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The problem of radial vibration of a thick-walled spherical casing, loaded
with an internal pressure, which is a time function, is studied. We assu-
med that the material of the casing is incompressible. Furthermore, the
linear elasticity theory is applied in the considerations. By means of the-
se simplifications, an analytical solution of dynamics of the thick-walled
spherical casing loaded with the internal pressure has been obtained.
This solution may be used for estimation of strength of spherical balli-
stic casings which are applied to explosive driven specimen in ring tests.
Moreover, the results of this paper contribute to the theory of vibration
of continuous engineering systems.
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1. Introduction

One of experimental methods on investigating mechanical properties of dyna-
mically loaded materials is the ring test method (Włodarczyk and Janiszewski,
2004; Włodarczyk et al., 2005b). In this method, a thin-walled ring made of the
tested material is driven by detonation products of High Explosive (HE) or by
a high energy impulse of an electromagnetic field, and the radial displacement
of the ring or velocity of its expansion is recorded.



22 E. Włodarczyk, M. Zielenkiewicz

Thick-walled metal casings of cylindrical or spherical symmetry are used
to eliminate the influence of perturbations caused by HE detonation products.
The thin-walled ring is placed on the external surface of the casing that is
fully or partially filled with HE. After detonation, the compression shock wave
propagates in the casing wall, which reflecting from the ring contact surface,
drives it up to high velocity. Reaction of high explosive detonation products
with various geometry casings takes place also in artillery shells, grenades and
bombs as well as in barrels of projectiling systems (Walters and Zukas, 1989;
Włodarczyk et al., 2004). These problems are the subject of various theoretical
and experimental researches.

Radial vibrations of a thick-walled pipe forced by internal surge-pressure
uniformly distributed along its length, was studied in Włodarczyk et al.
(2005a). The material of the pipe was approximated by an incompressible
linearly-elastic medium. For this kind of material, a closed-form analytical so-
lution to the problem of dynamics was obtained. It was found that the pipe
made of an incompressible material, loaded by an internal pressure, responds
like a system with one degree of freedom. For example, a pipe loaded with a
rapidly applied and constant internal pressure vibrates with a constant angu-
lar frequency ω0 around the state determined through the static solution to
Lame’s problem.

In this paper, an analogous problem of a thick-walled spherical casing has
been considered. The comparison of analytical results determining dynamical
states of both kinds of objects has significant practical meaning and is an
additional contribution of knowledge to the theory of vibrations of continuous
media.

2. Formulation of the problem

Dynamic states of the radial displacement and of the stress as well as strain in
a spherical casing loaded by an internal pressure p(t) have been determined.

Let a and b denote the internal and external radii of the casing. The
problem has been solved in the spherical system of Lagrangian coordinates
r, φ, θ. Taking into account spherical symmetry, the problem can be assumed
as a spatially one-dimensional boundary value problem. Therefore, the states
of stress and strain in the material of the casing can be represented by the
following components:
σr – radial stress
σϕ = σθ – tangential stresses
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εr – radial strain
εϕ = εθ – tangential strains.

The rest of components of the stress and strain tensors equal to zero in
this coordinate system.
The problem has been solved according to the linear elasticity theory.

Therefore, the following relations can be written (Nowacki, 1970)

εr(r, t) =
∂u(r, t)

∂r
εϕ(r, t) = εθ(r, t) =

u(r, t)

r
(2.1)

σr(r, t) − σϕ(r, t) = 2µ(εr − εϕ)

where u and r denote the radial displacement of an infinitesimal element of
the casing and its Lagrangian coordinate, while µ denote Lame’s constant

µ =
E

2(1 + ν)
(2.2)

The symbols E and ν denote Young’s modulus and Poisson’s ratio.
Using the Lagrangian coordinate r for the infinitesimal element and taking

into account the spherical symmetry and the mass conservation law, it can be
written

(r + u)2
(

1 +
∂u

∂r

)

=
ρ0
ρ
r2 (2.3)

where symbols ρ0 and ρ denote the initial and current density of the material
of the casing.
For metals exposed to pressures of the order of a few thousands MPa, it

can be assumed that ρ ≈ ρ0 = const . This simplification has been discussed
in Włodarczyk and Janiszewski (2004). The error caused by this is less than
a few percents. Taking into account this assumption, for small strains

