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The aim of this paper is to prove that micro-periodic composites made of
linear-elastic isotropic components and having a hexagonal representative
cell with the triple axis of material symmetry are also isotropic in the
macro-scale. The prove of this statement will be given on the basis of the
tolerance averaging method of modelling, Wozniak and Wierzbicki (2000).
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1. Introduction

There are two factors which significantly influence the description and
modelling of observed real bodies: the scale and accuracy of measurements.
For example, in one scale it can be assumed that the body is continuous,
however in other, a smaller scale, it can be observed that the body is not
continuous. In the case of displacements in the ”lower precision” scale, the
displacements can be interpreted as functions slowly varying together with
their derivatives. In the ”higher precision” scale the situation can be different.
On these slowly varying displacements small oscillations are superimposed,
which can be described by oscillating functions with a small period. These
two scales can be called macro- and micro-scale, respectively. Modelling of
the phenomena in these two scales can be performed with a certain accuracy.
The term “accuracy” can be formalised in different ways. A useful tool for
the description of the accuracy is the so called toleration relation or shortly
tolerance, cf. Zeeman (1965), Wozniak (1983), Wozniak and Wierzbicki (2000).

If a nonhomogeneous elastic body is periodic in the micro-scale (a micro
periodic body) than many difficulties arise during finding solutions to special
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problems. This situation often excludes application of analytical and computer
methods to the analysis of the problems. Nonhomogeneous bodies which are
periodic in the micro scale can be modelled in the macro-scale by applying one
from the averaging methods. After the averaging the description of the body
can be assumed as homogeneous. However, in the averaging model (macro-
model) it is necessary to include the influence of the micro-nonhomogenity on
the solution.

Among the macro-modelling methods of periodic media asymptotic the ho-
mogenisation described by Bensoussen et al. (1978), Sanchez-Palencia (1980),
Jikov et al. (1994) can be used. However, in thas model it is impossible to
describe such phenomena as the dispersion of waves and the existence of
higher-order motions and higher free vibration frequencies. Another example of
macro-modelling is the averaging applying nonstandard analysis, cf. Wozniak
(1987). The model of a micro-periodic body obtained thas way helps conside-
ration of the influence of the micro-nonhomogenity by introducing additional
quantities, which are called microlocal parameters. This model was applied
to the analysis of many equilibrium problems, but in dynamical problems is
less useful; see for instance Wozniak and Wierzbicki (2000). To remove this
drawback the tolerance averaging as given by Wozniak (1993, 1997), WoZniak
and Wierzbicki (2000) was applied. The basic assumptions of this method will
be presented in the next section.

In many cases micro-periodic bodies, such as composites, are isotropic in
the micro-scale. In the macro model, i.e. after the averaging, the description of
the body usually becomes anisotropic. Thus, the following question appears:
are there any isotropic micro-periodic bodies being in the macro-scale (i.e.,
after averaging) isotropic as well?

The positive answer to this question in the framework of the asymptotic
homogenisation theory and for the heat condition problem can be found
in Jikov et al. (1994). So far, for the linear elasticity problem it is an open
question, cf. Jikov et al. (1994), p.380. This problem was also analysed in pa-
pers by Lewirski (1984, 1985, 1988), who considered bodies with a honeycomb
structure using the Cosserat theory. More general approaches were analysed
by Cielecka et al. (2000), Wierzbicki and Wozniak (2000).

The aim of this paper is to prove that micro-periodic composites made
of linear-elastic isotropic components and having a hexagonal representative
cell with the triple axis of material symmetry (cf. Fig. 1) are also isotropic in
the macro-scale. The prove of this statement will be given on the basis of the
tolerance averaging method of modelling, WozZniak and Wierzbicki (2000).
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Fig. 1.

2. Preliminaries

For every micro-periodic nonhomogeneous body in the reference position
{2 a representative volume element A with the characteristic diameter [ can
be assumed. For every z € {2 define A(z) = 2 + A. The set of these z € 2
for which A(z) C {2 is denoted by 2. Let ¢(-) be any integrable function
defined in {2. The A-averaging of ¢(-), which is denoted by (p)(-), is defined
on {24 as

1
(0)(®) = & (j | o(y) dy (2.1)

Let us denote by F(£2) a class of real valued functions defined and bounded
in §2 together with all their derivatives. Let &(-) be a functional defined on
F(£) a real number assigning to every function F(-) € F(£2), &(F) > 0.
£(F') defines the accuracy of computation of values of F'(-), and is called the
tolerance parameter. Hence, the tolerance = is given by

Flz) = F(y) < [F(z) - F(y)| < e(F) (2.2)

The triple element consisting of the class of the functions F(£2), the tole-
rance functional £(-) and the characteristic diameter [ of the representative

element A will be denoted by 7 and referred to as the tolerance system, cf.
Wozniak and Wierzbicki (2000)

T = (F(£2),£(:),1) (2.3)

The bounded real valued function F(-) € F(£2) will be called slowly va-
rying if for every z € 24 condition y,,y, € A(z) implies F(y,) & F(y,),



