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1. Introduction

Dynamic behaviour of thin laminated cylindrical shells is of great importance to
engineers. The coupling between bending and tension in laminates results in the necessity
to modify the classic equilibrium equations and the boundary conditions for thin uniform
cylindrical shells in order to apply them to laminated shells. The reformulation of boundary
conditions and the solution of the static buckling problems for the cylindrical shells was
done by Almroth [1]. Numerous papers are available on free vibrations of laminated
shells (see for example papers by Bert, Baker and Egle [2], Dong [3], Alam and Asnani
f4]). While parametric vibrations and dynamic stability problems for uniform isotropic
cylindrical shells under time-dependent membrane forces have drawn much attention,
the dynamic stability of cylindrical shells has not been investigated yet.

The purpose of the paper is to analyse the dynamic asymptotic stability of thin elastic
cylindrical shells for cross-ply antisymmetric configuration. Membrane forces acting
in the shell midsurface are assumed to be -deterministic functions of time or stochastic
processes with differentiable realizations. The shell consists of an even number of equal
thickness orthotropic laminae laid on each other with principal material directions alter-
nating at 0 and x/2 to the shell axial and circumferential directions. Using the direct
Liapunov method we have derived the sufficient conditions for the asymptotic stability
and the almost sure asymptotic stability. The influence of geometric and material properties
of the shell as well as characteristics of loading on stability regions have been examined
numerically. ’

2. Problem formulation

Let us consider a closed elastic simply supported cylindrical shell of radius a, length /
and total thickness #, a > h, I > h. The shell consists of an even number of equal thickness
orthotropic layers antisymmetrically laminated with respect to its midsurface from both
the geometric and the material property standpoint. The Kirchhoff-Love hypothesis on
nondeformable normal element is taken into account. Tangential, rotary and coupling
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inertias are neglected. For the shell subjected to a concentrated load P and a uniformly
distributed radial loading g, the initial membrane loads can be determined by assuming
that the shell remains circular and undergoes a uniform compression circumferentially,
Consequently:

N, = P/2na,
Np = aq.
Taking into account a linear damping in the radial direction we obtain the equations

of the technical theory of thin laminated shells in terms of displacements #, v, w in tangen-
tial, circumferential and radial direction, respectively [3]:

AUzt Asth,00/@% + (A12+ As6)Px, 0/0— By W, xx + Ay, w,xla=0,
(A + Age)u, wala+ Age?, xxt+ A117,00/8% + BiiW,gsal@> + A1 W gla® = 0,
— By U pet A12, 5 /a4 B10, 000/ + 411V, 0/@% + D W, gaxs+ 0
+2(D;2+2Dg6) W, xx00/@® + Dy 2 W,0000/a* + 2B11 W,00/a* + Ay wla® +
+ 0hW, 1+ 208w, — N .. — NoW,00/a* = 0,
(x,0)e 2 = (0, 1) x(0, 27).
Internal forces and moments are expressed by the displacements as follows:
N, = Ay u +A4;,9,00+A,Ww]a— By W, 4,

No = Aju +A4,;9,6/a+d; wla+ By w,ee/a?,

Nx@ = A66(‘le+u'@/a), (2)
M, = B, u,—D, W, — D12 W,00/a%, '
Mg = ~By,9,6/a—Byywla—D,W,— D3, W, 06/a?,

M,o = —~2D¢sw,c0/a.

The closed shell is assumed to be simply supported without displacement in circum-
ferential direction at x = 0,1. The conditions imposed on displacements, internal forces
and moments, called according to Almroth’s classification S2, can be written down as:

w=0, ©v=0, N,=0, M,=0 at x=0,l1. 3

~ Our purpose is to investigate the stability of undisturbed shell surface # = 2 = w =0
(the trivial solution). A disturbed state is estimated by means of a distance of the solution
of system (1) with nontrivial initial conditions from the ‘trivial solution. Under assumption
that the membrane forces are the deterministic functions of time we will study the asympto-
tic stability of trivial solution, i.e. we will derive conditions that imply:
lim |[(w|| = 0. 4)
t—0
If the forces are stochastic “nonwhite” processes with sufficiently smooth realizations

we shall consider the almost sure asymptotic stability which holds if a probability of event
defined by (4) is equal to one:

P{lim||w|| =0} = 1. )
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We shall examine the foregoing kinds of stability using the direct Liapunov method,
which provides a significant advantage in that the conditions for stability can be obtained
without the explicite solving the equations of motion.

