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A new micromodelling approach to micro-periodic highly-elastic inhomo-
geneous materials is proposed. The model equations obtained describe
an effect of the microstructure length paramater on dynamic behaviour
of the body. Within linearized approximation they reduce to a certain
generalization of the refined macrodynamics equations proposed by Wo-
zniak (1993). The main aim of the contribution is to show how the
obtained model can be applied to the analysis of wave propagation and
stability within the range of finite deformations of elastic composite ma-
terials under consideration.

1. Introduction

The matter under consideration consists in composite materials which in a
certain configuration (e.g., in a natural state) have a micro-periodic structure,
i.e., are composed of many small repeated cells which form a certain new mate-
rial. As it is known, the overall (apparent) properties of a composite material
are quite different than those of its constituents. Following Jones (1987) by
macromechanics we shall understand the study of composite materials where
the effects of constituents are detected only as averaged apparent properties
of the composite. On the other hand, the study of composites wherein the
interactions of constituents are examined in detail is referred to as microme-
chanics. In this contribution the emphasis is placed mainly on macromechanics
of highly-elastic composite materials and structures. The derivation of overall
properties from the material structure of a single representative volume ele-
ment (unit cell) is known as the micromechanical approach to macromechanics.
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In contemporary research into composite mechanics a number of micromecha-
nical approaches were formulated, leading to diflerent mathematical models
of periodic heterogeneous materials and structures. Models of this kind are
often referred to as the macro-models. In order to interrelate results of a macro-
modelling procedure proposed in this paper with the existing macro-models,
some main trends in formulation of averaged theories for macromechanics of
periodic composites will be outlined below.

Generally speaking, the known micromechanical approaches to macrome-
chanics can be separated into main groups:

o (eneral approaches, in which there are no a priori restrictions imposed
on distributions of constituents within the representative volume element
of a micro-periodic material structure

e Special approaches, developed independently for various types of compo-
site materials such as laminated composites, composites with long and
short fibers and for solids with periodic distribution of inclusions or ca-
vities of various shapes (i.e., for particulate composites).

Obviously, the general micromechanical approaches have the practical me-
aning provided that the resulting macro-models can be applied to the inve-
stigations of special types of composites. We have stated above that every
micromechanical approach leads to a certain macro-model of composite. In
this contribution two kinds of macro-models will be discussed:

e Length-scale macro-models, where the above effect of length dimensions
of the representative volume element on overall properties of a composite
is taken into account. Following Wozniak (1993), the length-scale macro-
models investigated in this paper can be referred to as the refined macro-
models

o Local macro-models, which are invariant under arbitrary rescaling of the
unit cell, i.e., where the above effect is neglected.

So far, the main efforts to construct the macro-models for periodic compo-
sites were concentrated on special micromechanical approaches to macrome-
chanics. The overview of different local models can be found in the textbook
by Jones (1976); for composites with long and short fibers (cf Aboudi (1991)).
The special length-scale macro-models were developed for laminated elastic
composites by Sun et al. (1968), Achenbach and Hermann (1968), Grot and
Achenbach (1970); for investigations into dynamics of fiber-reinforced compo-
sites (cf Aboudi (1981); Tolf (1983)) and for media with voids (cf Nunciato
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and Cowin (1979)). The list of references on this subject is rather extensive
and will be not discussed here.

