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In order to describe isotropic pore structure of a solid skeleton satura-
ted with a fluid, two internal state variables are introduced: volume
porosity f, and a structural parameter x. The internal friction in the
skeleton material is incorporated by a tensor-valued internal state va-
riable @. Thermal properties are described by a single entropy density
function 7 and two thermal state variables 8° and B7. In the energy
balance law, both heat fluxes appear and an added mass effect is incor-
porated to manifest the influence of the pore structure of the skeleton
on the fluid motion. Consequences of the second law of thermodynamics
are formulated in the form of four potential relations for stresses and
heat flux vectors together with a representation of interaction forces.
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1. Introduction

Constitutive modelling of fluid-saturated porous solids has been a subject
of wide discussion through the last two decades. Nonlinear models of such ma-
terials are based mostly upon the fundamental notions of the classical mizture
theory (Bowen, 1982), and its reformulated form — the theory of interacting
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continua (Green and Naghdi, 1965; Bowen, 1984) in which a fluid filled porous
medium is treated as a superposition of two immiscible continua: solid and
fluid, characterized by two independent velocity fields: v° and /. In such
approach the microstructure of solid-fluid mixture is not taken into account
in the formulation of balance equations and constitutive relations. However,
it has been observed that in a number of typical multiphase media, consisting
of an identifiable porous matrix and a fluid filling its pores, the internal geo-
metrical pore structure strongly influences the behaviour of phases inducing
the inhomogeneity of micro-velocity fields. This effect is regarded to be of
prime importance in understanding the acoustic properties of porous media
saturated with fluids.

Taking into account the fact that individual physical properties of im-
miscible constituents play important role in both the transport phenomena
and deformation processes of porous media, in the presented approach it is
assumed that in the constitutive modelling each constituent shall obey the
constitutive relations for that constituent alone. On the other side, interaction
forces appearing in linear momentum balance laws shall depend on gradients
of structural state variables and the relative velocity vector.

In the authors’ previous publications as well as in a number of other papers
(cf Biot, 1972; Bowen, 1982, 1984; Cieszko and Kubik, 1996a,b; Kaczmarek
and Kubik, 1985; Kubik, 1986, 1992; Kubik and Cieszko, 1987; Szefer, 1978)
devoted to modelling of fluid-saturated porous solids, the immiscibility effect
has been incorporated into description by introducing a parameter of volume
porosity characterizing the volume fraction of the fluid constituent. Thermo-
dynamic modelling of fluid-saturated porous solids is still being focused on.
Some recent contributions to this subject has been made by Svendsen and
Hutter (1995), and Wilmanski (1995).

The main aim of this paper is to propose a thermodynamic framework to
the previously developed mechanical model (cf Cieszko and Kubik, 1996a,b)
of a fluid-saturated porous solid. In order to consider micro-inhomogeneities
resulting from the pore architecture influence, an additional pore structure
characteristic is necessary (cf Kubik, 1992). In order to describe the structure
of a porous solid saturated with fluid in an isotropic case, two scalar dimen-
sionless internal state variables are introduced: a pore volume fraction f, or
a volume porosity, and a structural parameter &. The second variable de-
scribes an inhomogeneity of the fluid micro-velocity fields caused by the pore
structure of the skeleton.

To describe the internal friction in the skeleton, a tensor-valued internal
state variable o is introduced. Thermal properties are incorporated by a sin-
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gle entropy density function 7 and two thermal state variables B¢ and B,
following the approach of Kositiski (1998). In the previous publication (see
Cieszko and Kubik, 1996a,b) an isothermal theory of fluid-saturated porous
solid with isotropic pore structure undergoing pure mechanical large deforma-
tions was developed within the Eulerian formalism. Here a thermodynamic
model is proposed within which the energy balance law contains both the heat
fluxes and an added mass effect. The added mass effect represents the dyna-
mic coupling between constituents caused by the influence of pore structure of
skeleton on the fluid motion. This leads to the complete representation of the
kinetic energy by macroscopic quantities. The second law of thermodynamics
in the inequality form is used. Consequences of this inequality are formulated
in the form of four potential relations for stresses and heat flux vectors. An
extra thermomechanical coupling effect related to the spatial gradient of the
scalar internal state variables 8° and A7 is obtained. Moreover the interaction
force is determined in terms of the spatial gradient of both structural state
variables and the relative velocity vector.