εϕεr =
u

r

∂u

∂r
≈ 0 ε2ϕ =

(u

r

)2

≈ 0

equation (2.3) can be reduced to the following form

∂u

∂r
+ 2
u

r
= 0 (2.4)

Using the Lagrangian coordinate r to formulate the condition of dynamic
equilibrium, the equation of motion of the infinitesimal element, after trans-
formation, can be written as

ρ0
∂2u

∂t2
=
(

1 +
u

r

)2∂σr
∂r
+ 2
(

1 +
u

r

)(

1 +
∂u

∂r

)σr − σϕ
r

(2.5)
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For small strains, and neglecting small quantities of higher orders, equation
(2.5) can be reduced to the following form

∂σr
∂r
+ 2
σr − σϕ
r

= ρ0
∂2u

∂t2
(2.6)

The linearized system of equations (2.4) and (2.6) has been solved for the
following boundary conditions

σr(a, t) = −p(t) for r = a

σr(b, t) ≡ 0 for r = b

u(r, 0) = 0 and υ(r, 0) =
∂u

∂t

∣

∣

∣

∣

t=0

= 0

(2.7)

The structure of the analytical solution to the above formulated problem
has been presented below.

3. Analytical solution to the problem

The general solution of equation (2.4) has the following form

u(r, t) =
C(t)

r2
(3.1)

where C(t) denotes a continuous and twice differentiable time function.
From expressions (2.1) and (3.1), we have

εr(r, t) = −2
C(t)

r3
εϕ(r, t) = εθ(r, t) =

C(t)

r3
(3.2)

σr(r, t) − σϕ(r, t) = −6µ
C(t)

r3

Upon substitution of expressions (3.1) and (3.2)3 into equation of motion
(2.6) and integration in respect to r, the following expression has been obta-
ined

σr(r, t) = −4µ
C(t)

r3
− ρ0
C̈(t)

r
+A(t) (3.3)

where C̈(t) = d2C(t)/dt2, and A(t) denotes an arbitrary time function. From
boundary condition (2.7)2 and solution (3.3), we obtain

A(t) = 4µ
C(t)

b3
+ ρ0
C̈(t)

b
(3.4)
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Finally, after substitution of expression (3.4) into equation (3.3) and simple
transformations, the radial stress σr(r, t) can be expressed by the following
formula

σr(r, t) = ρ0
r − b

br
C̈(t) + 4µ

r3 − b3

b3r3
C(t) (3.5)

In turn, after substitution of expression (3.5) into boundary condition
(2.7)1 and transformation, we have

C̈(t) + 4
µ

ρ0

b2 + ab+ a2

a2b2
C(t) =

ab

ρ0(b− a)
p(t) (3.6)

Let us introduce the following symbols

c =

√

µ

ρ0
β =
b

a
(3.7)

ω20 = 4
µ

ρ0

b2 + ab+ a2

a2b2
= 4
( c

a

)2β2 + β + 1

β2

where c denotes the propagation velocity of a transverse wave in the material
of the casing, and ω0 is the angular frequency of its free vibrations. It has been
found that, similarly to the incompressible pipe (Włodarczyk et al., 2005a),
the thick-walled spherical casing has only one angular frequency (pulsatance)
and responds like a system with one degree of freedom.
Taking into account expressions (3.7) and (2.7)3, the function C(t) can be

determined by the following equation

C̈(t) + ω20C(t) =
a

ρ0

β

β − 1
p(t) (3.8)

with the homogeneous initial conditions

C(0) = 0 Ċ(t) =
dC(t)

dt

∣

∣

∣

∣

t=0

= 0 (3.9)

The solution to equation (3.8) with initial conditions (3.9) has the following
form

C(t) =
a

ρ0ω0

β

β − 1

t
∫

0

p(τ) sin[ω0(t− τ)] dτ (3.10)

In turn, from equation (3.8), we obtain

C̈(t) =
a

ρ0

β

β − 1
p(t)− ω20C(t) (3.11)
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As it can be seen, the function C(t) is determined by means of formula
(3.10). In turn, the function C(t) fully determines all unknown quantities of
the problem, namely

u(r, t) =
C(t)

r2

υ(r, t) =
∂u

∂t
=
Ċ(t)

r2
Ċ(t) =

dC(t)

dt

εr(r, t) =
∂u

∂r
= −2

C(t)

r3
εϕ(r, t) = εθ(r, t) =

u

r
=
C(t)

r3
(3.12)