Among the general micromechanical approaches to macromechanics we can
mention those based on the asymptotic homogenization approach (cf Benso-
ussan et al. (1987); Sanchez-Palencia and Zaoui (1985)) and the extensive
list of references therein. The resulting macro-models are described by equ-
ations involving constant coefficients (called the effective modulae) and time
‘ependent functions (for nonstationary processes). These mathematical ob-
jects have to be determined independently for every periodic structure by
obtaining solutions to certain variational problems posed on the periodicity
cell as well as certain initial value problems for materials with memory (e.g.,
for visco-elastic materials). Hence, the formulation of macro-models by the
asymptotic approach, as a rule, is restricted only to the first approximation.
Within this approximation we deal with the local macro-models, in which the
effect of size of the periodicity cell on the body behaviour is neglected. An
alternative general micromodelling approach, also leading to the local macro-
models, was discussed by Nemat-Nasser and Hori (1993) resulting in a concept
of homogeneous equivalent body. To describe length-scale phenomena (i.e., to
formulate the length-scale macro-models) by the asymptotic homogenization
approach, the higher steps in the formal asymptotic procedure have to be
considered. Due to serious difficulties at the stage of formulation of gover-
ning equations of macromechanics for a selected composite body the above
line of procedure is not accepted by most of researchers interested mainly in
engineering applications of the resulting theories. Free from this drawback
are general macro-modelling methods, based on theories of material continua
with microstructure suggested by Mindlin (1964), Eringen and Suhubi (1964)
and others. Models of this kind are called the microstructural models and be-
long to the length-scale macro-models. They can be formulated without any
reference to the boundary-value problems on the unit cell. The pertinent mo-
delling procedures are specified by certain a priori assumptions related to the
expected class of micro-deformations and certain smoothing operations. The
obtained macro-models for elastic materials are governed by the systems of
second-order partial differential equations for a number of fields representing
macro-kinematics of a composite. Many unknown independent kinematic va-
riables appearing result in serious difficulties dye to complicated forms of the
boundary-value problems. Moreover, in microstructural models we can also
deal with considerable discrepancies between the number of boundary condi-
tions required by the mathematical structure of the theory and the number
of these conditions describing the boundary interactions for composite ma-
terials from the viewpoint of engineering applications ol the theory. Hence
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the microstructural models were successfully applied mainly to the investiga-
tions of the wave propagation in unbounded media. A certain alternative to
microstructural models constitute macro-models based on the mixture and in-
teracting continuum theories, developed by Green and Naghdi (1965), (1966),
(1967), Green and Steel (1966), Steel (1967) and (1968), Bedford and Stern
(1971), (1972), Hegemeier (1972), Tiersten and Jahanmir (1977) and others.
They are the length-scale macro-models being often oriented towards different
investigations of selected dynamic problems.

In this contribution a new general micromechanical approach to the for-
mation of length-scale macro-models for highly-elastic periodic inhomogeneous
materials is given. The idea of the proposed method is a certain alternative
to that expressed by Wierzbicki et al. (1995) for nonlinear problems and
previously by Wozniak (1993) within the framework of what was called the
refined macrodynamics for the linear-elastic composites. The main feature of
the refined macrodynamics of composite periodic materials is that a micro-
inhomogeneity effect on the global dynamic behaviour of the body is descri-
bed in terms of certain macro-internal variables (independent of the boundary
conditions), satisfying the system of ordinary diflerential equations. This fact
makes the refined macrodynamics a convenient tool in applications to many
engineering problems since the corresponding boundary conditions have the
form similar to that used in elasticity theory. Different applications of the
refined macrodynamics, developed by Baron and Wozniak (1995), Matysiak
and Nagérko (1995), Michalak et al. (1995), Mielczarek and Wozniak (1995),
Wierzbicki (1995), Wierzbicki et al. (1995), Woiniak (1993), WozZniak et al.
(1993) and (1995), were restricted mainly to the linear problems. From the
formal viewpoint the field equations derived in this paper coincide with those
obtained from the general procedure outlined by Wozniak (1995). However,
in the author opinion, the introduced dynamic modelling assumptions and the
new procedure applied here yield more evident physical interpretation of the
concepts involved and the scope of their applicability. The main aim of the
paper is to show how the resulting model equations can be applied to the
analysis of wave propagation and stability for elastic micro-periodic inhomo-
geneous materials under finite deformations. The attention will be given to
the microstructure length-scale effect on the composite body behaviour in in-
vestigations of the aforementioned problems. The results obtained constitute
the basis for possible further attempts in this domain of composite mechanics.

Throughout the paper sub- and superscripts «,f,7,... run over 1,2,3
and are related to the material coordinates of a body. Subscripts 1,4, k,...
also run over 1,2,3 but are related to the Cartesian orthogonal coordinate sy-
stem in the physical space. Non-tensorial indices A, B, ... run over 1,2,..., N,
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respectively. The summation convention holds for all the aforementioned in-
dices unless stated otherwise. Points in the reference space I3 are denoted
by z = (z1,z2,23), t stands for a time coordinate and (zy,z2,z3,t) are assu-
med to be inertial coordinates in the Gallilean space-time. In investigations of
finite deformations, X stands for an arbitrary material point which coincides
with its material coordinates X = (X3, X2, X3) and a superscript R is used
in order to distinguish entities related to the reference configuration.

