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Anisotropic behaviour of bones in the elastic and plastic ranges is discus-
sed. The adaptive elasticity with evolving structure is examined from the
point of view of tensor functions. The equations of adaptive piezoelec-
tricity are formulated. A general framework for bone remodelling com-
bined with homogenization is proposed. It is suggested that the bone
adaptation to variable loads may be viewed as a shakedown problem. A
possibility of studying bone remodelling via optimal design is considered.
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1. Introduction

From a mechanical standpoint, bone is an inhomogeneous and anisotropic
composite material with solid and fiuid phases. At the macroscopic (phenome-
nological) level, there are two major forms of the bone tissue: cortical (com-
pact) and cancellous or trabecular (spongious). Both of them are anisotropic
and inhomogeneous. The bone structure is nicely depicted by Cowin (1989),
Currey (1984), Gibson and Ashby (1988), Lowet et al. (1997), Martin and
Burr (1989) Odgaard and Weinans (1995).

The aim of the present contribution is to propose general phenomenological
models enabling one to study bone anisotropy and its remodelling. Our appro-
ach exploits tensor functions, homogenization and relaxation of functionals.
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2. Elastic and plastic anisotropy of bone

The fabric tensor of cancellous bone is defined as the converse square root
of the mean intercept length tensor M, cf Cowin (1985, 1989), Jemiolo and

Telega (1997b, 1998)
1
H=—— 2.1
VM 1)
The tensor H is positive definite. The following measure of anisotropy (ortho-
tropy) degree of H is convenient in applications (Jemiolo and Telega, 1998;

Rychlewski and Zhang, 1989)

V2 H, — Hj

2 [H] (2.2)

6(H) =
where H;, i = 1,2,3 are the ordered eigenvalues of H. If H is an isotropic
tensor the above measure is equal to zero. For transversely isotropic material
two of the eigenvalues of H coincide.

Let T and e denote the stress tensor and the small strain tensor, re-
spectively. In Jemioto and Telega (1998) the anisotropic elastic constitutive
equation of the following form has been studied

T = ayl + agH + a3H? + 2a4e + as(eH + He) + ag(eH? + H2e) + 3a7e? (2.3)

where

_or dom _ Oon
m = oI, a1, _ oI,

and, in turn

m,n=1,..,7 (2.4)

Wi(e) = f(Im(e)) = f(tre, treH, treH?, tre?, tre’H, tre?H?, tre®) (2.5)

We assume that for e =0, T = ol + asH + asH? = 0. Here the structural
tensor H is not an argument of the elastic potential W (e). This tensor
describes only the microstructure of the material. Experimental data validate
the assumption of small elastic deformations in bones. The fabric tensor H
could be treated as an argument of the elastic potential W provided that
elastic deformations would lead to a significant change of this tensor, see the
next section.

The linearized form of Eq (2.3) was studied in Jemiolto and Telega (1998).
There we have concluded that, approximately, human cortical bone is transver-
sely isotropic whilst human cancellous bone is rather an orthotropic material.
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Let us denote by e, e, the elastic and plastic part of the strain rate tensor.
As usual, we assume that
e=e.+e (2.6)

and construct constitutive relationships for elastic perfectly-plastic materials.
The elastic behaviour is described by the linearized form of Eq (2.3). The
associated flow rule assumes the form

F
é, = )\g—_r A0 (2.7)

The following general form of the yield function is assumed
F(T) = F(trT, tr TH, tr TH?, tr T2, tr T2H, tr T2H?, o T°) (2.8)
whilst the yield condition is given by
F(T)-1=0 (2.9)

The bone tissue reveals different plastic behaviour in tension and compression:
cf Cowin (1989), Gibson and Ashby (1988), Jemioto and Kowalczyk (1997).
Therefore, in Jemioto and Kowalczyk (1997) and Jemiolo and Telega (1998)
the invariant form of Hoffman criterion yield has been proposed

F(T) = CI(KQ - K3)2 + C2(K3 — K1)2 + C3(K1 — K3)2 + 2¢4 K¢ +

(2.10)
+2¢5 K5 +2c6Kg + 71Ky +csKo+cgK3—1=10
where
1 1 1 1 1 1 1 1
=3 + - 2= ¢ + -
) (Ytzycz Yia¥es YnYcl) 272 (YtaYca Y Yol Yt2Yc2)
. 1( 1 + 1 1 )
3= 7 -
2\Y, Y, Y Y, Y Y,
t1dicl t2Ic2 t31c3 (2.11)
1 1 1
2c4 = 5~ 2¢5 = = 2c6 = —
k3, ks ki
c7:Yc1_Yt1 CBZYcz—Ytz cgzycs—yts
Yo Yy YeoYio Ye3Yis