σr(r, t) =
1

β − 1

(

1−
b

r

)

p(t) + 4
µ

b3

[

1−
( b

r

)3

−
b2 + ab+ a2

a2

(

1−
b

r

)]

C(t)

σϕ(r, t) =
1

β − 1

(

1−
b

r

)

p(t) + 2
µ

b3

[

2 +
( b

r

)3

− 2
b2 + ab+ a2

a2

(

1−
b

r

)]

C(t)

If the pressure inside of the casing is generated statically, i.e.: p(t) = ps =
= const , then C(t) = Cs = const , C̈(t) = 0, and taking into account expres-
sion (3.5), we have

σr(r, t) = σrs(r) = −4
µ

b3
b3 − r3

b3 + r3
Cs (3.13)

Subsequently, from the boundary condition σrs(a) = −ps and expression
(3.13), we obtain

Cs =
1

4

ps
µ

a3b3

b3 − a3
=
1

4

ps
µ

β3

β3 − 1
a3 (3.14)

Through replacing the function C(t) with the symbol Cs in expressions
(3.12)1,3−5, the unknown quantities of the problem can be determined for
the static load.

4. Dynamic state of parameters of the spherical casing loaded

with an internal surge pressure p = const

In order to simplify quantitative analysis of the particular parameters: displa-
cement, velocity, strains and stresses, the following dimensionless quantities
have been introduced
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ξ =
r

a
η =

t

T0
β =
b

a
U =
u

a

V =
υ

c
C =

C

a3
F =
µ

p
Sr =

σr
p

Sϕ =
σϕ
p

Us =
us
a

Cs =
Cs
a3

Srs =
σrs
ps

Sϕs =
σϕs
ps

ω0 =
ω0
(c/a)

(4.1)

where T0 denotes the natural vibration period of the casing

T0 =
2π

ω0
(4.2)

After substitution p(τ) = p = const into expression (3.10), integration
within the range 0− t and taking into account dimensionless quantities (4.1),
we obtain

C(t) =
1

4F

β3

β3 − 1
(1− cos 2πη) = Cs(1− cos 2πη)

(4.3)

Cs =
1

4F

β3

β3 − 1

The remaining quantities determining the mechanical state of the casing, ac-
cording to expressions (3.12), (3.13) and (4.3), can be written as follows:
— for the dynamic load

U(ξ, η) =
Cs
ξ2
(1− cos 2πη) (4.4)

V (ξ, η) =
1

2F

β2
√

β2 + β + 1

β3 − 1

1

ξ2
sin 2πη (4.5)

εϕ(ξ, η) = −
1

2
εr(ξ, η) =

Cs
ξ3
(1− cos 2πη) (4.6)

Sr(ξ, η) = −
1

β3 − 1

[(β

ξ

)3

− 1
]

+Ar(ξ) cos 2πη (4.7)

Ar(ξ) =
1

β3 − 1

[(β

ξ

)3

− (β2 + β + 1)
(β

ξ
− 1
)

− 1
]

(4.8)

Sϕ(ξ, η) =
1

2(β3 − 1)

[

2 +
(β

ξ

)3]

−Aϕ(ξ) cos 2πη (4.9)

Aϕ(ξ) =
1

2(β3 − 1)

[(β

ξ

)3

+ 2(β2 + β + 1)
(β

ξ
− 1
)

+ 2
]

(4.10)
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ω0 = 2

√

β2 + β + 1

β
(4.11)

— for the static load

Us(ξ) =
1

4F

β3

β3 − 1

1

ξ2
=
Cs
ξ2

(4.12)

εϕs(ξ) = −
1

2
εrs(ξ) =

Cs
ξ3

(4.13)

Srs(ξ) = −
1

β3 − 1

[(β

ξ

)3

− 1
]

(4.14)

Sϕs(ξ) =
1

2(β3 − 1)

[

2 +
(β

ξ

)3]

(4.15)

For comparison of the results, analogous relations obtained for the cylin-
drical casing (Włodarczyk et al., 2005a) can be quoted:

— for the dynamic load

Cs =
a2b2

b2 − a2
p

2µ
Cs =

C

a2
=
1

2F

β2

β2 − 1
(4.16)

U(ξ, η) =
1

2F

β2

β2 − 1

1

ξ
(1− cos 2πη) =

Cs
ξ
(1− cos 2πη) (4.17)

V (ξ, η) =
1

F

β2

β2 − 1

√

β2 − 1

2 ln β

1

ξ
sin 2πη (4.18)

εϕ(ξ, η) = −εr(ξ, η) =
Cs
ξ2
(1− cos 2πη) (4.19)

Sr(ξ, η) = −
1

β2 − 1

[(β

ξ

)2

− 1
]

+Ar(ξ) cos 2πη (4.20)

Ar(ξ) =
1

β2 − 1

[(β

ξ

)2

− 1
)

−
ln(β/ξ)

lnβ
(4.21)

Sϕ(ξ, η) =
1

β2 − 1

[(β

ξ

)2

+ 1
]

−Aϕ(ξ) cos 2πη (4.22)

Aϕ(ξ) =
1

β2 − 1

[(β

ξ

)2

+ 1
]

+
ln(β/ξ)

lnβ
(4.23)

ω0 =

√

2(β2 − 1)

β2 lnβ
(4.24)
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— for the static load

Us(ξ) =
1

2F

β2

β2 − 1

1

ξ
=
Cs
ξ

(4.25)

εϕs(ξ) = −εrs(ξ) =
Cs
ξ2

(4.26)

Srs(ξ) = −
1

β2 − 1

[(β

ξ

)2

− 1
]

(4.27)

Sϕs(ξ) =
1

β2 − 1

[(β

ξ

)2

+ 1
]

(4.28)

From the analysis of the relations presented above, it results that the con-
sidered casings loaded with the internal surge pressure p = const respond
like mechanical systems with one degree of freedom and vibrate radially with
the angular frequency determined through formulae (4.11) and (4.24). The dy-
namic state of mechanical parameters of the loaded casings oscillates around
their static values obtained for the statically generated pressure of the same
value, i.e.: p = ps = const .

The quantitative analysis of the mechanical parameters of studied casings
is presented below.

5. Quantitative analysis of mechanical parameters of casings

We assume that the considered casings are made of steel which mechanical
characteristics are: density in normal conditions ρ0 = 7800 kg/m

3, shear mo-
dulus µ = 75GPa. The value of pressure has been set to p = 400MPa. For
these values we have: F = µ/p = 187.5, c =

√

µ/ρ0 = 3100m/s. The rema-
ining values of appropriate quantities are to be presented during analysis of
particular parameters.

According to formulae (4.11) and (4.24), the relative angular frequencies of
free vibration of the considered casings are functions of their walls thicknesses,
which are characterized by the parameter β. Graphs of these functions are
presented in Fig. 1.

It is seen that the angular frequencies decrease exponentially with the
increase of wall thicknesses. This fact is caused by the increase of mass of the
casings. It is significant that the angular frequency of the spherical casing is
nearly twice greater than the angular frequency of a cylindrical one. It is caused
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Fig. 1. Relative angular frequencies of free vibration of casings as functions of the
parameter β

Fig. 2. Relative radial displacement of selected concentric surfaces of the casings
within the range 0 ¬ η ¬ 1 for selected values of the parameter ξ and β = 2

by greater stiffness of the spherical casing in comparison with the cylindrical
casing of the same wall thickness.

The graphs of relative radial displacements of selected concentric surfaces
of the casings are presented in Fig. 2. They are plotted according to formulae
(4.4) and (4.17) for selected values of ξ and β = 2. The range 0 ¬ η ¬ 1 con-
tains the full free vibration period 0 ¬ t ¬ T0. It is significant that the radial
displacement of the internal (ξ = 1) and remaining surfaces of casings has a
positive value in the whole range. This means that during elastic vibrations
forced with an internal pressure pulse, their internal diameters do not decrease
below the initial values. The graphs depicted in Fig. 2 also show that the ra-
dial vibration amplitudes of particular concentric surfaces of spherical casings
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are several times smaller than corresponding amplitudes of cylindrical casings.
This indicates that the spherical casing is more rigid than the cylindrical one.
Like in the one-degree-of-freedom mechanical system, the dynamic coeffi-

cient of loading for both kinds of casings, according to formulae (4.4), (4.12),
(4.17) and (4.25), is determined by the following expression

Ψ =
U(ξ, η)

Us(ξ)
= 1− cos 2πη (5.1)

and its maximum value is 2.

