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1. Introduction

Canard configuration possesses the considerable aerodynamic interaction be-
tween the front and main wing. Vortices flowing down from the ends of the front
wing can considerably disturb the main wing flow. Traditional accounting the
average downwash very often is not trustworthy what is involved by very strong
change of the induced velocities along the main wing span, especially in the range
of end vortices flowing down from the front wing. Taking the above into consi-
deration the classical Vortex Lattice Method [1] was employed to determine the
flow around the canard configuration. The superpanel method [2] was used to ac-
counting the deflected flaps, the body, crescent wing and the main wing winglets.
The geometrical datas for each panel was coded using computer technic [3]. Lift
distributions were obtained and analyzed especially taking into account the dihe-
dral angles and vertical displacement the main wing with respect to the front one.
Some aerodynamic characteristics such as gradient dey, /da and centre of pressure
position were computed. Downwashes behind the front wing and their contours
on the yz plane as well as the three-dimensional plots are shown.

2. Integral equation of lifting surface

For steady, potential and subsonic flow of inviscid fluid around the set of small
curvature planes the velocity potential function ¢ satisfies the Laplace equation
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where K211z is a movable set of coordinates, connected with the airplane, whilst
K z, axis is directed with accordance to the undisturbed flow velocity Us
Equation (2.1) in the fixed set of coordinates KZ2y222 has the form

o Po o _ |
23t o =" (2.2)

After the Prandtl-Glaunert transformation in the form:

2 z3 =2, (2'3)

23=ﬁ, B =W,

from the set of coordinates K3z2y223 to the movable set of coordinates K3z3¥323,
connected with the wing, equation (2.2) keeps the canonic form

Py 0’90 Py
=0.
R >
It means that in the new space Kaz3y323 the dimension z3 = z0 is
B = 1/v1+ M? times greater than the corresponding dimension z; , whereas the
velocity :
9¢

dzs
is A times less than the velocity Voo .
Solution of the equation (2.4) has form of the single and double layer potential

(2.4)

Vz3 = ::26,5 ]

P(zs33,2) = (25) -
%{ [l m 07 (55) - gameom )] s

where

By = /(23— £)2 + (45 — m)* + (23 — Go)2. (2.6)

For determination the flow around an aircraft it is necessary to know an in-
fluence function K(z3,&s;83,03, M) , connecting d® and dj between themselves
according to relation

dlb(23, 33) = K($3, 63; 83,03, M)di)(&‘h U3)a (2'7)

where @, p denote dimensionless velocity, norm,a.l to lifting surface and dnnensnon-
less pressure respectively, i.e.

_ w _ p
w=—, p= , 2.8
Uco 102" (28)

whilst (z3, 33) and (3, 03) are natural coordinates of collocation and sending point
respectively, whereas d# denote elementary velocity normal to lifting surface in
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collocation point, induced by the pressure over the elementary surface dS in sending’
point. -

The total normal velocity #(zs, 33) induced in collocation point R(z3,ss3) by
all sending points S(£s, 03) is equal:

D(zs,83) = / / K(z3, &s; 53,03, M)p(E3, 03)dSs (2.9)
S

Integral equation (2.9) can be approximated by the linear set of equations:
Wy = EDnﬁn (2'10)
]

where: .
D,, = _/,/K(zs,fs;'sa,oa,M)dS.s-
5,

It fc;jlows from (2.10) that the velocity w in receiving point R induced by the
pressure over the elementary surface dS,s is equal:

Wyy = Dul—’n

Oor: . P
Wrs — p,, 22 _. ' 2.11
U. ".% pUz ( )

From Kutta-Zukowski formula the lifting force F, acting on plane of unit span
with horseshoe vortex of circulation I, has the form:

F, = pUyT,,
whereas the pressure over the panel of the mean geometric chord Az, is:

= PUT,

P = (2.12)
From (2.11), (2.12) we have:
: ; L Wy, AZ,
D’-' — 2F‘ . (2.13)

The normal velocity w,, , induced in receiving point R by the infinite horseshoe
vortex filament I', , was determined using Biot-Savart law.