2. Preliminaries

Let £2g be a regular region in the physical 3D space R®, occupied by a hy-
perelastic body B in a certain reference configuration xgr: B — R>. Define
by pr = pr(X), or = op(X,D) (where X € 25 and D is a displacement
gradient) the mass density and the strain energy function, respectively, rela-
ted to this configuration. Also define by Vg = (={1/2,0;/2) x (=12/2,12/2) x
(—13/2,13/2) arepresentative volume element of a body, where the length para-
meter | = /({1)2 + ({2)? + (/3)? is assumed to be negligibly small as compared
to the smallest characteristic length dimension [ of §2r. Throughout the
paper pr = pr(-) and op = oR(-, D) are non-constant Vg-periodic functions;
hence B is said to be a micro-periodic elastic body. Moreover, ! will be called
the microstructure length parameter and A := [/L will be referred to as the
nondimensional macro-accuracy parameter. Since the subject of this paper is
a certain micro-periodic elastic body then all entities mentioned above and
related to this body are assumed to be known a priori. To be more exact, by a
micro periodic body we shall understand the fourtuple (B,&gr,pRr,oRr), where
PR, OR, satisfy the aforementioned mentioned conditions. If pg(-), or(:, D)
are Vg-periodic and piecewise constant than this body is made of a certain

composite material.

The general motivation to formulate different averaged models (macro-
models) for micro-periodic composites was outlined in the Section 1 and will
be not repeated here. The properties of the aforementioned bodies within the
framework of their homogenized models are described by the functions which
are explicitly independent of X, X € f2g; some of them can reduce to certain
material constants. At the same time the governing equations defining macro-
models involve certain unknown fields, which describe the process realized by
a body under the known external agents and the known initial conditions.
Following the terminology of the refined macrodynamics, components of these
fields will be referred to as the macro-functions. The general idea of this notion
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was given by Wozniak (1993); here we begin considerations with more rigorous
definition of a macro-function.

Let (to,%y), to < ts, be the known time interval and F : 2p X (to,15) 3
(X,t) — F(X,t) € Rbean arbitrary real-valued function which will be related
to the macro-description of a certain process in a micro-periodic body. Let us
assume that the values F(X,t) have to be measured or calculated up to a
certain accuracy £p which is assumed to be known in every special problem
under consideration. Denoting by Fp a certain expected value of F' (mind
that in general F'is not known a priori) we assume ep = AFp and refer ¢p
to as macro-accuracy of F. Moreover let || X — Z|| be a distance between
points X,Z € R°.

e Definition 1. A triple (F;l,er) is called a macro-function if condition
VZ,X € Qr 1Z-X|<!{—|F(Z,t)- F(X,t)|<eF
holds for every t € (to,1;).

Now assume that F is continuous and has continuous derivatives
VF,F,..., up to a certain order. Assume that the macro-accuracies:
EF,EVF,Ep, ..., Telated to I, VF, F, ..., respectively, are known.

o Definition 2. A sequence (F;l,ep,evF,€f,...)is called a regular macro-
function if for each & € {F,VF, F,...} condition

VZ,X € {2p 1Z - X|| <= |P(Z,1)- ¢(X,1)| < €a
holds for every t € (1o,1y).

o Corollary. For every regular macro-function (F;l,ep,ev.,€p,...) the
condition

({Fo(X,t)| <er+levr
holds for every X € (2g.

In the sequel, terms "macro-function F” and "regular macro-function F”
will be used since the parameters [,¢p,evF,€, ... are assumed to be known
in every problem under consideration.

The modelling procedure applied to the refined macrodynamics takes into
account a certain kinematic hypothesis which has to be formulated for every
class of motions we are going to investigate. To formulate this hypothesis
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the concept of a micro-shape functions system will be recalled. It is the sy-
stem h4(-), A =1,...,N,of linear independent, Vg-periodic continuous func-
tions, having piecewise continuous first derivatives, such that sup [h4(-)] =,
sup |44 () = 1 and (h4) = 0 for A = 1,...,N; symbol (h#*) stands here
for the averaged value of a Vg-periodic function h“. The kinematic hypo-
thesis specifying the class of expected displacement fields wu;(-,t) (related to
the reference configuration) is assumed in the form

wi(X,1) = Ui(X, 1) + R X)VA(X, 1) XeNr te(toty) (2.1)

where U;(-, 1), VA(:,1) are sufficiently regular macro-functions and h“4(-),
A = 1,..., N, constitute a micro-shape function system, posulated in every
special problem. Functions U; and V,* represent the basic kinematic un-
knowns of the proposed macro-model and are called macro-displacements and
macro-internal variables, respectively. The above formula is based on the
heuristic assumption that the micro-periodic material structure of the medium
under consideration leads to certain macro-disturbances in its motion and
these disturbances have the form h4(X)VA(X,t), X € £2g, for every instant
t. It follows that in kinematics of micro-periodic media we are to investigate
only some classes of the aforementioned disturbances. More detailed discussion
of the kinematic hypothesis (2.1) is given by Wozniak (1993) and can be also
found in the series of papers on the refined macrodynamics, mentioned in
Section 1.

