
pla z materiatu o ciaglej niejednorodnosci. Ten stempel slizga sie po powierzchni
sztywne] polprzestrzeni. Zagadnienie zostato zredukowane do jednego réwnania
calkowego na nieznane cisnienie. Przyblhizone rozwiazanie zostalo znalezione stosujac
reprezentacje odksztalconej powierzchni ciala przez wielomianowa powierzchnie. Zba-
dano wplyw parametréw charakteryzujacych niejednorodnosé stempla na rozmiar ob-
szaru kontaktu.
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