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In order to characterize the dynamic behaviour of a back-to-back planetary gear, experi-
mental and numerical modal analysis techniques are achieved. Rotational and translational
modal deflections are highlighted. Natural frequencies are compared to the results from the
lumped-parameter model. The modes are presented in the numerical studies in low-frequency
and high-frequency bands. Distributions of modal kinetic and strain energies are studied.
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1. Introduction

Gears are widely used in many power transmission applications and are characterized by their
high efficiency. However, they can be subjected to severe operating conditions giving rise to
dynamic problems. Bartelmus (2001) showed the influence of error mode parameters and the
influence of clutch damping on the dynamic factor. Time varying stiffness and backlash, which
have influence on the dynamic behaviour of the gearbox, are the main excitations of the model
of Łuczko (2008) who studied the chaotic vibrations in one stage spur gear.

Planetary gears are compact kind of gears. They are excellent mechanisms for transmitting
significant power with large speed reductions or multiplications. These kinds of gears are used
in many fields of application like wind turbines, new generation aircraft engines, hybrid car
transmissions. Back-to-back planetary gear configuration is compact with mechanical power
circulation for economic and energy efficiency criteria.

Many researchers studied modal proprieties of planetary gears highlighting and the relation-
ship between natural frequencies and parameters of the system. Cunliffe et al. (1974) focused on
an analytical model of a planetary gear with a fixed carrier and characterised vibration modes.
Botman (1976) studied the effects of planet pin loads on the eigen-frequencies using an eighteen
degree of freedom system. August and Kasuba (1986) used a torsional model with nine degrees
of freedom to determine torsional vibrations and dynamic loads in a basic planetary gear system.
Kahraman (1993) and Sondkar and Kahraman (2013) analyzed respectively three dimensional
modal deflection of a helical planetary gear and a double-helical planetary gear. Kahraman
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(1994) provided expressions for natural frequencies by using a rotational lumped-parameter mo-
del. Lin and Parker categorized rotational, translational, and planet modes and explained the
unique modal proprieties of planetary gear with equal planet spacing (Lin and Parker, 1999)
and unequal planet spacing (Lin and Parker, 2000). Tanna and Lim (2004) compared the modal
frequencies of ring gears and idealized smooth rings. They quantified the frequency deviations
in applying the simpler smooth ring solutions to represent the primary modal behaviour of ring
gear structures. Wojnarowski et al. (2006) used the versatile graph theory to represent the struc-
ture of a planetary gear system and the gear modeling in order to achieve an eigen-vibration
analysis of the gear system.

Wu and Parker (2008) considered the elastic deformation of the ring on the modal proprieties
of a planetary gear with equal planet spacing and unequal planet spacing (Parker and Wu, 2010).
Eritenel and Parker (2009) presented the modal properties of three-dimensional helical planetary
gears. Bu et al. (2012) developed a generalized dynamic model for a herringbone planetary gear
train in order to investigate its modal properties. Vibration modes of compound planetary gears
were studied by Kiracofe and Parker (2007) and Guo and Parker (2010). Cooley and Parker
(2012, 2013) modeled the gyroscopic effects and studied the vibration properties of high-speed
planetary gears.

There were few experimental studies to correlate the numerical modal analysis with experi-
mental modal analysis. Singh et al., (2008) presented results of a comprehensive experimental
and theoretical study under static condition to determine the influence of manufacturing tole-
rance on gear stresses and planetary load sharing. Kahraman and Vijayakar (2001) investigated
the effect of internal gear flexibility under the quasi-static condition behaviour of a planetary
gear set. Toda and Botman (1979) showed experimentally that planetary gear vibration resulting
from the planet position error can be minimized by a proper indexing planet.

Velex et al. (1994) compared experimental results of a double helical epicyclic gear in its
natural environment to a mathematical model. But some natural frequencies do not agreed
between their model and experiments. Ericson and Parker (2013) applied experimental modal
analysis techniques to characterize the planar dynamic behaviour of spur planetary gears and
correlated these results against lumped parameter and finite element models.

This paper will discuss the modal properties of a special configuration of a two stage planetary
gears mounted back-to-back. To achieve this, both numerical and experimental investigations
are conducted. Experimental results are correlated against results from the lumped-parameter
model. Modal characteristics are obtained and classified.

