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The paper deals with modelling and analysis of the effect of Coulomb-
type friction on the dynamics of mechanisms (one-degree-of-freedom
multibody systems), and presents a two-step process of converting the
equations of motion for the friction-affected systems from a large set
derived in terms of absolute variables to a minimal set in independent
variables. The obtained governing equations consist of one dynamic equ-
ation, few kinematic cquations. and algebraic relations for determination
of the joint reactions as functions of the current state variables. The lat-
ter enable one to estimate the frictional effects that influence the system
dynamics, and consequently to solve the governing equations (which for-
mally are DAEs) as minimal-dimension ODEs. Two simple examples
are provided to illustrate the frictional effects, conversion steps, and nu-
merical simulation entanglements.
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1. Introduction

Mechanisms are mechanical systems composed of possibly many rigid bo-
dies interconnected by kinematic joints so that the resultant number of degrees
of freedom of the system is relatively small, equal to the number of indepen-
dent drivers. It is required that {from mathematical modelling of such systems
are the governing equations result (possibly in a minimal-form), applicable to
both simulation of the mechanism motion under a given drive time-history
and synthesis of the desired drive history for a specified (programmed) mo-
tion. The governing equations should also allow for the determination of joint
reactions and, if needed, calculations of position. velocity and acceleration of
any link (or point) during the simulated/programmed motion.
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Numerous methods specialized in the dynamic analysis of mechanisms have
been developed e.g. by Duffy (1980), Knapczyk and Lebiediew (1990), Mo-
recki and Oderfeld (1987), Oledzki (1987). and Paul (1979). Most of them
originate from d’Alembert’s principle (equilibrium conditions of external and
inertial forces and torques), and the mathematical language used is that of vir-
tual work/displacement in the physical vector spaces relating particular links.
The consequent analytical formulations as well as the graphical methods are
then based on vector manipulations. Though this is a legitimate approach
to the dynamic analysis of mechanisms. the powerful tool for investigation
offered by computer methods (computer-aided analysis) has recently reorien-
ted the way of formulating and solving the related problems  resulting in
wlat is recognized in the literature as the theory of multibody systems. see e.g,.
Nikravesh (1988). Roberson and Schwertassek (1988), and Schiehlen (1990).
The present contribution attempts to apply the computer-oriented methods
of multibody dynamics to the specific problems of mechanism analysis. Mo-
reover, the Coulomb-type {riction model including the stick-slip phenomenon
in kinematic joints is considered. As this may cause problems in describing
the mutual influence of the stick-slip state transitions in multiple frictional
contacts for closed-loop systems with many degrees of freedom (Glocker and
Pfeiffer. 1993), in the paper we focus the attention on only one-degree-of-
freedom mechanisms. Also, for simplicity reasons, we confine ourselves to
plane systems.

The proposed method of modelling friction-affected mechanism dynamics
is divided into three stages. The starting point is the absolute variable for-
mulation (Fig.1b) - the mechanism is first "exploded” to obtain a system of
unbounded bodies, and then the constraints due to the kinematic joints are
then reimposed. At this stage the {rictional effects are also modelled. The {or-
mulation results in a large set of the differential-algebraic equations (DAEs) in
terms of absolute coordinates and velocities of particular bodies and the ideal
components of constraint reactions, often referred to as Lagrange’s equations
of the first kind. In the second step the system is converted into an open-loop
(tree structure) system (Fig.lc) subject to the constraints of cut loops only.
In result, using the joint coordinate method (Nikravesh, 1988, 1990; Roberson
and Schwertassek, 1988; Wittenburg, 1977), a set of reduced-dimension go-
verning DAEs is obtained. Finally. at the last stage, the remaining (closing)
constraints are "eliminated” by using the coordinate partitioning (Wehage and
Haug. 1982). The produced minimal-form governing equations are composed
of one dynamic equation (often related to the driver motion), some kinema-
tic equations, and algebraic relations for determination of the joint reactions
as functions of the current state of motion. The equations are still DAEs
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Fig. 1. Stages of modelling of friction-affected mechanisms

but the algorithm for solving them as ordinary differential equations (ODEs)
is proposed. While the outlined approach to the minimal-form modelling of
closed-loop multibody systems is rather a standard procedure for systems wi-
thout friction (Nikravesh, 1990}, its application to {riction-affected systems
has not been investigated thoroughly so far.

2. The absolute variable modelling of friction-affected mechanism
dynamics

For a plane multibody system illustrated in Fig.1, the position of «th
component body in an absolute (fixed) zyz coordinate system can be specified
by z; = [z,v,0]],¢ = 1,...,b, where b is the number of bodies making up
the system, and x;, y; and @, are the Cartesian translational coordinates
of the origin (centre of mass) and the rotational coordinate of a body-fixed
(€n¢); coordinate system, respectively. Then, z = [(z,y,8)1,...,(¢,y.0)]" =
[1,...,2,]T is the global absolute coordinate vector, and n = 3b.
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Fig. 2. Reactions in typical friction-affected plane joints