The total velocity V; induced in point R by the vortex filament I', of length !
(Fig.1) is equal:
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Fig. 1. Geometric relations between horseshoe vortex and the points-sending S and

whilst velocity wy, is:

whereas

a) W, =

b) V%, =

a) Vi

b) Vovz—

receiving R

Wry = Iy(Vysiny, — V; cos v, ),

a) Vll = va+‘/'ﬂ+vova
b) Vz=Vbz+Viz+Vozy

co8 8, — cos @y
4xdy
€06 8 — cos
4rdy

(cos A, siny,db, — sin A,db,),

Ri(l—cospi) o —Ri(1- cosei)
dr(RL +R%) ° Y7 4n(RL + R?x) ’
R,:(1 + cos 8,) V. = R,z(1+ cos8,)

4x(R3,+R2,) ° 77 4x(R3, +R3)’

(sin A,dby — cos A, cos v,db,),

(2.14)

(2.15)

(2.16)

(2.17)
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Fig. 2. Geometric relations between the superpanel height b and i-thpanel parameters:
chords ¢;, ¢;4; and height D;

a) cosQp = .
= i(R.,,, sin A, + Ry cos A, cos v, R;, cos A, sinv,),
(2.18)
b) cospy =
= i(R” sin A, + Roy cos A, cos v, R, cos A, siny,),
0
: R; R,
oS p; = —ﬁ, cos O, = —R—f, (2.19)

a) Riz = (22 - f2)ﬂ + etgA,s; Rox = (:C,‘— fa)ﬁ — etgd,,
b)  Riy=19—m+ecosv,; Roy = y2 — 1 — €cos7,, (2-20)
c) R, = 23 — (3 +esiny,; Ros = 25 — (3 — esinT,,

a) db; = Rz — Ricos Oysin A,,
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b) - dby, = R;y — Ricos O} cos A, cos,, (2.21)
c) db; = R;; — R;cos Oy cos 4, sin7,,

Ri=\/RL + R} + B%;R, = \[R%, + R, + B2, (222)
dy = [, + &, +d2,. (2.23)

Asy7s,7r denote sweep and dihedral angle in sending point and dihedral in
receiving point respectively.
Substitution (2.14) into (2.13) gives

p,, = 4z:(Vy m"; — Vesiny,) (2.24)

3. Lifting surface division into superpanels

It was assumed that the lifting surface can be divided into finite number of
trapezoidal elements socalled superpanels. This super panels are adjusted to lea-
ding edges, trailing edges, hinge axis and other border lines. This division can be
arbitrary but of course the number of superpanels should be as small as possible.
Each superpanel is next divided into trapezoidal boxes, socalled panels. The error
of computation of the lift distribution will be minimized if the division of the sur-
face into panels is such that these panels have aspect ratio of order unity. Division
into panels can be made with aid of computer if we know the number of elements
in chord as well as in span directions (Fig.2). It was assumed that unknown aspect
ratio A of each panel in an arbitrary superpanel can be computed as a function of
chords ¢;, ¢;41 and height D; in the form A = 2D;/(¢; + ¢;41). From geometrical
considerations follows that ¢;/h; = ¢;4+1/hi4+1 and that the panel height is ’

P -
D;(\) = o= (3.1)

The aspect ratio A can be computed as a solution of the nonlinear equation:-
Y_Di(A)-b=0. (3.2)
/

4. Numerical results

Numerical calculations of lift distribution were done for the canard configura-
tion (Fig.3) in many different cases. The front wing has constant section GAW-1,
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Fig. 3. Plan view of the aircraft, for which the computations was performed

the main one has NACA 63A416. Fig.4 - 6 show the lift distribution on the single,
isolated main wing, having different sweep angle (—10°, 0°, +10°), for the case
if dihedral angle is equal to zero. The wing was divided into m = 8 and n = 48
panels along the chord and span respectively. When the sweep angle increases
from negative to positive values one can observe

— an increasing of the lift force coefficient (from 0.765, through 0.797 up to 0.806),
— a shifting back of the centre of pressure (from 0.880, through 0.988 up to 1.099

1The figures at the end of the paper
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[m]),

— a side shifting of the centre of pressure of half wing from the root to the tip
(from 0.631, through 0.638 up to 0.647 [m]),

— a shifting back of the nose of the mean aerodynamic chord (from 0.733, through
0.862 up to 0.990 [m]).