2. Experimental setup

2.1. Description of the test bench

A test bench composed of two identical planetary gear sets with the same gear ratio (Fig. 1)
is developed at the University of Cantabria in Spain. It is composed of two identical planetary
gear sets with the same gear ratio (Fig. 1).

The test bench is composed of a test gear set and a reaction gear set connected back-to-back:
the sun gears of both planetary gear sets are connected through a common shaft, and the carriers
of both planetary gear sets are connected to each other through a rigid hollow shaft (Fig. 1).

To load the system, masses are added to an arm fixed to the ring of the reaction gear set
(Fig. 2).

2.2. Excitation method

In order to achieve the experimental modal analysis, an impact hammer is used.
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Fig. 1. Back-to-back layout as assembled in the bench

Fig. 2. Application of the external torque

The hammer model is PCB 086B03 with a sensitivity of 2.15mV/N. A metal tip is used to
study the response up to 2000Hz.

2.3. Data acquisition

Four tri-axial accelerometers mounted on the free ring and the fixed ring as well as the carrier
measure the rotational and translational vibration of each body (Fig. 2).
The signals measured by the accelerometers will be acquired by an LMS SCADAS Mobile

SCM01 system and the data will be processed with the software “LMS Test.Lab Impact test”
to obtain the Frequency Response Function.

3. Numerical model

The model of the back-to-back planetary gear is based on the model developed by Lin and
Parker (1999). The components are the ring (r), sun (s), planets (1, 2, 3) and carrier (c) which
carries the planets as shown in Fig. 3.
The test ring and the test sun are respectively linked to the three planets of the test gear set

via gear mesh stiffness Krt1, Krt2, Krt3 and Kst1, Kst2, Kst3. The same is on the reaction gear
set, the reaction ring and the reaction sun are respectively linked to the three planets via gear
mesh stiffness Krr1, Krr2, Krr3 and Ksr1, Ksr2, Ksr3. The reaction ring which has the bearing
stiffness Krrx and Krry in the x and y directions is free and its torsional stiffness is Krru whereas
the test ring which has the bearing stiffness Krtx and Krty is not exactly fixed but its torsional
stiffness Krtu is very high. The planets of the reaction gear set and the test gear set have the
bearing stiffness Krpix and Ktpiy in the x and y directions (i = 1, 2 or 3). The test carrier and the
reaction carrier have also the bearing stiffness respectively Kctx, Kcty and Kcrx, Kcry. The sun
gears of both planetary gear sets are connected through a common shaft which has a torsional
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Fig. 3. Model of the planet gear

stiffness Ks. The carriers of both planetary gear sets are connected to each other through a
hollow shaft which has a torsional stiffness Kc.

The equation of motion of the system for the back-to-back planetary gear with 3 planets is

Mq̈+ΩcGq̇+ [Kb +KM −Ω
2
cKΩ ]q = F(t) (3.1)

where M is the mass matrix, Kb is the bearing stiffness matrix, G and KΩ result from the
high-speed carrier, KM is the stiffness matrix and F(t) is the external force vector applied to
the system. All these matrices are defined in appendix.

The planets in the test gear set and the reaction gear set are assumed identical and equally
spaced. If the gyroscopic terms G, KΩ and F(t) are neglected, the equation of motion will
simplify to

Mq̈+ [Kb +KM ]q = 0 (3.2)

q is the degree of freedom vector defined as the following

q =

{
qr
qt

}
(3.3)

qr is the degree of freedom vector in the reaction gear set (r) and qt is the degree of freedom
vector in the test gear set defined by

qr = {xcr, ycr, ucr, xrr, yrr, urr, xsr, ysr, usr, ζ1r, η1r, u1, ζ2r, η2r, u2r, ζ3r, η3r, u3r}
T

qt = {xct, yct, uct, xrt, yrt, urt, xst, yst, ust, ζ1t, η1t, u1t, ζ2t, η2t, u2t, ζ3t, η3t, u3t}
T

(3.4)

The carrier, the ring and the sun translations xij and yij (i = c, r, s and j = r, t) and planet
translations ζnj and ηnj (n = 1, 2, 3 and j = r, t) are measured with respect to the rotational

frame of reference R = {~i,~j,~k}.