Assumed there are ¢ constraint points due to the kinematic joints, let us
introduce at each constraint point the local (translational/rotational) coordi-
nates z; and s;,j = 1,...,c, that specify, respectively, the constrained and free
directions of relative motion between the contacting bodies (the environment
is regarded as body ”0”). The total number of local coordinates at a constraint
point is three. For typical joints of plane mechanisms, z; and s; are illustrated
in Fig.2. The local coordinates can then be expressed in terms of the absolute
coordinates z, and for the jth constraint point the relations z; = é;(z) and
8; = ¥;(z) will depend only on the coordinates of contacting bodies. For the
whole system, the total vectors of the constrained and free coordinates are:

T 7 =21, 2] T and s = [s],..,8]]" = [s1,...,8]", where

z =z ,...,2]]
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m is the number of constraints on the bodies (m < n), and [ is equal to the
number k£ =n — m of degrees of freedom for open-loop systems. while | > &
for closed-loop systems. Finally, we can write

where

&=1[8],.. .81 =[d1,....0m]"
v = [!PIT\JPCT]T — [d)lw-w"f)[]T

Eqgs (2.1) can be easily formulated analytically {or all possible kinematic joints.
The coordinates z express the physical directions jammed in particular joints,
and the ideal reactions f = [fi,..., fo]" of constraints (2.1); are physical
forces/moments pointed at =z directions (see }ig.2). Introducing the velocity
and acceleration forms of the constraint equation (2.1},

®=Ci=0
(2.2)
d=Ci+Cz=0

which can be obtained analytically or using computer codes (Nikravesh, 1988;
Roberson and Schwertassek, 1988; Schiehlen, 1990), the representation of the
ideal constraint reactions in z directions is

rg=CTf (2.3)

where C(z) = 0®/0z is the m x n constraint Jacobian matrix. The n-vector
7o can be regarded as the representation of a generalized force of ideal reaction
of the constraint (2.1);.

In the jth joing, the friction-induced forces/moments counteract the rela-
tive motion along s; directions, and, in general, are non-linear functions of the
relative motion velocity and ideal constraint reactions (Amstrong-Hélouvry
et al., 1994; Dupont, 1993). For planar systems, the friction- induced mo-
ments and forces in rotational and translational joints, respectively, are nsu-
ally modelled as follows (Dupont, 1993; Haug et al., 1986; Klepp, 1991; Wu et

al., 1956)
fur = _qgn(s)ﬂr(S)dm

fut = —sgn($)pe($) fal
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where
S — relative rotational or translational velocity
W, fiy  — respective coefficients of friction
d —  bearing diameter
fz, fy — components of the resultant (ideal) reaction force in the
bearing
fa - normal force in the guidance.

For the joints illustrated in Fig.2 the respective friction moments/forces

are
i = —sentid (0774 73
fu = —sgn(s)u($ 3)| Al
fur = —sgn($1)pel(51)[f] (2.5)
fuz = —sgnléa)pe(82)dv/ L + pi (1)1 f]

The friction forces/moments form an l-vector f = [fu1, ..., fu]", whose

components correspond to the local coordinates s of relative motions (see
Fig.2). Introducing the differentiated form of Eq (2.1),

s=C,z (2.6)
which can be obtained analytically or using computer codes, the representation
of frictional effects in the directions of absolute coordinates z is

W= Cl_fﬂ (27)
where C,(z) = 9¥/Jz is the [ x n Jacobian matrix. Finally, the total

generalized force of friction-affected constraints, represented in the directions
of z, can be written as

r(z,8. f) = ro(z, /) +rulz. 2, [l =CTa) f+ Cl(z)f (e 5. f)  (2.8)

where rg and r, are, respectively, the ideal and non-ideal components of
a generalized force of the reaction of friction-affected constraints. If some
directions defined by s are friction-free, the corresponding entries of f, equal
to zero. More detailed discussion of geometrical aspects of frictional effects on
multibody dynamics is provided in the next section.

The governing equations of motion of friction-affected multibody systems
can now be written in terms of absolute variables in the following matrix form

Mz = h(z,&,7)+ C'(z)f + Cl(2)f, (4, f)
(2.9)

Cl2)z = {(2,2)
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where M = diag(My,....M;) = const is the = X n inertia matrix.
M, = diag(m,, m;,J;), m; and J; are the mass and inertial moments of
the ith body, h = [th,...,hbT]T, and h; = [FZ-I.,Fiy,MZ;]T, are the z and
y components respectively of the external force and external force moment
about the mass centre, and 7 = [71,..,.Tk]T, k = n — m, are the driving
moments/forces applied to the driving links. Eq (2.9); represents the accele-
ration form (2.2}, of the constraint equation (2.1)1,1.e. € = —C%. The above
governing equations form 2n 4+ m DAEs in 2n differential variables z and
z and m algebraic variables f, and are commonly referred to as Lagrange’s
equations of the first kind.