Here Y., Yy and k;; are the yield limit in compression and tension in the
directions of orthotropy and the yield limit in shear in the principal planes of
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orthotropy, respectively. The invariants K, (p =1, ...,6) are given by
K| = trM,T Ky = trM,T Ky = trM3T

Ky = %[( trMsT)?2 — (trMy T2 — (trMeT)2 ~ trMT? + trM T2 + tr M, T?
(2.12

Ky = 5 [(trMyT)? = (e MiT)? = (trMgT)? = trMyT? 4 6 M T2 4 oMy T?]
Kg = %[( trMiT)2 — (trMoT)? — (trMaT)? ~ trM T + trMyT? + trMy T

The tensors M; = i; ® ; (no summation over j) are the eigentensors of H.
By using the following relation

trT¢ trM, T
trHT® | =h | trM,T® a=1,2 (2.13)
trH2 T tr M5 T
where
1 1 1
h=| H H, H, (2.14)
H} H} H?}

the criterion (2.10) can be written in the form (2.8). By using Eq (2.8) and
transformation formula of tensor components under orthogonal transforma-
tions, one can derive the formulae for determination of sample strength in
the case of compression and tension, in the direction defined by an angle ¢,
in each of the principal orthotropy planes, cf Jemioto and Kowalczyk (1997),
Jemioto and Telega (1997a).

For Y. =Y the criterion (2.10) reduces to Hill’s criterion, which has also
been applied in the bone mechanics, cf Rokotomanana et al. (1991).

Remark 2.1

e The Hoffman condition (2.10) may be also viewed as a strength crite-
rion limiting the applicability of nonlinear Eq (2.3) in the range of small
deformations, cf Jemioto and Kowalczyk (1997), Cowin (1979). This sta-
tement pertains also to linear behaviour in the elastic range. Accordingly,
an evaluation of stress concentrations in bones should rather be perfor-
med by applying the criterion (2.10) and not, as is usually done in finite
element codes, the principal or Mises stresses.
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e Inhomogeneity of bone follows from the dependence of the fabric tensor
H on position of a point z in the body B identified with the closure of
a domain 2 € IR3, i.e., H=H(z). Consequently, the experimental data
aiming at the determination of H should include full information about
this tensor, e.g. its principal values H; (1 = 1,2) and the eigenvectors
determining the principal axes of orthotropy. We observe that the data
given by Turner et al. (1990) concern only the principal values H; of the
human femoral cancellous bone. No data concerning the eigenvectors of
H were appended. Even a superfluous analysis of microstructure of the
human bone indicates that the principal axes of orthotropy depend in
an essential manner on z. It seems that one can consider the averaged
values of H; over a certain region of cancellous bone (thus also of elasti-
city moduli). However, the averaging procedure is useless when applied
to the principal axes of orthotropy. At the current level of finite element
programs, the elastic analysis of bone requires proper determination of
its anisotropy and inhomogeneity.

e From the point of view of continuum mechanics the elastic-plastic model
proposed by Jemiolo and Telega (1998) is different from Cowin’s (1985,
1986) model. In the last papers the elastic energy and the strength or
plasticity criterion depend explicitly on e and H. In the constitutive
relationship (2.3) the fabric tensor H plays only the role of a parame-
ter and intervenes according to the principle of isotropy of the physical
space.

e Zysset and Curnier (1996) proposed a model of degradation of bone
mechanical properties within the framework of elastoplasticity and con-
tinuum damage mechanics. This model involves the fabric tensor (2.1).

3. Adaptive elasticity and piezoelectricity with evolving fabric
tensor

The aim of this section is to develop a general model of adaptive piezo-
electricity with evolving microstructure. Our approach is different from that
by Gjelsvik (1973) and Giizelsu and Saha (1984). In fact, it extends the model
developed previously by Cowin et al. (1992).