3. Derivation of the sufficient stability conditions

We construct a functional as a sum of a modified kinetic energy and the potential
energy of the shell in order to apply it as a Liapunov functional:

V= %J‘ [224+2zw+ 202w ~ M. W, .. — Mo W, go/a’— M o2, gla+
2 ®
+ Nyt 5+ No(@,0+ W) o+ Nyo(v,  + 1,0/ D] ad®,
where z = w ;.

The functional is positive-definite since the first three terms of integrand can be rear-
ranged as a sum of squares. Therefore, we can choose the square root of functional (6)
as the distance used in the stability definitions. Under the previous assumptions imposed
on the membrane forces the classic differentiation rule can be applied to calculate the time-
derivative of functional (6). Dividing equations of motion (1) by ph and retaining for
convenience the same symbols for coefficients we obtain the time-derivative of functional
(6) in the following form:

aw 1

s Ef [2(Z+ﬁw)(—2ﬁz+ﬁxw,xx+ﬁ6w,@e/az+_'B11u,xxx+
2

~ A1 Ja—By;v,600/a> —A110,0/a* — D1y W, yrxx+ _ )
—2(Dy2+2Dge) W, xx00/a* — D33 W, 0000 /a* — 2By, W, eg/a® — Ay, wla®) + )
~M, W, xx— M. 2, .. — Mo W, 06/0° — Moz, go/0*> —~2M 6, W, xe/a-+
—2M.02, xe/aladl+(11),,

where I; denotes an additional functional:

1
I]. =—2— [qu,,+N9('0,9+w)/a+Nx9(t),x+u,9/a)]adQ.
2
_Integrating by parts, using boundary conditions (3) and periodicity conditions with
respect to variable @ we prove the following formulae:

2n 1 2z 1
fM,_xxzad.Q =f Mx,,zl ad®— fo,xz,xad.Q = -—f sz,x‘ ad® +
a o 9 0

0 b
+ fM,,z,x,ad.Q = foz,x,ad.Q,
s 3 |
fMg'egzadQ= fM@Z,geadQ,
2 Q2

[ Meo,070d2 = [ Myoz,.00d2,
2 : Q2
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fM,,,w,xxad,Q= foz,xxadQ,
0 0
fM@,,w,@@aer— f-M@z,eead.Q,
02 n

fo@_,w,x@adQ = fo@z,x@ad.Q.
@ g
In a similar way integrating by parts we convert the functional 7; to the following form:

111_;_ f [— (N« +Neo 0/@)tt— (Neo, x+No, o/a)v+No w/alads2.
2

Recognizing the expressions in the parentheses as left hand side expressions of the first
two equations of motion (1) we omit them so we can write:

Il :_;..fNQWdQ
Q2

Using the above relations we rewrite the time-derivative of functional (7) as:

av .
S = —2BV+2U, @)
where: .
U= % f [(z+ BW)(NoW, s +Now, go/a?) + 282wz + 252 w?]adQ . ©
0

Now we attempt to construct a bound:
U< WV, (10)

where the function 4 is to be determined.
Proceeding similarly as Kozin [5] we solve an additional variational problem (U~
—AV) = 0 and we obtain: )

A= max |fP+ (NokZ+Nok?)[2[? +Dss kb +2(Dy,+2Dge) K2 K2+

ma=12,...
+ Dy ki ~2By1 k3 [a+ Ay [a* + (2T 3 Tya Tos — Tiy T33— T2 Ts)/ - (1D
[(T11 To2—T32)]72,
where:
kn=mn[l, k,=nla,

Ty = Auka+ Ak}, Ty = —(dyz+ Age) knkn,
Tyo = Ay ki +Agskl, Tya= —'km(Alz/a‘*'-BlikyZn_),
Tys = k(=B ki+4,,/a).

Substituting inequality (10) into equation (8) we obtain the differential inequality,
from which we have the following estimation of functional (6):

V() < V(O)exp{—2t[ﬂ——:—of l(s)ds]}.
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Thus, it immediately follows that the sufficient stability condition for the asymptotic
stability with respect to the distance |- || = VY2 is:
_ 4
B> lim—lt— 2(s)ds, 12)
R Sl h

or for the almost sure asymptotic stability, provided processes N, and N, are ergodic
and stationary is:

B > EA. ' (13)
where E denotes the operator of the mathematical expectation.

i
4. Results

Expression (11) and inequality (13) give us possibility to obtain the critical damping
coefficient guaranteeing the almost sure asymptotic stability as a function of laminate
parameters and statistic characteristics of membrane forces. In order to obtain stability
regions, we choose discrete values of force (N, or Ng) and compute 1,,. Then we choose
the largest value corresponding to the given value of the force and take the expectation
numerically integrating the product of A by the probability density function. This is accom-
plished for various values of parameters by choosing the variance and varying the damping
coefficient until inequality (13) will be satisfied.
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Numerical calculations are performed for the gaussian process with zero mean and
variance o2 and the harmonic process with variance ¢ = 42/2, where A denotes its
amplitude, for different number of layers and the shell aspect ratio /!