The index of DAEs (2.9} is one. and many researches have preferred to so-
lve them straighforward in the form they are, usiug the prediction-correction
method or other specialized DAFE solvers, see e.g. Blajer and Markiewicz
(1995), Haug el al. (1986), Schiehlen (1990}, and Wu et al. (1986). Though
this is the simpliest and most direct approach to handling constrained motion,
the algorithms that follow are often recognized as computationally inefficient
(mainly due to large dimension of problems solved) and inaccurate (constraint
violation). Moreover, according to (2.4) and (2.5), one deals with discontinu-
ities in the right-hand sides of Eq (2.9), when the components s approach
zero or change their signs. In particular, § may also maintain zero for some
periods, which is known as the stiction phenomenon. While these problems
can usually be conquered for open-loop systems (Blajer and Markiewicz, 1995;
Glocker and Pfeiffer, 1993; Haug et al., 1986; Wu et al., 1986), the explicit
solution for friction-affected many-degree-of-freedom closed-loop systems, due
to the stick-slip phenomena, is still upon consideration (Glocker and Pfeiffer,
1993; Klepp, 1991). These problems will be discussed in detail in Sections 4
and 5.

As the direct solution of DAEs (2.9) may cause certain difficulties, the other
approach is to derive the equations of motion in terms of a minimum number of
independent variables. Numerical integration of such equations is by far more
efficient and accurate then that performed over equations expressed in terms
of absolute variables. For the systems with ideal constraints (without friction),
the produced governing equations are ODEs, and the number of dynamic equ-
ations is reduced to the number of degrees of freedom of the system. A variety
of techniques of this type applicable to multibody systems of any structure
have been demonstrated so far by e.g. Blajer (1994), Blajer et al. (1994),
Nikravesh (1988,1990), Roberson and Schwertassek (1988), Schiehlen (1990),
and Wehage and Haug (1982). However, the adaptation of these methods for
[riction-affected mechanisms is not quite evident (Amstrong-Hélouvry et al..
1994; Blajer and Markiewicz, 1995; Dupont, 1993: Glocker and Pfeiffer, 1993:
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Klepp, 1991). The present paper is another contribution in this field. Prior
to presentation of the proposed method, however, let us comment shortly on
the nature of frictional effects on multibody dynamics, which is of crucial
importance for further analysis.

3. The effect of friction on multibody dynamics

One of the main difficulties appearing in the minimal-form modelling of
friction-affected systems emerges from the fact that the ideal (75) and friction-
induced (7, ) components of the generalized constraint reaction (¥ = 7y + 7,)
are not, in general, orthogonal to each other in the system configuration space.
though the physical reaction forces/moments and the friction-induced for-
ces/moments at individual joints are always orthogonal to each other in the
local physical spaces. The non-orthogonality feature of 7y and 7, is illustra-
ted in Fig.3; see also Blajer (1994), Blajer and Markiewicz (1995).

~ /

Fig. 3. Geometrical interpretation of the effect of {riction on a multibody system

The system described in Section 2 can be regarded as a generalized par-
ticle in the n-space of configuration of unconstrained bodies, constrained to
move on the manifold @(z) = 0. The dynamic equation (2.9); can then be
interpreted as b=h+ ¥, where b is the effective dynamic force vector repre-
sented in the directions of z by Mz. An important observation is that the
friction-induced (non-ideal) component 7, of the generalized reaction force
¥ = ¥o+7, of friction-affected constraints may be not tangent to the constraint
manifold (see Fig.3), as it usually happens in simple dynamics problems (to
which the present interpretation appeals). The generalized friction force 7,
affects then the virtual motion along the manifold @(z) = 0 and simultaneou-
sly contributes to the balance of external and inertial forces in the orthogonal
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direction. The latter means that 7, (7, = CIfu) influences 7y (7o = C’f).
and since f, depends on f, there is a mutual interdependence between fhe
ideal and non-ideal constraint reaction components. In the language of ma-
thematics, the nonorthogonality condition of ¥, and ¥y components of =
reads 7y -7, # 0, or more specifically (Blajer, 1994)

“lr, £0 & CM™IC] #0 (3.1)

At a given position z on manifold @(z) = 0. the m-dimensional orthogo-
nal space C is defined by the constraint gradients represented as rows in the
m X n constraint matrix C(z). The k-dimensional tangent space D can then
be defined by an n X £ maximal-rank matrix D(z) so that

D'CT =0 o Ch=0 (3.2)

i.e. D is an orthogonal complement matrix to C. Then, by projecting the

T
dynamic equation (2.9); into D and C (premultiplying it by [D,CTM”I} )
and using Eq (2.9), we obtain (Blajer, 1994)

D'Mz=D"A+D'C]f,
(3.3)

E=CMTh+CM7ICTf+CM™'Cl S,

which represents bo = hD +7,p and { hc + Fo + Fuc, i.e. the projection of
b=h+7+ 7, into D and C, respectively (see Fig.3), and £(z,z) = ~Mz
(f = bc) is the constraint enforcement due to moving on the "curved” manifold
&(z) = 0. The friction forces/moments f, (dependent on f and the state
of motion) affect both the k dynamic equations (3.3); and m algebraic
equations (3.3),. As will be seen later on, the described non-linear coupling
cause essential inconveniences in the modelling and analysis of the friction-
affected systems. Note, that for a friction-free system (f, = 0), Eqs (3.3)
uncouple and simplify to D'Mz =D "h and f=(CM'C")"}(CM~'h —¢).