Let E = (E;) and D = (D;) denote the electric field vector and electric
displacement vector, respectively. As usual we have E; = —8¢/dx;, where
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o stands for the electric potential. The elastic potential of a bone with an
evolving microstructure is assumed in the following form

W =W (e, D;r,h(N)) (3.1)

where
r=r(z(t)) N=n®n

n = (n;) is a unit vector and h(N) stands for the morphological orienta-
tion distribution function which may also depend on time. The constitutive
equations are given by, cf Telega and Jemiolo (1998)

oW oW
It is convenient to assume that, cf Jemioto and Telega (1998)
R(N) =g(N)1+G-F(N) +G:F(N) + ... (3.3)
In the specific case where
—~ 1
W = W(e,D;T,h(N)) = 5 %ijkl (T,h(N))eijekz +
(3.4)
1
_hijk (’r‘, h(N))Diejk + EK,Z']' (7‘, h(N))DiD]'
we obtain
Ti]' = Q4j5kl (7‘, h(N))ekl - h,;jk (T, h(N))D;
(3.5)
E; = —hiji, (’r‘, h(N)) ejk + Kij (7‘, h(N))Dj
For a bone we may assume that 7 = p;/pp and
AN) = ——— —N.H (3.6)
vN-M ’

where M is the Whitehouse fabric tensor and H is given by Eq (2.1). Then,
to the constitutive equations we must adjoin the evolution equations

;= % = (e, D, h(H) H= i‘g =H{e,Dir,a(H)) (3.7
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Obviously, ps; denotes the density of skeleton (in the sense of porous media)
whilst pg is the apparent density of the bone. Egs (3.2) and (3.7) are equations
of adaptive piezoelectricity with evolving microstructure.

Consider now the specific case of adaptive elasticity. Then Eq (3.5) redu-

ces to
T=a(r,h(N)) e (3.8)

The material symmetry group is
$={Qe0®) Qxa=a} (3.9)

where

Q*a=a;1(Qf) ® (Qf;) ® (Qix) ® (Qiy)

Here O(s) is the orthogonal group in the three-dimensional case and {i},
k =1,2,3, is the orthogonal frame in the space JR>. For instance, § = §;NSy,
where

S ={Qe0(3) Q6Q" =G} $={Qe0@) Q+G=6} (3.10)

If h(N)=g(N)1+G-F(N) then S =5 (the material is orthotropic, i.e. three
eigenvalues of G are different; transverse isotropy follows provided that two
eigenvalues coincide).

Let us briefly discuss the specific case of evolution equations where

7 =a(r)+A(r)-e=a(r)+b(r)tre
(3.11)

H=B(H)+B(H) e

Here Bijki = Bjiri = Bguij. The spectral decomposition of the fabric tensor
H yields
H = H\H; + HyH, + H3H3 (3.12)

where H; = h; ® h; (no summation over 1), h; (1 =1,2,3) are the eigenvec-
tors of H and H; are the eigenvalues of H. The functions B(H) and B(H)
are isotropic tensor functions of the second- and fourth- order, respectively.
General representations of the above tensor functions depending on symme-
tric second-order tensors were derived by Jemiolo and Telega (1997a). Let us
consider now an approximation of the functions B(H) and B(H). Since both
the scalar 7 and fabric tensor H are not ”small” (in the sense of the small
deformation tensor e), therefore the functions a(r), b(r), B(H) and B(H) are
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not, in general, linear in 7 and H. We propose the following approximation
of the functions a(r) and b(r)

N N
a(r) = Zairi b(r) = Z brt a;, b; = const (3.13)
i=1 i=1
The tensor functions B(H) and B(H) are approximated as follows
M - . .
B(H) = > ¢;(H{H, + H{H; + H{H3) (3.14)
=1
B K
B(H) = > [ax(HI*H, @ Hi + H3*Hy @ H + H*H; @ Hy) +
k=1
1 1
+§,6kH{CH§(H1 ® H2 + H2 ® Hl) + E,BkH{cH!;(Hl ® H3 + H3 ® Hl) +
(3.15)

1 1
+§5kH§H§(H2 ® H3 + Hz ® Hy) + pkH{“Hé‘(HIOHa + H;OHy) +

1 1
+ 5w HEHE(HLOHg + HyOHy) + 2 HY HE (H OH; + HyOHy) |
where ¢; (j =1,..., M), o, Bx and v (k =1,..., K) are constants and
1
(AOB)ijr = E(Aikle + AuBijk)

Similarly, the function a(r,H) appearing in Eq (3.8) is assumed in the form

L
a(r,H) = Y [G(r)(HIH @ Hy + ) +
=1

1~
+§51(T)HfH§(H1 @Hy+Hy ®@Hy) +..) + (3.16)
1
+fn(r)HfH§(H1<>H2 + HyOH; + )]
where