The rotational coordinates are urj = rrjθrj for the reaction gear set utj = rtjθtj and for the
test gear set where j = c, r, s, 1, 2, 3. θrj and θtj are the component rotation; rrj and rtj are the
base radius for the sun, ring and planets and the radius of the circle passing through the planets
centre for the carrier.
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4. Comparative results

In this part, results from the modal analysis on the back-to-back planetary gears are presented.
Experimental and numerical modes are checked and compared. The modes are classified and
studied in terms of modal kinetic energies and modal strain energies for each natural frequency.
Finally, the effects of loading change (by adding mass) on natural frequencies and vibration
modes are studied.

4.1. Natural frequencies and vibration modes

The natural frequencies and vibration modes are determined from equation of motion (3.2)
and the associated eigen-value problem given by

ω2iMφi = [Kb +KM ]φi (4.1)

where ωi are the natural frequencies and φi are the vibration modes.
The rotational, translational and planet mode types were defined by Lin and Parker (1999):

• The rotational and translational modes are the vibration with natural frequencies having
respectively the multiplicity m = 1 and m = 2

• The planet modes exist only if the number of planetN > 3 and have multiplicitym = N−1.

In the test gear set and the reaction gear set, there are only three planets (N = 3). So, only
rotational and translational modes will be expected when solving the eigen-value problem.
According to the energy distribution and component deflection, Cunliffe et al. (1974) and

Ericson and Parker (2013) classified the natural frequencies into two categories according to the
frequency band. The modes of the first band are called “bearing modes” or “fixture modes”.
The modes of the second band are called “tooth modes” or “gear modes”.
The distinction between the fixture and gear modes is independent of the rotational and

translational modes.
Table 1 shows the parameters of the model.
The natural frequencies are identified numerically and experimentally.
The impacts have been made on the arm of the free ring.

4.1.1. Teeth modes

For every test, we achieved ten impacts, and the acquisition system “LMS Test.Lab Impact
test” averaged the results. Figure 4 represents the Frequency Response Function (FRF) in the
fix ring.
Table 2 compares the natural frequencies determined from the impact test experiments and

numerical model and shows the multiplicity of each mode from the analytical model.
Experiments show fourteen natural frequencies whereas the numerical model shows twelve

natural frequencies composed of eight rotational modes and four translational modes. The na-
tural frequencies 41Hz, 182Hz and 770Hz appear only in the impulse test whereas the natural
frequency 247Hz appears only in the numerical model. The remaining natural frequencies agree
within 11% as the maximum rate. There is only one identified natural frequency where the error
reaches 30%.
Figure 5 shows the modal deflection for the natural frequencies 192Hz and 244Hz.
It is well noticed that all planets have the same motion and move in phase in the rotational

modes (118Hz, 136Hz, 244Hz, 376Hz, 387Hz, 547Hz and 550Hz). Besides, the carriers, the
suns and the rings on the test and the reaction gear set have pure translation in the translation
modes (192Hz, 288Hz, 344Hz and 536Hz).
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Table 1. Lumped-parameter values of the reaction and test planetary gear set and the shaft
stiffness

Sun Planet Ring Carrier

Reaction planetary gear set

Teeth number 16 24 65 –

Mass [Kg] 0.485 1.225 28.1 3.643

Base diameter [mm] 61.38 92.08 249.38 57.55

Moment of inertia [Kgm2] 356 · 10−6 2045 · 10−6 697767 · 10−6 21502 · 10−6

Bearing stiffness [N/m] 8.8 · 107 3.5 · 106 2.1 · 107 4.8 · 108

Torsional stiffness [N/m] – – 0 –

Mesh stiffness [N/m] 4.46 · 108 6.28 · 108

Test planetary gear set

Teeth number 16 24 65 –

Mass [Kg] 0.485 1.225 28.1 3.643

Base diameter [mm] 61.38 92.08 249.38 57.55

Moment of inertia [Kgm2] 356 · 10−6 2045 · 10−6 697767 · 10−6 21502 · 10−6

Bearing stiffness [N/m] 8.8 · 107 3.5 · 106 2.1 · 107 4.8 · 108

Torsional stiffness [N/m] – – 7.9 · 106 –

Mesh stiffness [N/m] 4.46 · 108 6.28 · 108

Shaft stiffness

Torsional [Nm/rad] 3.73 · 104 – – 8.38 · 105

Flexural 4.9 · 105 – – 1.1 · 107

Fig. 4. Frequency response function of the fix ring for low frequencies

4.1.2. Bearing modes

The gear modes are identified by solving the eigen-value problem and using the impact test.

Figure 6 represents the frequency response function in the fixed ring with the hammer impact
test.