152 W. NAGORKO, M. WAGROWSKA

where the tolerance = is defined by the tolerance parameter (F'). The space
of the functions slowly varying together with all their derivatives that occur
in the problem under consideration, is denoted by SV (7). Every continuous
function () € F(§2) is called a periodic like function if for every £ € 24
there exists A-periodic function ¢,(-) such that for every z € A(z) relation
o(y) = @ (y) is satisfied, where the tolerance 2 is defined by the tolerance
parameter &(p). The space of the periodic-like functions with all their deri-
vatives is denoted by PL(T). The function ¢4(-) is called the A-periodic
approzimation of the function ¢(-). '

Let p(-) be a positive valued A-periodic function. Every function ¢(-) €
PL(T) is called the oscillating periodic-like function (with the weight p) if
for every z € 2, the relation (pp) = 0 holds.

The concept of functions which are A-periodic, slowly varying, periodic-
like and the concept of the A-periodic approximation of the function are used
in the tolerance averaging, which will be realised subsequently. For detailes
the reader is referred to Wozniak and Wierzbicki (2000).

Subsequently, we shall deal with micro-periodic linear elastic composites.
The considered problem is assumed to be plane in the Carthesian coordinate
system (z4) € £2, @ = 1,2, and hence (2 will be treated as a plane re-
gion. It is assumed that all Greek subscripts run over 1,2 being related to the
coordinates .

Let us denote the displacement vector by u, and the body force by by,
o = 1,2, which depend on the points z = (z,) € §2 and time #. The mass
density will be denoted by p = p(z).

The constitutive relations are assumed in the well known form

Oaf = Bd576576

where Bgg,s is the tensor of the elastic module, 0,4 is the stress tensor
and €44 is the strain tensor. The local relation describing the dynamics of the
body is

(Baprydtiy,a), — Plia + pbo =0 (2.4)

Relation (2.4) together with the respective boundary, initial and continuity
conditions represent a system of equations for the displacements. In the case
of microperiodic nonhomogeneous bodies the components of the tensor field
Bapys(-) and the mass density scalar field p(-) are A-periodic functions. For
the formulation of the tolerance averaged model it is enough to use the ma-
thematical concepts as described in Section 2 using certain tolerance system
(2.3) and the heuristic assumption, which states that for every t the displace-
ments uq(-, 1) in the problem under consideration are periodic like functions;
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ua(-,t) € PL(T). As the consequence of this assumption it is possible to re-
present the displacements in the form

uﬂt(':t) =u?x(':t) +'Ua(':t) (25)

where u0(-,t) € SV(T) and wa(-,t) € PLP(T). The prove of this fact was
given by Wozniak and Wierzbicki (2000). In this reference it is also shown that
for 4 we obtain the equation

((Baﬁ'y(?)ug,é + (Baﬁ'yé?)'r,é)),ﬁ - <p>ﬁ'g: + (pba> =0 (2'6)

and the following variational periodic cell problem: find in every A(z), z € 2
a A-periodic function vz(y,t), ¥ € A(z), such that (pvze)(Z) = 0 and the
condition

(Bafy6Vary,6Va ) (Z; 1) + (pizavy) (2, t) = 0

= <Bar@7§?}:;,5>($, t)ug,ﬁ (.’.L', t) - <pba‘U;)($, t)

holds for every A-periodic test function v* satisfying (pv}) = 0.
The approximate solution to the above variational cell problem will be
obtained by the orthogonalization method and assumed in the form

vza(y, 1) = hy (Y)W is(z, ) A=1,2,...N (2.8)

where hg('y) are the given periodic shape functions and Wc;‘lﬁ(:c,t) are the

unknowns which are assumed to be slowly varying functions, WS(-t) €
SV(T). From (2.5) and (2.6) we finally obtain

(Bagys)ud 5 + (Bapashis s WA, 5 — (p)ild, + (pbe) = 0

(Bapys hﬁnhrﬁé)wg + <Phjhf >Wcﬁf = _(Baﬁ’féhﬁ,é)“gn - {phﬁ‘ ba)
The above equations can be also written in the form

Sap,p — (pYitg + (pba) =0
(2.9)

(phiyyhy )Wey, + Hig, + (phiba) = 0
where

A A
Saﬁ = (Baﬁfyé)ug’é + (Baﬁ'yéhu,cS)W’w (2_10)

o, = (Bagnahyiyhuis)W, = (Bapahiug)u,,
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The above system of equations for the unknown functions u0(z,1),
W&"‘ﬁ (z,t) has constant coefficients, and together with the conditions

ul(-,t) € SV(T) W2s(-,t) € SV(T) (2.11)

and the formula
ue 2 ud + hE Wi (2.12)

represents the tolerance averaged model (macro-model) of the linear micro-
periodic bodies.

3. Analysis

Now assume that:

e components of the micro-periodic composite are made of isotropic ma-
terials,

e representative volume element A can be taken in the form of a hexagonal
shown in Fig. 1,

e material properties of the hexagonal representative element A in Fig.1
are invariant under rotation by the angle 27n/3 for n = +£1,+2, ..., i.e.
A has the triple axis of material symmetry.