P P
a(r) = Z aypr? Fi(r) = Z’nprp Qpy -y Wip = const  (3.17)

The evolution equation (3.11)y, linear with respect to e, can be postulated
in the alternative form

. 1 1
H = 6,1+ 6oH + 65H? + dse + 505(He + eH) + 5<56(H?e +eH?)  (3.18)
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where , . . '
& =c +chtre+ ctrHe + ¢ trH%e (3.19)

Here cfl (1 =1,2,3; ¢ = 1,..,4), 44, 05 and Jg are functions of the inva-
riants of H. We observe that the representation (3.18) does not involve the

representation of fourth-order tensor.

Remark 3.1

o If B(H) =0 and B(H) = 0 then the bone remodelling process does not
change the material symmetry group. The bone density can then change,
though not the anisotropy directions.

e For B(H) =0 the anisotropy group can change. For instance, an ortho-
tropic material may become transversely isotropic (without rotation of
singled out anisotropy axes).

e Ifin the evolution equation (3.11) all functions do not disappear, then in
the process of functional bone adaptation the anisotropy axes can rotate.
Consequently, the material symmetry group can change. The simplest
evolution law leading to the rotation of the principal axes of bone ani-
sotropy results from Eq (3.18) and has the following form

H = ¢(He +eH)
where c¢ is constant.

o The adaptive theory elasticity proposed in Cowin and Hegedus (1976a),
Hegedus and Cowin (1976b) and Cowin and Nachlinger (1978) involves
only one scalar parameter related to the material density. Numerical
applications were given by Cowin et al. (1993), Levenston (1997) and
Luo et al. (1995).

Remark 3.2 The existence and uniqueness theorem due to Monnier and Tra-
bucho (1998) can be extended to the initial-boundary value problem of
adaptive piezoelectricity. We observe that these authors introduce a non-
local model involving the elastic moduli of nonlocal type and a parame-
ter 7. From the biomechanical point of view such a model involves cells
communicating with other cell in a certain neighbourhood. Anyway, the
passage to the classical model of adaptive elasticity (7 — 0) remains
open.
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4. Homogenization and bone remodelling

The bone tissue is a hierarchical multiphase material, inhomogeneous and
anisotropic. In this section we propose a model of bone remodelling which
exploits homogenization. Our approach applies both to compact and cancellous
bones.

Let Y be a basic cell (representative element) with holes T, p =1,..., P,
cf Attouch (1984). First, consider the case where bone tissue occupies the
domain Y \ JTp. The holes T}, are empty. We assume that the voids 7}, can

evolve and their evolution depends on Z, where
t
Z:/Uﬂ (4.1)
to

Here U stands for the velocity of the bone surface remodelling at a surface
point y € O0T,. Consequently, Z denotes the extent of bone deposition or
resorption. The macroscopic elastic potential is given by

Wh(eh7 é) =
(4.2)

ve[WKYHJTZD]}

; 1 :
:mf{ Y| /aijkl[egj(v) + et [efy(v) + epyldy

NJTo(2)
p

h

where 6321@g+2ﬁ) e= Y \UB(2)
Y 2\0y; Oy Y| -

The function U can be treated as a measurable quantity; otherwise an evo-
lution law has to be specified. The space H,,, (Y \ UT( )) is defined as

follows, cf Attouch (1984)

m%Y“JTZ» {veH%YuJTZgJ

v assumes equal values on the opposite faces of Y}

The regularity of perforated domains indispensable for performing homogeni-
zation was discussed in Acerbi et al. (1992) and Olejnik et al. (1992).
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Let us denote by ¥ a minimizer solving the minimization problem in the
right-hand side of Eq (4.2).
Then ; = ngl)ezl and the effective elastic moduli are given by

o*w, 1 v ED
h h B Xm
aijkl(é) 3eh 3%1 |Y| / Gijmn (5km51n + . ) dy (4.3)
NUT(2)
l;J »

The coefficients a;;x; appearing in Eq (4.2) were assumed to be constant. In
a more general case, important in the study of effective properties of bones,
these moduli can be assumed to depend on the macroscopic variable £ and
on the microscopic variable y € Y. Then a%kl(z, ) depends also on =z.

For the compact bones one distinguishes at least a triple hierarchy, cf
Telega et al. (1999). Eq (4.2) can easily be generalized to cover such a more
general model of hierarchic perforated material like bone.