Table 3 compares the natural frequencies determined from the impact test experiments and
the numerical model in high frequencies.

Experiments show five natural frequencies whereas the numerical model shows three natural
frequencies associated with three translational modes. The natural frequencies 1019Hz and
1457Hz which can be induced by the axial vibration appear only in the impulse test. The
remaining natural frequencies agree within 7% as the maximum difference rate.
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Table 2. Natural frequencies from the experiments and numerical model in low frequencies

Mode Type
Impulse Numerical

Multiplicity
Error

exp. [Hz] model [Hz] [%]

1 – 41 – – –

2 R 82 118 1 30

3 R 144 136 1 6

4 – 182 – – –

5 T 200 192 2 4

6 R 244 244 1 0

7 R – 247 1 –

8 T 299 288 2 4

9 T 317 344 2 11

10 R 350 376 1 7

11 R 362 387 1 7

12 T 516 536 2 4

13 R 566 547 1 4

14 R 592 550 1 8

15 – 770 – – –

Fig. 5. Vibration modes in low frequencies

Fig. 6. Frequency response function of the fixed ring in high frequencies

Figure 7 shows that the carriers, the suns and the rings on the test and the reaction gear set
have pure translation in the translation modes 1332Hz.
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Table 3. Natural frequencies from the experiments and numerical model in high frequencies

Mode Type
Impulse Numerical

Multiplicity
Error

exp. [Hz] model [Hz] [%]

16 – 1019 – – –

17 T 1208 1232 2 2

18 – 1457 – – –

19 T 1732 1847 2 7

20 T 1762 1888 2 7

Fig. 7. Vibration modes in high frequencies

4.2. Analysis of the distribution of modal kinetic energies and modal strain energies

Computation of the modal strain energy and the modal kinetic energy distributions gives
information on bodies sought to critical speeds (which excite the natural frequencies) in terms
of dominant motion and deformation.
The total modal strain energy can be written as the sum of the strain energies of rotation

and translation from each component

Epφ =
1

2
φtiK̃φi =

∑
Epφij +

∑
Epφijw +

∑
(Epφsun + Epφrin) (4.2)

where Epφij and Epφijw are the strain energy of bearing stiffness in the rotational and transla-
tional movement of the suns, carriers, rings and planets (j = s, c, r, t, 1, 2, 3) in the test gear set
and the reaction gear set (i = t, r). Epφsun and Epφrin are the strain energy of sun-planets and
planets-ring meshing in the test gear set and the reaction gear set.
The modal kinetic energy can also be written as the sum of the kinetic energies of rotation

and translation from each component of the system

Ecφ =
1

2
w2i φ

t
iMφi =

∑
Ecφij +

∑
Ecφijw (4.3)

where Ecφij and Ecφijw are the kinetic energy in the rotational and translational movement of
the suns, carriers, rings and planets (j = s, c, r, t, 1, 2, 3) in the test gear set and the reaction
gear set (i = t, r).

4.2.1. Teeth modes

Figure 8 shows the distribution of modal kinetic energies in low frequencies.
In the X-axis the contribution of each degree of freedom in the total modal strain energy is

represented. Details are given in Table 4.
The dominant movement of the translational mode 547Hz is translation of the reaction ring

along the X direction.
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Fig. 8. Modal kinetic energies in low-frequencies

Table 4. The X-axis location of kinetic energies

1-2 Translations of reaction carrier 19-20 Translations of test carrier

3 Rotation of reaction carrier 21 Rotation of test carrier

4-5 Translations of reaction ring 22-23 Translations of test ring

6 Rotation of reaction ring 24 Rotation of test ring

7-8 Translations of reaction sun 25-26 Translations of test sun

9 Rotation of reaction sun 27 Rotation of test sun

10-11 Translations of reaction planet 1 28-29 Translations of test planet 1

12 Rotation of reaction planet 1 30 Rotation of test planet 1

13-14 Translations of reaction planet 2 31-32 Translations of test planet 2

15 Rotation of reaction planet 2 33 Rotation of test planet 2

16-17 Translations of reaction planet 3 34-35 Translations of test planet 3

18 Rotation of reaction planet 3 36 Rotation of test planet 3

Figure 9 shows the distribution of modal strain energies in low frequencies, where the X-axis
is defined in Table 5.

Fig. 9. Strain energy in low-frequencies

The dominant strain energy of the translational mode 547Hz is located in the meshing
between reaction ring-planet No. 3.