Fig. 3. Oscillation amplitudes Ar(ξ) of relative radial stresses Sr(ξ, η) in walls of
the casings for selected values of their thickness (β = 1.2, 1.5, 2, 3 and 4)

In turn, the graphs of amplitudes Ar(ξ) along the casing wall thickness
(1 ¬ ξ ¬ β) for selected values of the parameter β are depicted in Fig. 3.
It shows that the functions Ar(ξ) have negative values in the whole range
1 ¬ ξ ¬ β, and reach the minimum for ξ = ξe, where:
— for the spherical casing

ξe = β

√

3

β2 + β + 1
(5.2)

— for the cylindrical casing

ξe = β

√

2 ln
β

β2 − 1
(5.3)
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Approaching the internal surfaces of casings (ξ → 1), the amplitudes
Ar(ξ) decrease and reach zero for ξ = 1, according to the boundary condition
(Sr(1, η) ≡ −1). The values of functions Ar(ξ) for both kinds of casings are
comparable for β < 2. For thicker walls, the differences between functions
Ar(ξ) for the cylindrical and spherical casing increase.
Analogous graphs of the oscillation amplitudes Aϕ(ξ) of the relative tan-

gential stress Sϕ in casing walls are presented in Fig. 4. The amplitudes Aϕ(ξ)
are decreasing positive functions in the range 1 ¬ ξ ¬ β. They reach their
maxima at the internal surfaces of casings (ξ = 1), and the maximum values
are determined by formulae:
— for the spherical casing

Aϕmax =
3β3

2(β3 − 1)
(5.4)

— for the cylindrical casing

Aϕmax =
2β2

β2 − 1
(5.5)

Fig. 4. Oscillation amplitudes of relative radial stresses Sϕ(ξ, η) in walls of the
casings for selected values of their thickness (β = 1.2, 1.5, 2, 3 and 4)

From analysis of formulae (4.7), (4.8), (4.20) and (4.21), it results that the
function Sr(ξ, η) can change its sign from negative to positive (tension) on
the inside casing wall. For η = 0.5 (the middle of the vibration period), this
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happens in the spherical casing, when the parameter β characterizing the wall
thickness satisfies the following inequality

β4 + 2β3 − 5β2 − 6β + 5 > 0 (5.6)

It is satisfied when β > 1.79. This means that in the wall of thickness cha-
racterized with β = b/a < 1.79, the radial tensile stress does not appear. The
maximum positive value of the function Sr(ξ, 0.5) for the spherical casing is
reached on the surface determined as follows

ξ = ξe(β) = β

√

6

β2 + β + 1
β > 1.79 (5.7)

and amounts

Srmax(ξe, 0.5) =
1

β − 1

( β

ξe
− 1
)

−
2

β3 − 1

[( β

ξe

)2

− 1
]

(5.8)

Analogous relations for the cylindrical casing have the following form

ξ = ξe(β) = exp
(2(β2 + 1) ln β − β2 + 1

2(β2 − 1)

)

β > 1.87

(5.9)

Srmax(ξe, 0.5) =
ln(β/ξe)

lnβ
−
2

β2 − 1

[( β

ξe

)2

− 1
]

Graphs of the function Sr(ξ, η) are presented in Figs. 5-7.

The graphs presented in Fig. 5 for η = 0.25 correspond to the state of
static load (cos 2π · 0.25 = 0). Values of the function Sr(ξ, η) for η = 0
and η = 0.5 are symmetrically placed relative to the static plot. Graphs
of the function Sr(ξ, η) presented in Figs. 5 and 6 for both types of casings
are qualitatively similar, but slightly differ quantitatively. Absolute values of
the function Sr(ξ, η) for the cylindrical casing are mostly greater than for
the spherical one. This results from the fact that the displacement and stra-
ins for the same load and wall thickness are greater in the cylindrical casing
(Fig. 2).