The other inconvenience of handling with systems with dry friction is possi-
bility of the occurance of stiction. The phenomenon occurs when the relative
velocity (slidBfglpa a particular joint goes to zero. Then, during stiction, the
respective local coordinate of relative motion (included in s) is locked up and
should be regarded as the coordinate that temporarily specifies the constrained
direction (should be moved to z). Counsequently, the corresponding stiction
force/moment should be treated as a standard ideal constraint reaction, and
therefore included into f. The lock-up will continue as long as the reaction
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of additional stiction-induced constraint is less than a certain maximal ma-
gnitude. equal to a static coefficient of friction times the normal force. If the
reaction approaches the static friction force magnitude, the stiction-induced
constraint is deleted and sliding begins. For more details the reader is referred
to e.g. Glocker and Pfeiffer (1993), Haug et al. (1986), Blajer and Markiewicz
(1995), and Wu et al. (1986).

The described stick-slip problem (addition-deletion of the stiction-induced
constraints) causes certain numerical problems in practice. During simulation,
the relative velocities of sliding at joints must be constantly monitored in
order to detect the instants the stiction begins. Then, for the periods of
stiction. the system dynamic model described in Eqs (2.9) shold be modified
adequately due to the change in s and =z, and again the reaction of the
stiction-induced constraint must be monitored in order to detect the instants
of slip. Moreover, using the classical Coulomb friction model (Fig.4b), the
problemn of stiction/friction force discontinuity occurs. which causes impacts
and must be very carefully handled during numerical simmulation.

While the described difficulties in modelling of sticking-sliding state trans-
itions and adequate changes in the structure of governing equations (2.9)
(Blajer and Markiewicz, 1995) can be overcome for the open-loop systems,
the situation becomes much more entangled for many-degree-systems with
closed loops. Stiction occurring in more than one contact may lead to "over-
constrained” systems, and the possible mutual influence of the state transitions
in multiple frictional contacts may cause problems in detecting the sticking-
sliding tendencies at particular joints, and uncertainties in the way of motion
execution may appear (Glocker and Pfeiffer, 1993). Therefore, in this paper
we limit ourselves to one-degree-of-freedom mechanism (closed-loop systems).
The developed algorithm to handle the stick-slip phenomena is described in
Section 5.

To illustrate the sticking-sliding discontinuity problems let us consider the
following simple example, reported firstly by Dupont (1993). The two mass
system shown in Fig.4a, moves in a horizontal plane (gravity is not included),
and is enforced by F; and F, applied to the masses m; and mg, respec-
tively. Assumed that friction affects only the z-motion of mass m; within
the slot, the motion in y-direction is governed by (my + mo)y = F5, and
F, = mqy|F3|/(my + mg) is the value of normal force between the masses due
to the inertial effects. If the mass my slides with respect to the mass my, the
friction force acting on the mass m; is then £, = —sgn(@)usF,, where
is the coefficient of kinematic friction between the mass m; and the slot, and




THE MINIMAL-FORM MODELLING .. 173
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Fig. 4. Simple illustration of stick-slip phenomena

the motion of mass m, in x-direction is governed by

. . my
miE = Fy — sgnl(z)pp————| F; 3.4
1 1 g()umlerzlzl (3.4)
If the stiction occurs, the a2-motion of mass m; is jammed, and (3.4) chan-

ges to .
0=F —F, and |F|<p——|F (3.5)

my -+ Mg
where g is the coefficient of static friction. Applying Fi(¢) and F3(1) appro-
priately, we can change from sliding to stiction (and vice versa) of mass mjy.
For the friction model as shown in Fig.4b, and the data: my; = 10,
my = 30, Fy = Tsin(2.41), I3 = 50co0s(0.8¢), us = 0.5, pp = 0.3, the si-
mulation results are shown in Fig.4c. The discontinuities in acceleration and
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friction force occur each time the velocity & changes its direction. Two sce-
narios of the motion following these instants proceed. If at the instant & =0
the actual magnitude of F| surpasses the actual value of the static friction
force ps k), the stiction tendency is overcome and the motion continues with
an abrupt reduced acceleration (due to the change in the direction of friction
force). This scenario occurs at t = 1.7s, 3.7s, 5.7s, 7.1s, and 9.5s. However,
if at the instant @ = 0 the magnitude of £y is smaller than pu;F,. the stic-
tion cannot be passed and the mass my is jammed in the slot. The stiction
maintains as long as the magnitude of F; approaches the value i f), (for
both the values are time-varying). This occurs for ¢t = 0.0 = 0.5s. 4.1+d.4s.
and 8.0--8.3s. During these periods the a-force between the masses is the
stiction force, equal to £y, and at the end of the stiction intervals the force
magnitude jumps fromn the bigger value pgfF, to the smaller value gy F,.

4. The first-step reduction of equations of motion

As outlined in Introduction, the conversion of the motion equations (2.9)
to a nunimal set can be completed in two steps. In the first step, the system
of "free” bodies is transformed to an open-loop (tree structure) system. To
this end, the m constraints (2.1); imposed on the system are divided into
mq constraints due to the kinematic joints in the open-loop system and the
remaining m, constraints (closing conditions), my + my = m. Accordingly,
(2.1}, and (2.2) are

d(z) =0 G(z)z =0 Ci(z)z =& (z.2)
= = (4.1)

where

é=[p &)
c=[c],cm
E=[.6] =1(-Ca)" (-Ca)"]"

The constraint partitioning is usually not unique, i.e. variant open-loop sy-
stems can be formed after cutting the closed loops in different places.