2. Main assumptions

In this section we repeat the main model assumptions of the authors of
the previous paper (Cieszko and Kubik, 1996a,b). On the macroscopic level,
porous skeleton saturated with a fluid is modeled by:

— two partial mass densities

p° and 7

A

— two effective mass densities

£

P and pf

related to partial densities by
P=fp’  and B =(1-f)p

here f, € [0,1] is a fluid volume fraction or the volume porosity

— two average (particle) velocities of the constituents

v and o
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— two continuity equations

OP° | i sy —
—g+dlv(p'v)—0

o

iv(gfoh) =
5 + div(p’v’) =0 (2.1)

In order to include, on the phenomenological level, the influence of the
skeleton pore structure on the kinetic energy, one incorporates an added mass
effect in the balance of mass. Thus, it is assumed that

e There are two virtual components:

— 1%¢ component — porous skeleton and fluid associated with it, mo-
. . L1
ving with velocity v equal to v°

: . 2
— 2md component moving with velocity v equal to v° + (v — v*)/xk
here k € [0,1] is a structural parameter.

The partial mass densities and velocities of the physical components and
that of virtual ones are related as follows

1 2
p=7"+(1-r)p p = rp!

(2:2)
'vf:(l——fi)'ll)+n12) v =0

e The total density of energy E of the medium is

1.1 22 2
E:#é+ﬂ&+§w%$+%~w

1 2
While 7°v* + pfof = P’ll) + p12), in general, due to the added mass effect

we have . )
, 11 22 2
7 v+l vl £ pvovt+ v

Remark 1. Notice that the particle velocity vectors vf, v° are the convex

. - . 12,
combinations of the velocities of virtual components o, v in (2.2).

3. Balance laws

The corresponding continuity equations for densities of virtual compo-
nents are .
22

2
ap . 11 ap .
e + div(pv) =g N + div(pw) = —g (3.1)
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with the mass exchange intensity

s=7 D0 -]
where Dn 3
Dt() (3t+v grad)()

Let T® and T7 be Cauchy stress tensors of both physical constituents
then Cauchy stresses of the virtual components are

1 2
T=T+01-xT' T=xT/ (3.2)

and the motion equations

1 D' g 1 1
p—D—tv leT+Pb+1l‘ +2g( )

2 D? ; 2 9 , 1

where 7! = —? =: 7 interaction forces.
Remark 2. Notice that the representation (3.2) is the consequence of relation
(2.2) and requirement that the fluxes of powers of mechanical forces of

physical and virtual components are equal
1 29 .
To + To = T%° + T/of (3.4)

Now we formulate the balance law of energy for the system, which extends
the version proposed by Cieszko and Kubik (1996a,b), including terms related

to thermal phenomena: heat fluxes g¢°, ¢/ and body heat supplies p°ré and
7 !
ol

(3.5)
11 2 2 9 1 PN oss oy ff
=T-L+T-L+7x-(v—0)— div(ig® +¢/) +5°7° + p'r

L 1 2 2
where L:= grad » and L := grad v.
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4. Consequences of the second law of thermodynamics

In the paper, a Clausius-Duhem inequality is assumed for the formulation
of the second law of thermodynamics

4 ¢ ¢ re g1
5P+ P fn) + div (p*no* +piml + o+ ) 2P 19S+Pf19f

where 9% := 0ef/0n and 9 := def /On are temperatures of skeleton and fluid
constituents, respectively, and h is an extra entropy flux.

Now constitutive assumptions are made in which the so-called equipresence
principle (Bowen, 1982) is applied separetely for each phase.

e The fluid component is thermo-barotropic
e/ = el (0,77, 11, VA7)
Tf = Tf(n’ —p—f7 f’U? Vﬂf)
o =o' (0,7, £, VH)

e The solid skeleton is thermo-viscoelastic

ef = 65(77,1?,?5, f’U?K’7 V:Bs7a)
T = Ts(nvFa—ﬁsaf’U’K'u V:Bs7a)
qs = qs(”77Faﬁsaf’v,K" Vﬁsaa)

where F denotes the deformation gradient of the skeleton, and the
tensor-valued internal state variable a is responsible for internal friction
of the solid skeleton and satisfies the evolution equation