Fig.7 shows the lift distribution on the single main wing with body elements.
The total number of panels is 588. An local increasing of pressure on leading edge
in the immediate vicinity of the body is caused by the sawtooth on the leading
edge of the set body-wing and, in consequence, by vortices curling from the down
to the up side of surface of the body. Although the lifting surface as a whole
increased, so the lifting force coefficient ¢y, , related to the same wing surface as in
Fig.4 - 6, decreased from 0.806 in Fig.6 to 0.794 in Fig.7. Fig.8 - 13 show the lift
distribution on wings, fore-wing and body of the canard configuration as a whole.
These figures differ between themselves on the front (F'D) as well as on the main
wing dihedral (M D) and on the vertical displacement one wing with respect to
other (VD). Each value of FD, M D, VD can be equal to 0 or 1. Value 0 denotes
that the carresponding parameter is equal to zero
(e.g. F D=0 denotes that the front wing dihedral is equal to zero), whereas value 1
denotes that this parameter is equal to its nominal value, selected by the designer.
The nominal values are: FD = -13.5°, MD = 8°,VD = 0.2m . Moreover
in Fig.8-13 there are printed: the angle of attack of the front wing a(ALFA), the
lifting force coefficient of the main wing ¢z, (CL) and longitudinal as well as the side
position of the centre of pressure for the half aircraft: z¢p (X CP) and yop (Y CP).
The aircraft as a whole was divided into 44 superpanels, distributed in 14 bands.
The bands and superpanels were fitted to flaps, body and fore-wing geometry. The
total number of panels is 980. The body is approximated by a thin wing, socalled
equivalent body, the shape of which is equal to the projection of the aircraft body.
on zy surface. Because the wings are displaced one with respect to the other in
vemca.l 80 the equivalent body is bent up at the front wing trailing edge and is
bent down at the main wing leading edge (Fig.14). For calculating lift distribution
it was assumed that local angles of attack in the equivalent body area are equal to
zeros, so the obtaining pressure (in body area) should be considered as a influence
of wings and fore-wing on the equivalent body. It is pure interference result.
Although the arrangement on Fig.13 possesses the greatest lifting force coefficient
(e, = 0.714), so0 it is not acceptable becaunse of very unequal lift distribution
along the span, especially because of the pressure concentration in aileron areas.
The arrangement on Fig.8 is the most uncoupled and has almost uniform lift
distribution over the main wing span. From the longitudinal stability point of
view the arrangement on Fig.9 (zcp = 0.712m) is the most advantageous, because
the centre of pressure is far behind.

After calculating lift distribution on the front wing it is possible to compute



CALCULATION OF LIFT DISTRIBUTION... 423

downwashes ¢ in the main wing area using the formula

- q=ﬂ=§:p“ﬁ'=§:D"—£j— (4.1)
U~ 25 = P 0n
where n, is the number of panels on the front wing.

Calculating downwashes € have been made on a grid n = 60 points along the
span and ! = 20 points in the z direction, perpendicular to wing span. Fig.15 and
17 show numerical results for the case, when the front wing dihedral is equal to
zero. Fig.16 and 18 show the same for case, when the front wing dihedral is equal
to —13.5° . Fig.15-16 contain the downwashes contours in yz plane, Fig.16-18
show the corresponding three-dimensional plots of these downwashes as functions
ely/(b/2),2/(b/2)]. All Fig.15-18 are symmetric with respect to the z axis, what is
caused by symmetric geometry and symmetric flow with respect to the symmetry
plane of the aircraft. Tip vortices flowing down from the front wing change the
positive downwashes (what means decreasing of the effective angles of attack on the
main wing) for |2y/b| < 1 on negative downwashes (what means increasing of the
effective angles of attack on the main wing) for [2y/b| > 1. The negative dihedral
of the front wing enables to decouple both the wings aerodynamically, without the
necessity of vertical shifting the main wing with respect to the front one. It can
be concluded from Fig.16, 18, where the areas of maximum downwashes (inside
the contour with the value equal to (4.1) in Fig.16 and both maximum convexities
in Fig.18) are shifted down, below the main wing position. Fig.16, 18 correspond
to the arrangement from Fig.8, for which we can observe conspicuous equalization
of the pressure over the main wing span, whereas Fig.15, 17 correspond to the
arrangement from Fig.13, which is the most aerodynamically coupled.