Table 6 presents a resume of the modal dominant movement and the dominant strain energy
in each low-frequency mode.

In the teeth modes which characterize the deflection in fixture components, the modes have
significant strain energy in the teeth meshing sun-planets and ring-planets of the two stages. In
fact, the stiffness of the meshing is higher than the stiffness of the shafts and bearing of the gears.
So, the strain energies are bigger for the components which have higher stiffness. Also, those
modes are predominantly characterized by motion of the individual planetary gear components,
particularly the planet gears.
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Table 5. The X-axis location of strain energies

1-3 Bearing of reaction carrier 25-27 Bearing of test sun

4-6 Bearing of reaction ring 28-30 Bearing of test planet 1

7-9 Bearing of reaction sun 31-33 Bearing of test planet 2

10-12 Bearing of reaction planet 1 34-36 Bearing of test planet 3

13-15 Bearing of reaction planet 2 37-39 Meshing reaction ring-planets

16-18 Bearing of reaction planet 3 40-42 Meshing reaction sun-planets

19-21 Bearing of test carrier 43-45 Meshing test ring-planets

22-24 Bearing of test ring 46-48 Meshing test sun-planets

Table 6. Dominant motion and dominant strain energy in low-frequencies

Frequencies Modal dominant movement Dominant strain energy

118Hz (R) Rotation of reaction carrier Meshing reaction sun-planet 3

136Hz (R) Rotation of test carrier Meshing test sun-planet 3

192Hz (T) Translation of reaction planet 1 (X) Meshing reaction sun-planet 1
Translation of test planet 2 (Y ) Meshing test sun-planet 1

244Hz (R) Rotation of all test planet (X) Meshing reaction sun-planet 3

288Hz (T) Translation of reaction planet 1 (X) Meshing reaction sun-planet 1
Translation of test planet 2 (X) Meshing test sun-planet 1

344Hz (T) Translation of reaction planet 3 (X) Bearing of reaction planet 3 (X)
Translation of test planet 1 (X) Bearing of test planet 3 (X)

376Hz (R) Rotation of reaction carrier Meshing reaction ring-planet 3

387Hz (R) Rotation of test carrier Meshing test ring-planet 3

536Hz (R) Translation of reaction ring (X) Meshing reaction ring-planet 1
Translation of test ring (X) Meshing test sun-planet 2

547Hz (R) Rotation of reaction ring Meshing reaction ring-planet 3

550Hz (R) Rotation of test ring Meshing test ring-planet 3

(X) – X direction, (Y ) – Y direction

4.2.2. Bearing modes

Figure 10 shows the distribution of modal kinetic energies in high frequencies. The X-axis
is defined in Table 4.

Fig. 10. Kinetic energy in high-frequencies

The dominant motion in the translational mode 1867Hz is the translation of the reaction
sun in the Y direction.

Figure 11 shows the distribution of modal strain energies in low frequencies. The X-axis is
defined in Table 5.

The dominant strain energy in the translational mode 2527Hz is the bearing of the test
carrier in the Y direction.

Table 7 presents a resume of the modal dominant movement and the dominant strain energy
in each high-frequency mode.
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Fig. 11. Strain energy in high-frequencies

Table 7. Dominant motion and dominant strain energy in high-frequencies

Frequencies Modal dominant movement Dominant strain energy

1232Hz (T) Translations of reaction ring (Y ) Meshing reaction ring-planet 2
Translations of test planet 1 (X) Meshing test ring-planet 2

1847Hz (T) Translations of reaction carrier (X) Bearing of reaction carrier (X)
Translations of test carrier (X) Bearing of test carrier (X)

1888Hz (T) Translations of reaction carrier (X) Bearing of reaction carrier (X)
Translations of test carrier (X) Bearing of test carrier (X)

Table 7 shows bearing modes which are characterized by the strain and kinetic energies of
the carriers (1847Hz and 1888Hz).

In general, the significant strain energies in low frequencies are in gears teeth where the
mesh stiffness is higher than the stiffness of the shafts and bearing, and the motion of gears has
the highest kinetic energy. However, for the same condition, the dominant movement in high
frequencies is the movement of carriers which have also the dominant strain energies.