2 #a) + div(pa®v) = p°A

e Both structural parameters f, and & are internal state variables and
satisfy two equations

%(ﬁf fo) + div(p’ f0%) = p'H

%(ﬁsm) + div(p’kv°) = p°K
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e Two scalar thermal variables #° and (7 are internal state variables and
satisfy two equations

0 N —
a—t(b‘fﬁf)Jr div (p7 6707 = 5/

0
5;(P'08°) + div(p°B°v*) = p°F*
e Both temperatures are equal and the flux A vanishes

P=9T=9 and k=0 (4.1)

e Functions A, H, F*, Ff, H and K depend at most on the following
set of variables: 7°, p/, f,, &, 0, F, o, 3%, Bf, V3, VB, and their
forms are to be determined on the basis of physical interpretations and
experimental measurements.

Thermodynamic postulate: every smooth solution to all balance, con-
stitutive and evolution equations should satisfy the second law of thermody-
namics.

Theorem. The necessary and sufficient conditions of fulfilling the postu-
late are:

1. Four potential relations

1 Oef de’ 1
_ —f\29%" N (S f fr1 ] s s
T+(1-k)(p) (%fl p 6F+19(T VBT ® ¢ (1 -k)+7°V ® ¢°)
2 f 1
T= _(pf)2§e_,i1 + - (r'vp © ¢ k)
op! 4
(4.2)
def
f— _5f9(-fy-1_%5
Oe®
q_ _ 5 s\—1
2. Residual internal dissipation inequality
1 def 2 1 2 1
——rfvpf o af - (5522 1] . (5 _ — (9 —
[ 57 VG ®q +(p)8ﬁf1J (v—-v)® gradk —m- (v — v) +
Oe’ 2 1 Oe* de® Oe’
-——s— ° —_— —_S—- —_S—-.—. -——s_—
pafvngradfv w-v)-p 6nK P % A panH—i- (4.3)
oef 1 ,0Fs 1 ,0Ff
—pf 28 VB + - f T af vl >
p 8va+?97- 8ﬁsq Vg +197 Bﬁfq Va7 =20
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where

OF%\ - OFf\
= () o= (%)

. . s o 2 1
Corollary. If the interaction force T is a linear combination of v — v, grad k
and grad fy, i.e.

T = av(t?) - 11)) + A, grad s + ay, grad fy (4.4)

with some coefficients a,, A and ay,, then the residual dissipation
inequality (4.3) is satisfied iff the following relations hold

ay <0 af, = —ﬁsg; K
Y (4.5)
» Oef
Ao = -5V @ + (p7) 1
opf
and 0 0 0 et
_,0¢’ s0€e° s 0e’ _y0e
P K — P — >
BKK " e A pava p (9va/0 (4.6)

is satisfied.

5. Conclusions

Notice that the last relations (4.5) lead to a more general representation
of the interaction force ; in our previous publications particular cases of this
representation have been given, however, with vanishing coefficients a, and
A, (Cieszko and Kubik, 1996a,b).

In the further research extra dependence of the internal energy functions on
grad k will be investigated together with the full representation of the entropy
flux, i.e. with h # 0, following the suggestions of Wang and Hutter (1999).
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Termodynamiczny model oérodka porowatego nasyconego ciecza

Streszczenie

Zaproponowano prosty model termodynamicznego ofrodka porowatego nasyco-
nego cieczg. Dla opisu izotropowej struktury poréw stalego szkieletu nasyconego cie-
czy, zostaly wprowadzone dwie skalarne zmienne stanu: objetosciowa porowatodé f,
i parametr strukturalny x. Lepko§¢ wewnetrzna materiatu szkieletu zostala uwzgled-
niona poprzez tensorows zmienng stanu . Wlasnoéci termiczne zostaly opisane przez
pojedyficzg, funkcje gestosci entropii 7 i dwie termiczne zmienne stanu gei pf.
W prawie bilansu energii wystepujg oba strumienie ciepla, za$ uwzglednienie efektu
masy dolaczonej odzwierciedla wplyw struktury poréw na ruch cieczy. Sformulowano
konsekwencje drugiego prawa termodynamiki w postaci 4 zwigzkéw potencjalnych dla
naprezeri i wektoréw strumienia ciepla wraz z reprezentacjy sit oddzialywania.
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