At the end of these preliminaries some auxiliary concepts will be in-
troduced. Setting Vgr(Z) := Z + Vg for every Z € R®, let us define
2% = {X € 2r: Vgr(X) C 2r} as a macro-interior of 2g. In the se-
quel the attention will be focused on an arbitrary but fixed element Vg(X),
X € 2%, of the region §2g. The averaging operator related to this element

will be denoted by (-),, where
(/(2))x

/ £(Z) dVR(Z) (2.2)

and where f(-) is an arbitrary mtegra,ble function. Obviously if f(-) is a
Vr-periodic function then (f), = (f) for every X; in this case instead of
(f(Z)) the symbol (f) will be used.

3. Modelling procedure

The macro-modelling approach proposed in this contribution will be based
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on the kinematic hypothesis (2.1) and on two modelling assumptions formu-
lated below. In order to formulate the first one let us observe that due to
the kinematic restrictions of the form (2.1) the well known local equations
of motion and stress continuity conditions for the micro-periodic elastic body
may be not satisfied. Hence, for every motion restricted by a condition (2.1)
define the residuals

dog (X, Vu(X,t))

ri(X, 1) = - ( ) + pr(X)i(X, 1) — pr(X )bi

aui,a
X e Qg \ I'r
(3.1)
aaR(X,Vu(X,t))
si(X,t) 1= - B Ny Xerlr

where I'gis a sum of interfaces in 2z on which og(:,D) and VhA(-) suffer
jump discontinuities. Define I'r(X):= I'nN Vr(X). Here and in the sequel,
for the sake of simplicity, body forces b; are assumed to be constant. The first
modelling assumption is related to the dynamics of a body.

o Macro-Averaging Assumption. For every X € 029, € (lo,1y), residuals
defined by Eq (3.1) are assumed to satisfy the conditions

(Ti(Z’t»x +

/ s:(Z,1) dAR(Z) = 0

hilals
Fr(x)
(3.2)
(r(Z,OhA(2)  + 5 111 / si(Z,0h*(Z) dAR(Z) = 0
162 SFR(X)

provided that the displacement field u(-) in Eq (3.1) is restricted by a
condition (2.1).

Hence the known equations of motion for a micro-periodic elastic body
under consideration have to be met in the form averaged over every element
Vr(X), X € 2%. Since X € 2% then the aforementioned averaging condi-
tions hold only in the macro-interior of f2g. However, bearing in mind that
A = I/L < 1,it can be seen that from the computational viewpoint regions
2% and 2p nearly coincide.

The second modelling assumption is strictly related to the fact that Us(-,¢),
VA(-,t) and their derivatives are macro-functions.
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o Macro-Approzimalion Assumption. When calculating the averages in
Eqs (3.2) terms O(ep) will be neglected as compared to terms involving
F, where F stands for an arbitrary regular macro-function.

Let us denote by F a certain macro-function defined on {25 and by
go(Z, F(Z)), Z € 2R, an arbitrary continuous function. By means of

(2, F(2)) = ¢(Z,F(X)) + O(er) ZeVr(X)  (3.3)
the macro-approximation assumption yields

(p(2,F(2)) + 0(gp)>x = (p(z, P(X))>X (3.4)
for every X € £2%. The approximation formulae (3.4) will be used in the
course of a macro-modelling. It has to be emphasized that the modelling
approach, proposed in this contribution, which is based on the aforementio-
ned macro-approximation assumption, does not involve any asymptotic ap-
proximation procedure. It has to be remembered that the terms O(efp) are
neglected only in formulas w(Z,F(X)) + O(eF) subjected to an averaging
procedure over some Vg(X), X € k.

Applying Eqs (3.2) to the second and the third term on the right-hand
side of Eqs (3.1) and using Eq (2.1) we obtain

—(pr(Z)i:(Z,1)) x +{pr(Z))xbi = —(pr(2)) xUi(X, 1) +

—(prhMYVA(X, 1) + (pr)bi + (Olev) + Olev)) 4 35)

~(pr(Z)i( Z,0h*(2)) + (pr(Z)hA(2)) cbi =

= —(pR(Z)R*BY, VB(X, 1) + —(prh®) Ui(X, 1) + (pah?)b; +
HO(ew) + Oev))