In order to formulate the equations of motion for a chosen open-loop sy-
stem, the standard joint coordinate method (Nikravesh, 1988; Schiehlen, 1990)
can be used. For such systems, &y = n — mj independent (joint) coordinates
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q=1|[q,..,qr]" can be defined (Fig.1c), and the explicit constraint equations
(4.1); can be replaced by their implicit forms

z=g(¢) = =D1y¢g = i=Dg+Dig (4.2)

where the n X k) matrix Dy(z) = dg/0z is an orthogonal complement matrix
to the my X n constraint matrix Cy. i.e. DIClT =0« CDy = 0. After
substitution of I5q (4.2), the constraint equations (-1.1 )y are satisfied identically.
For all typical joints, the relationships (4.2) can be easily obtained either
analytically or by means of computerized symbolic manipulatious.

Using the above definitions. the first-step reduction (with respect to con-
straints 7 1”) of the dynamic equations (2.9), yields to (Blajer. 1994; Nikravesh.
1990; Schiehlen, 1990)

D/MDg =D/ (h-MDig+Cj] f, +C}f,) (1.3)
or in a symbolic form
M'(q)i = H(q.4.7)+ C, (@) fo + C, T (0)f, (4.4, f) (4.4)

where M’ = D MDy is the kj X ky inertia matrix, k' = D] (h — MDq) is of
the dimension kj x 1, the mgy x ky matrix Cj of closing constraints can be
obtained either as C, = C;[g(¢)|D; or as C, = 9®,/dq lor ®5(q) = S2[g(q)],
and, seemingly, C), = C.[g(¢)]D; or C, = 0W,/dq for W(q) = ¥,[g(q)].

Eq (2.6) for determination of the relative motion velocities at particular joints
can now also be expressed in ¢ and ¢

3= Culg(q)ID1(q)q = C,(q)q (4.5)

5. The final reduction and the minimal-form equations of motion

The open-loop system described in Section 4 is subject to ms, constra-
ints  &5(q) = 0 due to the closing conditions (closed loops). Thus, only
k =k —my = n—m from k; coordinates ¢ are independent (for one--
degree-of-freedom mechanisms we have £ = 1). As it is usnally difficult to
introduce explicit relations between the dependent and independent coordina-
tes, the variable partitioning is performed at the velocity level. The approach
is usually referred to as the coordinate partitioning method, firstly introduced
by Wehage and Haug (1982). Applied to the case in point, ¢ are partitio-
ned into k independent velocities u and m, dependent velocities », denoted
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¢=[u",v"]T, and the partition should ensure that the first-order and second-
order kinematic equations, respectively. of closing constraints are solvable with
respect to v and ©. Namely, the partitioned forms of the higher-order con-
straint equations are

$,=Chg=Uu+Vp=0
$, = Chg—ziy = Ui+ V=0

where Cj = [U,V]. Solving Eqs (5.1) for v and o, respectively, we have
o B
a=| _y-1y u = Dy(q)u

(5.2)

s .
é: _VI—IU u+ { *V(_)lg’z :I EDZ(q)u+V2(q7u)
where |is the % x k identity matrix. The dimension of Dy is & x k, and it
is easy to show that Dy C,T =0 & C,D, = 0. At a given position ¢, there is
at least one such partition of ¢ that detV # 0. In the case of mechanisms. it
is usually reasonable to choose as independent coordinates those elenments of
g which relate the driving links. In a general case, and especially for many-
degree-of-freedom systems, the projective criterion developed by Blajer et al.
(1994) for the "best™ choice of u may he useful.

Premultiplying Eq (4.3) by D.ZT and substituting into Eqs (5.2). the dy-
namic equations can now be reduced to the number of £ (one equation for
one-degree-of-freedom mechanism), i.e.

D; M'Dyi = D (K~ M'vy) + D, C," f,, (5.3)

As 1'a‘nl\'(D2TM'D-2) = k = max, the above minimal-dimension equations of
motion are solvable for the derivatives of kindependent velocities u. However,
as the equations are dependent on all joint coordinates ¢ and joint reactions f
(due to the frictional effects), the dynamic equations (5.3) should be completed
by the kinematic equation ¢ = Dou defined by Eqs (5.2), and the algebraic
equation (3.3); for determination of f iu terms of the current state values
¢ and u. For the purpose of this formulation, Eq (3.3); is manipulated to
d = CMh+CMICTf + CM“ICIfN — & = 0. The final minimal-form
governing equations for friction-affected closed-loop multibody system can be
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obtained in the {ollowing symbolic form

q¢ = Dy(q)u
M7(g)u = h"(q.u.T) + hj(q.u. f) (5.4)
0=dlqu,T. f)

where M” = D, M'Dy is the £ x & inertia matrix, A” = Dg (' ~ M'wy) is the
k-vector (k x 1 matrix) of external, centrifugal, Coriolis and or gyvroscopic
forces, respectively, projected into the directions of u, and Al = D, C, 7 f,
expresses a similar projection of frictional forces. The above equations form
ki + k+m DAEs in & + k differential variables ¢ and u, and m algebraic
variables f. For one-degree-of-freedom mechanisms (k= 1), M. h” and A/,
are coefficients and denote the reduced mass of the system and the reduced
forces as mentioned, all with respect to the chosen independent velocity u.
Eq (4.5) for determination of relative motion veloci- ties at particular joints
can finally be transformed to