Suppose now that the holes Ty, p = 1, ..., P, are filled with a ”"weak” elastic
material with elastic moduli 7b;;x;, where 7 > 0 is a small parameter. Then
the macroscopic elastic potential is given by

1

h
2|Y| / Qijkl [ez] + ez]Hekl + ekl]dy +

Wh(e" ¢) = mf{
U T»(2)

(4.4)

ve [H;er(Y)]a}

+2|Y| /b”“[eu( v) + e (e, (v) + exyldy
UTx(2)

Once the effective potential Wp is known, the macroscopic moduli can be
derived similarly as previously, cf Eq (4.3).

Remark 4.1 To better model the real behaviour of wet trabecular bone, the
elastic material in pores should be replaced with a viscoelastic mate-
rial imitating the marrow. Homogenization methods can still be used to
describe the macroscopic behaviour of trabecular bone.

5. Bone remodelling as an optimal design problem

The bone tissue may be viewed as a composite material consisting of two
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phases: the organic phase (1) (mainly collagen fibres) and inorganic phase (2)
(mainly hydroxopatite crystals). The elasticity tensor is then written in the
form, cf Francford et al. (1995)

a(z) = x1(z)ar + x2(z)ay ze (5.1)

where x, is the characteristic function of the material (1) and x2 =1 — x1.
Here {2 is an open bounded set in IR® and its closure {2 is identified with
the undeformed configuration of considered bone.

Let us examine first the so called compliance problem, cf Allaire and Kohn
(1993), Cherkaev and Kohn (1997), Lipton (1994) and the references cited
therein. The compliance is the work done in the structural domain {2 against
the body forces f = (f;) (1 =1,2,3) and boundary tractions g = (g;) by the
resulting elastic displacement u = (u;)

l(u) = [ fiu; dz + [ g;u;dl’ (5.2)
]

where I' = 02 denotes the boundary of 2. We assume that f € [H'(£2)3]*
and g € H-Y2(I")3. Particularly, this assumption includes f € L*(£2)3 =
[L2(2)]3 and g € L2(02)3.

The displacement field u solves the following variational equation

U € }JL(Q)3 : /aijkl(z)e,—j(u)ekl(v) dz =1l(v) Vv € }JL(Q)3 (5.3)
n

Obviously, mixed boundary conditions can be treated similarly. The constitu-

tive equation is classical
T =a(z) -e(u) (5.4)

To ensure solvability of the problem (2.2) the following condition has to be
satisfied
Ilir)=0 (5.5)

for all rigid-body displacements r.
The minimum compliance problem means evaluating

(M CP) min{l(u)}u satisfies Eq (5.3) and V3 > /X2 dz
o)

az)

Here V; is the maximum amount of material (2) allowed in the design and
Vo < |02| = vol(£2).
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We observe that the problem (M C P) may be viewed as a distributed-
parameter optimal control problem, where the control is a(z). By introducing
the positive Lagrange multiplier A associated with the volume constraint

V> [ @ do (5.6)
k]

we write the problem (M C P) in the form

min  max {2z(u)—/e(u)-a(z)-e(u) dz+/\/x2 iz} (5.7)
r

a(Z) wcH(2)3
0}

It is known that the last problem is ill-posed. Consequently, relaxation is re-
guired. Towards this end, the set of Jayouts is extended to include a composite
formed of the original constituents. The set of effective elastic tensors associa-
ted with all composites using materials a; and a is denoted by G. Let #;be
the volume fraction of material (2) (or inorganic part) in the bone, 0 < 8, < 1.
For fixed volume fraction 6, we denote the set of associated effective elastic
tensors by Gy,. An exhaustive characterization of Gp, is known in special
cases only, cf Allaire (1994), Allaire and Kohn (1993), Cherkaev and Kohn
(1997), Pedersen and Bendsge (1999) and the references cited therein.