The almost sure asymptotic stability regions as functions of §, ¢ and number of layers
N in the case, when the shell with g/l = 1 is loaded by the gaussian process, are shown
in Fig. 1. The stability regions are not changed in going from the axial loading to the
circumferential one. As the number of layers increases the orthotropic solution is rapidly
approached. The coupling between bending and extension depends on the orthotropic

moduli ratio £,/E,. It is seen from the figure that for greater ratios E; to E, the effect
of coupling increases.
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The dependence of stability regions as functions of 8 and the shell aspect ratio a//
for twolayered shell made of glass-epoxy is shown in Fig. 2. It is found that the stability
regions are not changed substantially in going from the gaussian process to the harmonic
one. The dependence of stability regions on the direction of loading is quite essential.
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Pesome

OUHAMUIYECKAS YVCTOUUWBOCTE AHTUCHMMETPYIUHO
CJIOMCTBIX ITIMNNBIPUYECKNX OBOJIOUYEK

TIpurimasi BO BHUMAHHE , YTO 3aMKHYTAaA KPYroBasi 000J0YKA COCTABJIEHA U3 YETHOrD UHCIA OpTO-
TPOIHBIX CJI0EB BHTHCHMMETPHUHO PACIOJIOYKEHBIX OTHOCMTEIBHO CPEQUEHON NOBEPXHOCTH, HCCNENo-
BAHA ACHMIITOTHUECKAA H IIOYTH HABEPHO ACHMIITOTHYECKASI YCTOMYHBOCTE HeBLITydeHHoit dopmer obo-
JouxH. Cioa 0D0NOUKM HICOTOBJIEHLY M3 OMHOPOMHOTO MaTePUaNia, KOTOPOrO TNABHLIE HAIDABJEHWS
ODTOTPONMH NMEPEMEHHO COBMANAIOT C AKCMANBHBIM H MEDASHOHANLHLIM HANIPABJIEHHEM. B CpexuaHoit
MOBEPXAOCTH OGOJIOUKA MAEHCTBYIOT YCHNIMS 33BMCAIIME OT BPEMEHH oTBEUANONIME HMCKOFHOMY Geamo-
MEHTHOMY cocTosiHMIO. BBoast coorBercrByroumit dyHrumonan Jiamyosa 1 mccnegyst ero NPEpAIEHHE
10 TPAaeKTOPHH DeIUeHusT YPaBHEHMI MBHIKEHHA IONYJYeHbI HOCTATOUHbIE YCIIOBMS ycrodumBsocru. He-
CJIEIOBAHO BIIMSIHHME UMCIIA CJIOEB, TeOMeTPHH 0DOJIOUKH ¥ HaIpaBieHMs HaIDY3KA Ha o0NacTH ycToiuu-~
BOCTH 060JI0UEK M3COTOBIEHBIX U3 CTEKIA H SNOKCHAHON CMONBLI WM rpadara H SIOKCHANONR CMOILI.

Streszczenie

DYNAMICZNA STATECZNOSC ANTYSYMETRYCZNIE POPRZECZNIE LAMINOWANYCH
POWEOK WALCOWYCH

Zakladajac, ze zamknieta powloka walcowa zbudowana jest z parzystej liczby ortotropowych warstw
antysymetrycznie rozmieszczonych wzgledem powierzchni §rodkowej zbadana jest asymptotyczna i prawie
pewnie asymptotyczna stateczno§é nieodksztalconej powierzchni. Warstwy powloki wykonane sa z orto-
tropowego materialu kt6érego kierunki gléwne maja przemiepnie kierunek osiowy lub obwodowy. W po-
wierzchni §rodkowej powloki dzialaja sily membranowe jawnie zalezne od czasu. Konstruujac odpowiedni
funkcjonal Lapunowa i badajgc jego wzrost wzdluz rozwiazafi réwnar ruchu wyznaczono dostateczne
warunki statecznosci. Przedyskutowano wplyw liczby warstw i wsp6lczynnikOw geometrycznych na obszar
statecznoéci powloki wykonanej z wi6kna szklanego na bazie Zywicy epoksydowej i wi6kna grafitowego
na bazie zywicy epoksydowej.

Praca wplynela do Redakcji 14 stycznia 1988 roku.