It follows that

Bopys(2) = A(Z)dapdys + p(2)(0arydps + asdpy) (3.1)

where the Lame modulae (), u(-) as well as the mass density p(-) in A are
invariant under rotation of the coordinates 0z;z9 (Fig.1) by 2mn/3. Hence,
variational cell problem (2.7) has to be invariant under the aforementioned
rotations. It follows that also shape functions (2.8) have to satisfy the above
invariance condition and will be assumed in the form (here and afterwards
summation over a = 1,2,3 holds)

ha(."ﬂl,.’ﬂg) - g"‘(ml,:cg)tg o = 1,2 a = 1,2, 3 (32)

which is related to the case N =1 (i.e. instead of h/, we write hy), and t% are
components of the three unit vectors t* shown in Fig. 1. The scalar functions
g® are assumed to be known. Vectors t* have components: t' = (1,0,
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2 = [-1/2,4/3/2], t3 = [~1/2, —/3/2]. Taking into account (3.2), formulae
(2.8), (2.12) assume the form

Ua(Ys ) = uq (¥, t) + 9*(W)t5Wap (¥, 1) (3.3)
It is easy to prove that

V3 . V3, 11}

1
grad92 . [— 59‘1,1 + 79 2 79 1= 59 2

1, V3, 3, 11].

grad g° = [—59 S R L AR

Taking into account these relations the expression g“,at% can be presen-
ted as

3 3
g% atg = 591,1 3 ! 9eap
where
0 for a=p
Eaf = 1 for a= B =2
-1 for a=2 p=1
and hence
3 3
hpa = 29 1008 — 09 26 (3.4)

Substituting (3.4) and (3.1) into (2.10), we obtain

Sag = ("\>5Ctﬁ’u‘g,’y + (#)(ug,ﬁ + 'U'?a,a) + (Al)da,@WW + (3.5)

+<ﬂl)(waﬁ + Wﬁ&) - (#2)(Eﬁawat5 +5aaWﬁ5) - (A2>5a,@550W50

where (f*) = (3/2)(fg";) for f = A, and i = 1,2. Substituting (3.4) and
(3.1) into (2.10)2 we obtain

Hog = (Muge = (\)ergugy + (') (ug 0 + dagul ;) -

— () (epeul ¢ + €agtl ) + [N Wac +
(3.6)

+<#H)(W£a + 0o Woy) + ()\22>Wa£ + (ﬂw)(gaﬁgﬁnwﬁn + Eﬁﬁganwﬁn)} -

_<#12)(5QEEBHWBH + eaeWap + €anWey + €86 W)
where (f9) = (9/4)(fg"i915) for f=Xpand (4,5) = (1,1),(1,2),(22).
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The first one from Eqgs. (2.9) retains its form

Sap,p = (PYia(pbe) =0 (3.7)

while the second equation, under denotations Wo, = W, Hoe = H éf, takes
the form

(phehn)Way + Hag = (pheba) (3.8)

By means of (3.2) we have (ph¢hy) = (pgg® )t‘gt% where summation over
1,2,3 for @ and b holds. Let us observe that

(pg'g") = (pg’g”) = (pg°g°)
(pg'9®) = (pg°g®) = (pg’g")
It follows that
(pheh) = (p(a" VL) + 200" %) (thet2) + ety + et
it can be shown that

o 93
gn:§6€ﬂ

Hetn) + Hetay + Hetn) = ‘%5&
and hence
{phehn) = poey
where we have denoted
= 210" (6" = )

It follows that the second one from equations (2.9) can be reduced to the final
form

m:::{ + Ho:.ﬁ - (phfba> =0 (3.9)

Equations (3.5)-(3.9) constitute the special case of equations (2.9) and
(2.10), which takes place for the class of composites specified at the begining
of this section, and on the assumption that the shape functions are assumed
in the form (3.2).



A CONTRIBUTION TO MODELLING OF COMPOSITE SOLIDS 157

4. Conclusion

On the grounds of the above analysis we conclude that the tolerance ave-
raged model of the composite under consideration is described by equations
(3.5)-(3.9) together with conditions (2.11), (2.12). It can be seen that the
obtained model of the composite is isotropic. It means that micro-periodic
composites made of linear-elastic components and having the hexagonal re-
presentative cell with the triple axis of material symimetry are isotropic also in
the macro-scale. The above statement holds on the assumption that the shape
function in the tolerance averaging are taken in the form (3.2). The applica-
tion of Egs. (3.5)-(3.9) to certain special dynamic problems will be given in a
separate paper.

10.
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Modelowanie kompozytéw z trdjosiows symetriag

Streszczenie

W pracy rozwaza sie kompozyty sprezyste o mikroperidycznej strukturze, ktérych
elementy reprezentatywne majg tréjosiows symetrie. Wykazuje sie, ze takie ciatla maja
w modelu otrzymanym w wyniku zastosowania techniki u$redniania tolerancyjnego
wlasnoéci cial izotropowych.

Manuscript received September 4, 2001; accepted for print October 2, 2001