5. Conclusions

A modal analysis has been performed on a back-to-back planetary gear using two approaches:
model based and experimental study. Concerning the modelling approach, a mathematical model
of the gear system has been proposed. Solving the eigenvalue problem allowed recovering the
modal characteristics of the transmission. It has been found that the natural frequencies can
be divided into two main modes: rotational modes and translational modes. The experimental
modal investigation done on a test rig confirmed this classification. When looking to the modal
kinetic and strain energy distributions, another classification emerges according to the dominant
energy in the system for each natural frequency. In fact, teeth modes and bearing modes have
been highlighted. The selection of parameters in the model has been optimized to get results as
close as possible to the experimental results done by the hammer test. The adopted model in
the paper considers only 3 degrees of freedom per component. Obviously, it will not be possible
to get low percentage error for all the computed natural frequencies. Further modal analysis
investigations will be done in future works with a model considering 6 degrees of freedom per
component. Such study can help designers to avoid critical frequencies on the system by changing
parameters of the system. It allows one also to localise critical components susceptible to damage
when crossing natural frequencies.
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A. Appendix

The matrix mass is defined

M = diag (Mcr,Mrr,Msr,M1r,M2r,M3r,Mct,Mrt,Mst,M1t,M2t,M3t) (A.1)

where

Mij = diag (mij ,mij, Iij/r
2
ij) i = c, r, s, 1, 2, 3 j = r, t (A.2)

G = diag (Gcr,Grr,Gsr,G1r,G2r,G3r,Gct,Grt,Gst,G1t,G2t,G3t) (A.3)

Gij =



0 −2mij 0
2mij 0 0
0 0 0


 i = c, r, s, 1, 2, 3 j = r, t (A.4)

KΩ = diag (KΩr ,KΩt) (A.5)

KΩr = diag (mcr,mcr, 0,mrr,mrr, 0,msr,msr, 0,mpr,mpr, 0,mpr,mpr, 0,mpr,mpr, 0) (A.6)

KΩt = diag (mct,mct, 0,mrt,mrt, 0,mst,mst, 0,mpt,mpt, 0,mpt,mpt, 0,mpt,mpt, 0) (A.7)

The bearing stiffness matrix

Kb = diag (Kcrb,Krrb,Ksrb,0,0,0,Kctb,Krtb,Kstb,0,0,0) (A.8)

Kijb = diag (Kijx,Kijy,Kiju) i = c, r, s, 1, 2, 3 j = r, t (A.9)

Km =

[
Kmr 0

0 Kmt

]
+Kc (A.10)

Km =




∑
Knc1 0 0 K1c2 K

2
c2 K

3
c2

0
∑
Knr1 0 K1r2 K

2
r2 K

3
r2

0 0
∑
Kns1 K

1
s1 K

2
s1 K

3
s1

K1c2 K1r2 K1s1 K1pp 0 0

K2c2 K2r2 K2s1 0 K2pp 0

K3c2 K3r2 K3s1 0 0 K3pp




(A.11)

Knpp = K
n
c3 +K

n
r3 +K

n
s3 (A.12)

Knc1 = kpn



1 0 − sinΨn
0 1 cosΨn

− sinΨn cosΨn 1


 (A.13)

Knc2 = kpn



− cosΨn sinΨn 0
− sinΨn − cosΨn 0
0 −1 0


 (A.14)

Knc3 = diag (kpn, kpn, 0) (A.15)

Knr1 = krn




sin2 Ψrn − cosΨrn sinΨrn − sinΨrn
− cosΨrn sinΨrn cos2 Ψrn cosΨrn
− sinΨrn cosΨrn 1


 (A.16)

Knr2 = krn



− sinΨrn sinαr sinΨrn cosαr sinΨrn
cosΨrn sinαr − cosΨrn cosαr − cosΨrn
sinαr − cosαr −1


 (A.17)
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Knr3 = krn



sin2 αr − cosαr sinαr − sinαr

− cosαr sinαr cos2 αr cosαr
− sinαr cosαr 1


 (A.18)

Kns1 = ksn




sin2 Ψsn − cosΨsn sinΨsn − sinΨsn
− cosΨsn sinΨsn cos2 Ψsn cosΨsn
− sinΨsn cosΨsn 1


 (A.19)

Kns2 = ksn



sinΨsn sinαs sinΨsn cosαs − sinΨsn
− cosΨsn sinαs − cosΨsn cosαs cosΨsn
− sinαs − cosαs 1


 (A.20)

Kns3 = ksn



sin2 αs cosαs sinαs − sinαs

cosαs sinαs cos2 αs cosαs
− sinαs − cosαs 1


 (A.21)