To extend the design space we introduce the notion of generalized layout.
In our case it is given by a local volume fraction 62 in L°°(f2,(0,1]) and
an associated field ain L*(§2,T,) taking values in the set Gy, (z). This set
of tensor fields associated with the generalized layouts is denoted by C:’gz(,).
Here Ts4 denotes the space of fourth-order tensors C = (Cjj;i;) such that
Cijit = Criij = Cjikl-

The relaxed form of (5.7) is given by

min  max {2(u) - / e(u) - a(z) - e(u) dz + A / 02(z) dz}
r

min
026L°°(9,[0,1])ae502(,) uecH! ()3 A
(5.8)
The last problem is solvable. Due to the lack of space the last problem will
not be discussed here in detail. The reader is referred to Allaire (1994), Allaire
and Kohn (1993), Cherkaev and Kohn (1997), Lipton (1994). The presence
of the set 602(3) in the last problem implies that the optimal structure is
realized by a microstructure, particularly a laminar microstructure observed
both in cortical and concellous bones.
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Remark 5.1 An important point in the purely mechanical generalized mini-
mum compliance problem (5.8) is the functional (u). What loadings f
and g should enter this problem? It seems that by changing loads one
can simulate both resorption and apposition. The following problem also
arises: is it possible to describe by purely mechanical modelling the bone
resorption during prolonged inactive stage of lite?

Remark 5.2 The bone adaptation process is evolutionary. The volume frac-
tion 2 changes in time, i.e. fa(z,t),t € [0,T), and T is the remodelling
time. Its evolution can be described by

% = F(z,t) ze tel0,T) (5.9)
The right-hand side of the last equation can include both mechanical
and biological stimuli. Mullender and Huiskes (1995) proposed a sim-
ple regulatory mechanism, in which the osteocytes act as sensors of a
mechanical signal or "mechanoreceptors” and regulators of bone mass
by mediating the actor cells — the osteoblasts and osteoclasts. Now the

problem is modified as follows
find

) 1
min  max T{2/l(u) dt+

aeagz(z’t) :
T T
+0f!f2e(u(t)) -a(z, t) -e(u(t)) dzdt + ofz[ fo(x) da:dt}

subject to (5.9)

(5.10)

Here £ =L®((0,T), H'(2)*) and u(t) = {u(z, t)}a: € £2}. We observe
that the elastic moduli and the set Gjp, are time-dependent. It means
that changes of the local volume fraction @, can change the directional
properties of the microstructure of bone.

Remark 5.3 Bone is a microperforated composition. Its actual shape and
microstructure can be modelled as a shape optimization problem consi-
sting in seeking minimizers of the sum of the elastic compliance and of
the weight of a solid structure under a specified loading. Mathematical
framework allowing one such an optimization problem was elaborated
by Allaire et al. (1997).
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6. Final remarks

Francfort and Marigo (1993) developed a discrete damage evolution model
provided that stiffness drops from a® to a! and

a®>al>0 (6.1)

where the inequalities should be understood as inequalities between symmetric
fourth-order tensors, i.e.

€-a%-e>8-al-8>0 VeeT? €#£0 (6.2)

The damage process examined in Francfort and Marigo (1993) can describe
bone resorption (osteoporosis) provided that the final stiffness tensor a! is
known. This is a weak point of otherwise rigorous approach, which also involves
homogenization and relaxation.

Residual strains and stresses had been primarily discoverd in soft tissues,
cf Vaishnov and Vossonghi (1983), Chuong and Fung (1986). Next, they were
hypothesized to exist also in bone tissues, cf Tanaka and Adachi (1994). Con-
sequently, the following question arises: can bone remodeling be viewed as a
shakedown problem? The answer seems to be positive. However, now the ela-
stic moduli are time-dependent and classical proofs of shakedown theorems
fail. We recall the that wet bone is an elasto-plastic material ¢f Cowin (1989).

We have proposed a model of adaptive piezoelectricity. The model of ad-
aptive elasticity can also be generalized in different directions. For instance,
one can envisage adaptive thermoelasticity, etc.

Recently, Cowin (1997) severely criticized "Wolff’s law” claiming that its
rigid form has no sense. For historical comments on bone remdelling the reader
is also referred to Martin and Burr (1989) (cf also Currey, 1997).
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Modelowanie anizotropii kosci 1 jej przebudowy

Streszczenie

Przedyskutowano anizotropie tkanki kostnej w zakresie sprezystym i plastycz-
nym. Przeanalizowano réwnania adaptacyjnej teorii sprezystosci z ewoluujaca struk-
turg przy zastosowaniu funkcji tensorowych. Sformulowano réwnania adaptacyjnej
teorii piezoelektrycznodci. Zaproponowano ogdlny model dla przebudowy koéci w po-
wigzaniu z homogenizacja. Wysunieto hipoteze, ze proces adaptacji koci moze by¢
rozpatrywany w ramach teorii przystosowania. Rozpatrzono mozliwosé badania prze-
budowy kodci jako zadania optymalnego.
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