Analogous graphs of the function Sϕ(ξ, η) are presented in Figs. 8-10. It is
significant that contrary to the function Sr(ξ, η), the function Sϕ(ξ, η) changes
its sign during vibrations for any value of the wall thickness. At the beginning
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Fig. 5. Relative radial stress Sr(ξ, η) as a function of the parameter ξ for
η = 0, 0.25 and 0.5 and for β = 2 and β = 4

of the vibration period, the inertia of the casing wall causes a negative tan-
gential stress (compression). Subsequently, the casing wall displaces radially
and the sign of tangential stress changes to positive. The value of this stress
reaches the maximum on the casing internal surface (ξ = 1) in the middle of
the period (η = 0.5 – Fig. 8). The maximum values of the function Sϕ(ξ, η)
for spherical and cylindrical casings are determined by the formulae:
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Fig. 6. Relative radial stress Sr(ξ, η) as a function of the parameter η for selected
concentric surfaces of the wall and for β = 2 and β = 4

— for the spherical casing

Sϕmax =
2β3 + 1

β3 − 1
(5.10)

— for the cylindrical casing

Sϕmax =
3β2 + 1

β2 − 1
(5.11)
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Fig. 7. Spatial graph of the function Sr(ξ, η) for the spherical casing

From the analysis of graphs presented in Figs. 8-10, it results that, like in
the case of the function Sr(ξ, η), plots of the function Sϕ(ξ, η) for spherical
and for cylindrical casings are qualitatively similar, but the quantitative diffe-
rences are significant. It is seen that for the same diameters, wall thicknesses
and internal pressure pulses, the tangential stress is greater in the cylindrical
casing.
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Fig. 8. Relative tangential stress Sϕ(ξ, η) as a function of the parameter ξ for
η = 0, 0.25 and 0.5 and for β = 2 and β = 4

6. Final conclusions

From the analysis of the considered problem, the following conclusions can be
drawn:

• Thick-walled casings with cylindrical or spherical symmetry loaded with
an internal pressure pulse vibrate radially with an angular frequency ω0
and behave like one-degree-of-freedom systems. For equal diameters and
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Fig. 9. Relative tangential stress Sϕ(ξ, η) as a function of the parameter η for
selected concentric surfaces of the wall and for β = 2 and β = 4

wall thicknesses, the pulsatance of free vibrations of the spherical casing
is nearly twice greater than that in the cylindrical one. It is caused by
greater stiffness of the spherical casing.

• The maximum value of the dynamic coefficient of loading is Ψ = 2.

• From the analytical solution to the problem, it directly results that
the dynamic states of radial displacement u, strains εr, εϕ and stres-
ses σr, σϕ generated in the casing walls by the internal pressure p(t)
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Fig. 10. Spatial graphs of the function Sϕ(ξ, η) for the spherical casing

are determined through their material physical properties ρ0, µ, casings
geometry a, b and the character of changes of the pressure described by
a time function p(t).
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Dynamika grubościennej kulistej osłony obciążonej wewnętrznym

ciśnieniem zmiennym w czasie

Streszczenie

Zbadano problem radialnych drgań grubościennej osłony kulistej obciążonej uda-
rowo wewnętrznym ciśnieniem impulsowym. Założono, że materiał osłony jest spręży-
ście nieściśliwy. Przy takim uproszczeniu uzyskano zamknięte analityczne rozwiązanie
zagadnienia dynamiki osłony kulistej w ramach liniowej teorii sprężystości. Okazuje
się, że osłona kulista wykonana z materiału nieściśliwego, podobnie jak rura, obciążona
wewnętrznie udarowo, zachowuje się jak układ o jednym stopniu swobody. Częstotli-
wość kołowa drgań własnych osłony kulistej jest kilkakrotnie większa od częstotliwości
rury o tej samej średnicy wewnętrznej i grubości ścianki. Przedstawione rozwiązanie
można wykorzystać do szacowania wytrzymałości kulistych osłon balistycznych stoso-
wanych przy wybuchowym napędzaniu cienkościennych pierścieni używanych w bada-
niach dynamicznych właściwości materiałów. Poza tym, przedstawione wyniki badań
dają dodatkowy wkład wiedzy do teorii drgań technicznych układów ciągłych.
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