Ψsn = Ψn − αs Ψrn = Ψn + αr (A.22)

References

1. August R., Kasuba R., 1986, Torsional vibrations and dynamic loads in a basic planetary gear
system, Journal of Vibration, Acoustics, Stress and Reliability in Design, 108, 348-353

2. Bartelmus W., 2001, Gearbox dynamic modelling, Journal of Theoretical and Applied Mechanics,
39, 4, 989-999

3. Botman M., 1976, Epicyclic gear vibrations, Journal of Engineering for Industry, 98, 811-815

4. Bu Z., Liu G., Wu L., 2012, Modal analyses of herringbone planetary gear train with journal
bearings, Mechanism and Machine Theory, 54, 99-115

5. Cooley C.G., Parker R.G., 2012, Vibration properties of high-speed planetary gears with
gyroscopic effects, Journal of Vibration and Acoustics, 134, 061014

6. Cooley C.G., Parker R.G., 2013, Mechanical stability of high-speed planetary gears, Interna-
tional Journal of Mechanical Sciences, 69, 59-71

7. Cunliffe F., Smith J.D., Welbourn D.B., 1974, Dynamic tooth loads in epicyclic gears,
Journal of Engineering for Industry, 95, 578-584

8. Ericson T.M., Parker R.G., 2013, Planetary gear modal vibration experiments and correla-
tion against lumped-parameter and finite element models, Journal of Sound and Vibration, 332,
2350-2375

9. Eritenel T., Parker R.G., 2009, Modal properties of three-dimensional helical planetary gears,
Journal of Sound and Vibration, 325, 397-420

10. Guo Y., Parker R.G., 2010, Purely rotational model and vibration modes of compound planetary
gears, Mechanism and Machine Theory, 45, 365-377

11. Kahraman A., 1993, Planetary gear train dynamics, Journal of Mechanical Design, 116, 713-720

12. Kahraman A., 1994, Natural modes of planetary gear trains, Journal of Sound and Vibration,
173, 125-130

13. Kahraman A., Vijayakar S.M., 2001, Effect of internal gear flexibility on the quasi-static
behavior of a planetary gear set, Journal of Mechanical Design, 123, 408-415

14. Kiracofe D.R., Parker R.G., 2007, Structured vibration modes of general compound planetary
gear systems, Journal of Vibration and Acoustics, 129, 1-16

15. Lin J., Parker R.G., 1999, Analytical characterization of the unique properties of planetary gear
free vibration, Journal of Vibration and Acoustics, 121, 316-321



138 A. Hammami et al.

16. Lin J., Parker R.G., 2000, Structured vibration characteristics of planetary gears with unequally
spaced planets, Journal of Sound and Vibration, 233, 921-928

17. Łuczko J., 2008, Chaotic vibrations in gear mesh systems, Journal of Theoretical and Applied
Mechanics, 46, 4, 879-896

18. Parker R.G, Wu X., 2010, Vibration modes of planetary gears with unequally spaced planets
and an elastic ring gear, Journal of Sound and Vibration, 329, 2265-2275

19. Singh A., Kahraman A., Ligata H., 2008, Internal gear strains and load sharing in planetary
transmissions: model and experiments, Journal of Mechanical Design, 130, 072602

20. Sondkar P., Kahraman A., 2013, A dynamic model of a double-helical planetary gear set,
Mechanism and Machine Theory, 70, 157-174

21. Tanna R.P., Lim T.C., 2004, Modal frequency deviations in stimating ring gear modes using
smooth ring solutions, Journal of Sound and Vibration, 269, 1099-1110

22. Toda A., Botman M., 1979, Planet indexing in planetary gears for minimum vibration, ASME
Design Engineering Technical Conference, A80-15730, ASME, St. Louis

23. Velex P., Randrianarivo L., Pichon V., Wittman R., 1994, Dynamic behavior of epicyclic
trains: experimental and numerical analyses, Proceedings of the International Gearing Conference,
Newcastle, 265-269

24. Wojnarowski J., Kopeć J., Zawiślak S., Gears and graphs, Journal of Theoretical and Applied
Mechanics, 44, 1, 139-162

25. Wu X., Parker R.G., 2008, Modal properties of planetary gears with an elastic continuum ring
gear, Journal of Applied Mechanics, 75, 1-10

Manuscript received April 20, 2014; accepted for print July 12, 2014