5= C,(¢)Da(g)u = C/(g)u (5.5)

The advantage of using DAFs (5.4) is their small dimension, ki +A+m =
2k +mgy 4+ m when compared to 2n+ m of DAIs (2.9). For most mechanisms
it is usually £ <« n, and the number m, of closing constraints is also rather
small. Moreover, the solution is by assumption rcleased from the problem of
violation of constraints ”1” and the tendency to violate constraints ”2” by the
solution ¢(t) is considerably abated (Blajer et al., 1994). The main advantage
is however that DAEs (5.4) can indirectly be solved as ODEs. Namely, at each
instant of simulation, Eqs (5.4); and (5.4); can be regarded as k; + k£ ODEs
in ¢ and wu, while f required for calculation of hZ should be determined as
the solution of m algebraic equations (5.4)3 for the current state values ¢ and
u. The solution to Eqs (5.4) is then ¢(), u(t) and f(1). Using the solution
and Eqgs (5.2), the absolute positions, velocities and accelerations of each link
can also be determined from BEq (4.2).

Let us now comment in detail on the problem of handling the stick-slip
phenomenon. This will be done here for one-degree-of-freedorn mechanisms
(k = 1) and with reference to the minimal-form formulation (5.4). The follo-
wing approach to detection of the sticking-sliding state transitions is proposed.
At the considered instants of motion we have either v = 0 or ©# — 0, and
then, through Eq (5.5), 8 = 0or s — 0 - the velocities of sliding at all joints
are equal to zero or simultaneously go to zero. In each case, taking u =0
(8 = 0), from Eq (5.4); we first determine 4,—¢ for A} = 0 (as if there

12— Mechanika ‘Veoretvezna
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was no {riction in the system). Assumed 1tu,-¢0 # 0 {(for ,-9 = 0 stiction
continues/begins by assumption), we thus estimate a tendency of motion, i.e.
the intended direction of evolution of u for the "friction-free” system. From
Eq (5.5) we then find the intended local sliding directions 8, and having them
we can orientate (in the opposite directions) the friction forces/moments f,.
Setting the maximal values of the possible frictional forces, i.e. using the static
friction coefficients p in Eqs (2.4) and (2.5). from Eq (5.4); we determine f,
and then from Eq (5.4)2, tu=,,. The signs of i,-¢ and w,=,, are the same
or opposite, the motion will start/continue or the stiction will continue/begin.
Note that during the stiction determination of f from Eq (5.4)3 is impossible
as the values of f, are not known (can range from zero to the maximal static
friction force, and cannot be estimated explicitly). In other words, due to
the additional friction-induced constraints, we deal with an "overconstrained”
system.

6. Case studies

6.1. Example 1

In order to illustrate the minimal-form modelling of friction-affected me-
chanisms, let us consider the system shown in Fig.5. The absolute coordinates
of the system are x = [z, 1,01, %2, Y2,02,23,y3,03]", and the matrices M
and h introduced in (2.9); are

M = diag(my, my, J1, ma, mag, Jo, m3, ms, J3)

h = [03 _777’1.(]57—50’ —mag, 0« 0-, —mag, O]T

where m; and J; (1 = 1,2,3) are the link masses and the moments of inertia,
g is the gravity acceleration, and 7 is the torque applied to the link 1. All
revolute joints are identical (of diameter d), and the respective coefficient of
friction 1s .. The sliding friction coefficient at the point O4 is 1.
According to Eqgs (2.1), the nine local coordinates z and the four local
coordinates s can be expressed in terms of z, and then the 8 x 9 matrix C
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and the 4 x 9 matrix C, can easily be derived. The respective formulae are

[ 1 — wy costh ]
1 — a1 sin 6y
Ty — g cosfy — 17 — uycos by 6,
| y2—agsinfy —y, —aysint, B By — 6
“ T | 23— azcosbs — 29 — aycos by s = 65 — 6,
Y3 — a3 $in f3 — Yo — ag sin T3 + a3 cos b3
Y3 + agsin Oy
| 03 + 7r/2 1
(6.2)
[l 0 aq sin By 0 0 0 0 0 0 ]
0 I —aycosb; O 0 0 0 0 0
-1 0 ay sin 6 1 0 assinf, 0 0 0
C - 0 -1 —mcosb; O I —agcosfy 0 O 0
0 0 0 -1 0 aysinfy 1 0 azsinfs
0 0 0 0 -1 —uagcosfy 0O 1 —azcosfy
0 0 0 0 0 0 0 1 3 COs 93
| 0 0 0 0 0 0 0 0 1 |
00 1 00 0 00 0
c - 00 -1 00 1 00 0
#7100 0 00 -1 00 1
00 0 00 0 1 0 —azsinfj

The friction forces and moments f, = [fu1, fu2, fu3, fua] T can then be

modelled as
—sgn(d1)pedy/ fE + f3
—sgn(so)p,dry/ f2 + f2

o= (6.3)
—sgn(éa)uedy/f2 + f2
—sgn(Se)pl f
where  f = [f1,....fs]T are the ideal components of joint reaction for-

ces/moments. Using Egs (6.1) + (6.3), the initial governing equations of the
system can be formulated in the form of DAEs (2.9). The dimension of the
DAEs is 26.