§. Final remarks

Superpanel versian of the classical Vortex Lattice Method presented here ena-
bles calculating lift distribution for complex geometry as well as including an
equivalent body into computations. It is especially important and convenient for
strongly aerodynamically coupled configurations, in that for canard aircraft. In
such case the separate calculating lift distribution on the front and main wing is
not necessary. All interference effects will be included. The method enables to
design such the geometric configuration, which can possess the requested aero-
dynamic properties (e.g. request that lift distribution over the main wing span
might be approximately constant). Deflected flaps, slats, winglets, wingtip fins
or other lifting surfaces can be easily included into analysis. Downwashes distri-
bution on the main wing for canard configuration or on horizontal tail for classic
configuration can be gimply calculated and analyzed.
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Streszczenie

W pracy przedstawiono superpanelows wersje klasycznej metody VLM, ktéra umo-
Zliwia obliczanie rozkladéw cisnien dla madow silnie sprzezonych aerodynamicznie, w
tym rowniez dla ukladu kaczka. Metoda pozwala na zaprojektowanie konfiguracji geome-
trycznej samolotu o zadanych z géry parametrach (umczliwia np. spelnieniezadama, aby
rozklad cisnienia wzdluz rozpietoéci plata gléwnego dla ukladu kaczka byt w przyblizenin
réwnomierny). Szczgdina uwage poswiecono obliczeniu rozkladéw katéw odchylenia strug
zaplatem przednim. Przedstawiono izolinie oraz tréwymiarowe wykresy katéow odchyle-
nia strug na plaszczyinie prostopadle do predkoéci oplywu niezaburzonego dla réznych
konfiguracji geometrycznych samolotu.

Pesmome

B pa6oTe HpencTABNEH METON PAMICNEHEA HECYIIHX NOBEPXHOCTEH Ea CymHeplia-
HenH. BcSKAS cymepnanenms, B CBOK ouepefh, MOXeT GLIT: pasfieNleHa HA MeHIIMe
BlIeMEHTH — IIAHENH, Op¥ STOM YAJIRHHEHHE GIHESKOe K eUHHNE SKBJASETCS HARKIY-
yuEM. [IpeacTapieHhl pesynbTaTE BREYECACHAS A8 CAMONETa CHCTEMM "yTRa”. Oco-
Goe PEHEMaHEE OGpAIIEHO HA 3A0ANY ONPEACNEHES YI/A OTKJIOHEHHA NOTOKA 3 Mepe-
OHEM KPRUIOM H BLIGOP TaKoil reoMeTpaveckold xoHGHTy panus, OpH XOTOpOH pacupe-
AelleHWE AABJIEHAS IO PASMAXY KPhUIA SBJiSeTCS NPEGIHSATENLHO0 TOCTOSTHHEIM.

Praca wplyn¢la do Redakcji 12 paidziernika 1988 roku
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Fig. 7. Lift distribution over the main half-wing with body elements for the case of
positive sweep angle



CALCULATION OF LIFT DISTRIBUTION... 427

FO,HD. VO (1,1.1).

ALFA=  B.000.
CL = 0.548.
X CP= 0. 686.

OIMENSIONLESS PRESSURE P/(1/2eR0eVee2).

DIMENSIDNLESS M. A.C.

Fig. 8. Lift distribution over the whole half-aircraft for FD = 1,MD =1,VD = 1 (The
most coupled case)
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Fig. 10. Lift distribution over the whole half-aircraft for FD = OOMD=0,VD =1
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Fig. 11. Lift distribution over the whole half-aircraft for FD =0,MD =1,VD =0
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Fig. 14. Plan view of the equivalent body, fore-wing and both the wings

iz

Fig. 15. Downwash contours in the area of the main wing for the case, when the front
wing dihedral is equal to zero
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Fig. 16. Downwash contours in the area of the main wing for the case, when the front
wing dihedral is negative




CALCULATION OF LIFT DISTRIBUTION... 431

Fig. 17. Downwashes in the area of the main wing as tﬁree-dimemiond plots for the
case, when the front wing dihedral is equal to zero
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Fig. 18. Downwashes in the area of the main wing as three-dimensional plots for the

case, when the front wing dihedral is negative