Let us now perform the first step-reduction of the initial DAEs. For the
open-loop system as shown in Fig.5, the proposed partition of constraints
z = @(z) = 0 defined by Eq (6.2); is that the fifth and the sixth of
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Fig. 5. Mechanism of Example 1

the constraints are treated as constraints "2”. Then for ¢ = [q1.q2,¢3]7 as

indicated, Eq (4.2) are defined by

L

(y COS
aqsin ¢q
0@
2a1 cos q1 + @ €Os (2
2ay sinqy + agsin qo
q2
q3
a3
- /2

!

L

—aq Sin gy
1 COS 41
1
—2a, sin ¢y
2aq cos ¢y
0

0
0
0

0

0

0
—a9 SN ¢y
U9 COS {fp

1

0
0
0

<o O

o= OO OO

(6.4)

After formulating qu, the dynamic equations can then be rewritten in the
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form (4.3), where
Ji+ (my +4mg)ai  2maayaz cos(qa — 1) 0
M = DITMDl = | 2moajascos(qs — qq) Jo 4 m-zag 0
0 0 ma
A = D] (h—MDq) =
T — (my + 2my)ga; cosqy + 2'm,-zc11a2(]§ sin{qy — ¢1)
= —magag cos qu — 2maaraxd sin(qa — q1)
0
(6.5)
2aq sin gy —2a3 €os q; )
C,Tfy = | 2a9sings —2ayco0s ¢y ( f(i J
1 0
1 -1 0 0 j}“
Clfo=|0 1 -1 0|
fz3
0 0 1 .
pr

In order to perform the final reduction step described in Section 5, the
constraints ”2” must be expressed first in the joint coordinates

q and their
time-derivatives, i.e.

o o !
. . 2a7 sin 209 S ¢ 1
209) =0 ¢2 29 { —2aycosqy —2agcosqy 0

i
é i £ = 2a) sin ¢ 2aysingy 1 n
2 2 27| —2ay3cosq; —2asc0sqy 0

2(a 47 cos g1 + a3 cos o) 0
2(a147 sin gy + a3 sin q2)

Then, by choosing u = [{1], D, and vy defined by Eqs (5.2) are
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1
_ _aicosg
DQ - as COS 2
2a;(cos gy tan g — sin ¢y )

(6.7)
0
_ aju? sin @ (1 + a1 Cosq) talngs
v = a2 Cos gy a3 COs ¢p tan gy
. 2 el
_ 2aju . aj) cos” g
oS g2 (COS(([Q il ) + a5 cos? gy

which enable one to formulate three kinematic equations (5.4); and one dy-
namic equation (5.4),. Eight algebraic equations (5.4)3 can then be derived
according to Eq (3.3)z (the explicit form of the formulae is rather complicated,
and will thus not be reported here). Finally, Eq (5.5) is

1
_ Q] €osq)

3 gosaa u (6.8)

$ = Q] COS gy
a; cos q2
2ay(cos ¢ tan gy — sin qq)

The objective of the above example was to illustrate the process of co-
nverting the governing equations for a closed-loop friction-affected multibody
system from a large set (of number 26) in absolute variables to a minimal
set (of number 12) in independent variables. For demonstration purposes,
the transformations have been done by symbolic manipulations. In practical
applications and for more complex mechanisms, however, that may be very la-
borious (if applicable at all). Therefore, the conversion steps should ratheyr be
algorithmized in computer codes and performed numerically, what refers ma-
inly to the final reduction step (by using the coordinate partitioning) and the
formulation of algebraic equations (5.4)3. The proposed symbolic-numerical
method is then visibly computer-oriented.

Some results of numerical simulation of the mechanism motion are shown
in Fig.6. Using the data: my = 3kg, my = Tkg, ms = 2kg, a3 = 0.3m,
az = 0.7m, az = 0.2m, and J; = m;a?/3, the motion was performed for the
friction-free mechanism (denoted p = 0) and the friction-affected mechanism
(denoted ), and the data velating the static (s) and kinetic (k) friction
coefficients were: py = 0.3, pyp = 0.2, gy = 0.15, ppp = 0.1, and d = 0.05m.
The graphs show a substantial difference between the two cases. Neglecting
the frictional effects may thus impair the reliability of analysis of mechanism.
As for the mechanism at hand the stick-sltp phenomena are not clearly seen,
let us consider the other example.
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7 [Nm]

360
q, lgrad] |

180K

0

10
u [grad/s]

Fig. 6. Some simulation results of Example 1

6.2. Example 2

The considered slider-crank mechanism is shown in Fig.7. As the minimal-
form modelling of the mechanism has already been reported by Blajer and
Markiewicz (1995), here, we present only some numerical results. Using the
same notation as in Example 1, the data were: m; = 2.5kg, mqo = 4kg,
ay = 025m, ay = 0.4m, J; = ma?/3, s = 0.3, e = 0.2, 1y = 0.15,
tre = 0.1, and d = 0.05m, where 71" and "2” relates links OA and AB,
respectively. The gravity acceleration is directed along Oz axis. The obtai-
ned numerical results are presented in Fig.8. The simulation starts from the
unforced equilibrium (vertical position) and the mechanism is driven by a si-
nusoidally varying torque 7 as seen. The motion that follows oscillates about
the equilibrium position. Two scenarios occur when u — 0 (here u = ¢1),
according to the resultant of the driving torque and the gravitational force
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Fig. 7. Mechanism of Example 2

torque surpasses the frictional resistance in the system or not. In the former
case, the motion continues (with the sign of u changed), and the observed
impacts in the motion are due to the abrupt changes of the friction force direc-
tions. In the latter case the stiction begins and remains as long as the change
in the driving torque will break the "stiction equilibrinm”. As said in Sec-
tion 5, during stiction determination of the constraint reactions is impossible,
which is represented in Fig.8 by breaks in the reported graph of f; joint force.

7. Conclusions

The proposed minimal-form modelling of friction-affected mechanisms may
be advantageous for many reasons. It provides one with an automatic and sim-
ple approach to modelling of frictional effects in absolute variables, and then
converting the arising large set of DAEs (2.9) to the minimal-form governing
equations (5.4). As compared to the initial DAEs, the final formulation assu-
res improved efficiency and precision of numerical simulation. It is especially
useful in handling the stick-slip phenomena. A more physical insight into the
problems solved can also be gained. Time-variations of the mechanism state
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Fig. 8. Some simulation results of Example 2

variables and the joint reactions (if necessary. the position. velocity and acce-
leration of any link/point as well) can be obtained by numerical simulation.
The minimal-form governing equations can also be conveniently used to syn-
thesize the required driving torque in a specified (programmed) mechanism
motion. Namely, assumed the program of motion is defined by a specified dri-
ver motion, ¢, = ¢:(t), from the specification we have directly u*(t) = ¢ ()
and 2°(t) = g; (1), and then using @5(g) = 0 we can solve for the program
variations of the other joint coordinates, ¢, = ¢3(?). Applying u°(2), u°(¢).
and @ (t) = [¢57(t),g2T(1)]7, the required 7°(t) as well as f°(¢) can be
determined as a solution of Eqs (5.4); and (5.4)3 for a given 1, which are now
k + m algebraic equations in 7 and f.

The described conversion steps leading to the minimal-form formulation
(5.4) can be performed analytically or numerically. Usually, the first-step of
conversion can conveniently be done analytically, i.e. by pencil and paper
or by computerized symbolic manipulations, and the final reduction step as
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well as the formulation of algebraic equations (5.4)3 should rather be gained
by means of numerical methods. While a similar conversion procedure for
friction-free multibody systems has already been described e.g. by Nikravesh
(1990), its application to friction-affected mechanisms is new.
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Modelowanie mechanizmdéw z tarciem w postaci réwnan o minimalnym
wymilarze

Streszczenie

Praca podejmuje zagadnienie modelowania dynamiki mechanizmow z uwzgled-
nieniem ewentualnego tarcia suchego w polaczeniach (ograniczono sie do ukladow
plaskich o jednym stopniu swobody). Modelowanie efektow tarcia realizowane jest
w zmiennych absolutnych poszczegdinych czlondw W zmiennych tych formulowane sa
tez wyjsciowe réwnania ruchu — nieliniowe réwnania rézniczkowo-algebraiczne (RRA)
o maksymalnym wymiarze. Prezentowana jest nastepnie dwukrokowa metoda reduk-
¢ji tych réwnan do mozhiwie najmniejszego wymiaru. W pilerwszym kroku wykorzy-
stywana jest metoda zmiennych zlaczowych, w drugim — metoda podzialu zmiennych.
Otrzymane finalne rownania ruchu skladaja sie z pojedynczego dynamicznego row-
nania rézniczkowego zredukowanego do ruchu czlonu napedzajacego, kitku réwnan
kinematycznych uzalezniajacych pochodne po czasie wspdirzednych zlaczowych od
predkoéci czlonu napedzajacego oraz réwnan algebraicznych (w liczbie réwnej liczbie
wigzow polaczen kinematycznych) dla wyznaczania reakcji w polaczeniach. Efekty
tarcia suchego reprezentowane sa w réwnaniu dynamicznym oraz réwnaniach alge-
braicznych, sprzegajac je ze soba, Rozwiazanie tych ostatnich ze wzgledu na war-
toscl reakceji w polaczeniach dla aktualnego stanu ruchu jest postawa dla okreslenia
reprezentacji sil tarcia w rownaniv dynamicznym i jego efekiywnego calkowania nu-
merycznego. Tym samym, finalne minimalno-wymiarowe réwnania ruchu, stanowiace
formalnie uklad RRA, rozwiazywane moga by¢ posrednio jako réwnania rézniczkowe
zwyczajne (RRZ). Prezentowane sa dwa przyklady prostych mechanizmdw plaskich
dla zilustrowania omdéwionych etapow modelowania mechanizmdw ¢z tarciem oraz zlo-
zonych zagadnien symulac)i numerycznej takich ukladéw. Trudnosci zwiazane sa
przede wszystkim z algorytmizacja zjawisk przy przechodzeniu od tarcia sLatycanego
do kinetycznego 1 odwrotnie.
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