Here and in the sequel the simplified notation (-) for the averages of Vp-
periodic functions is used, see the remark at the end of Section 2. It can be
seen that by the virtue of Eq (2.1) and after setting g4(-) := h4(-)[~1, where
now sup |g”(-)| = 1, we obtain

or(2,VU(2,1) + VAN (Z)VA(Z,0) + gA(Z)zva(z,t)) =
(3.6)

or(2,VU(2,1) + VRM(Z)VA(Z,1)) + Oev) +1O(evy)
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where we have taken into account that [(F,,| < ¢r + leyp. Moreover, for
every Z € Vg(X)

or(2,VU(Z,1)+ VEA(Z)VA(Z,1)) =

(3.7)
or(2,VU(X,1) + VRAVA(X, 1)) + O(evu) + Olev)
Setting V := (V1,...,VV) and denoting
R(2,VU,V) = or(Z,VU + VhA(Z)V4) (3.8)

where 7g(-, VU,V)is a Vg-periodic function, from Eqs (3.6), (3.7) it follows

0 0? 0?
<<3?Zi)yo'>x = <0Ui7agl;]j,ﬁ>x(]j’ﬁa <3U;,a%> VAL +

(3.9)
+ O(cvy) + Olev) + O(evv)
because by means of a Vp-periodicity of mp(:,VU,V)
827FR aa'R
<0U1,a 577) . = ?{ aUl,a”“ da+ / [ U, I da)
Similarly, using
(aui,a) = (auivah ):a - (aui,a)h ’O'
we obtain
/
<<8ui,a),a Yy 111213 / [ oul,a nah” da+
Ir(X)
(3.10)
ortp
“<(W),a (2,VU(X,1),V(X,1)) + O(ewy) + Oev) + @(Evv)>x

Let us define the averaged strain energy function, setting

TR(VU,V) = (rr(Z, VU(X,1),V(X,1))) (3.11)
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and for an arbitrary motion satislying Eq (2.1) introduce the fields S5, HA?
by means of relations
0TR(VU(X,1),V(X,1))

an?Cl

SE(X,1) =
(3.12)

i azR(VU(X,z),V(X,z))
R VA

Applying macro-approximation assumption in the form given by Eq (3.4)
to Eqgs (3.5), (3.9) and (3.10)! the averaged equations of motion (3.2) yield

St (X,1) = (pR)UI(X, 1) = (prA)VA(X, 1) + (pR)bi = 0
(3.13)

(prh*RBYVEB(X 1) + (prh™)YU{( X, t) + HE(X, 1) — {prh™)b; = 0

Let us observe that Eqs (3.12), (3.13) have been derived indepedently for
every X € 2%, 1t € (to,ts). However, due to the definition (3.11), all entities
in the above equations will be assumed to hold for every X € f2r. Egs
(3.13) constitute a certain generalization of equations derived by Wierzbicki
et al. (1995), involving also terms (prh?). However in many problems the
micro-shape functions h? are assumed in the form satis{ying extra conditions
(prh) =0, A=1,...,N. In this case Eqs (3.13) reduce to the form

Sive (X, 0) =~ (pr)U(X, 1) + (pr)b; = 0
(3.14)

(prRARPYE (X, 1) + Hp(X,1) = 0

which will be used in the subsequent sections.

After WozZniak (1993), fields 5%, HA* will be called macro-stresses and
microdynamic forces, respectively. Function Xp will be relerred to as the
macro-strain energy function. At the same time Eqs (3.13) and (3.14) repre-
sent the equations of motion and Eqs (3.12) are the constitutive equations for
a macro-periodic elastic body under consideration. The form of the model
depends on the choice of a micro-shape function system h4(:), 4 =1,...,N,
in Eq (2.1), i.e., on a class of micro-disturbances of motion we are going to in-
vestigate using this model. Since h*(Z) € O(!) then the coefficients (prh?),
(prhAhB) in Egs (3.13) depend on the microstructure length parameter I.

ITerms O(ev) in Egs (3.9), (3.10) depend on V;#,, and hence [O(evy) can be
neglected as compared to O(ey)
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Hence the obtained model describes the length-scale effect on the global be-
haviour of a composite body. Using equations of motion in the form (3.14) it
can be seen that this elfect appears only in dynamic problems. 1t has to be
emphasized that the unknowns V4 are governed by the system of ordinary
differential equations

(’)ER<VU(X,1),V(X,1))
VA

1

(prRARBYVE (X, 1) + =0

and hence the fields V4 are independent on the boundary conditions. That is
why these fields are referred to as the macro-internal variables. In applications
of the theory it has to be remembered that the solutions to the initial-boundary
problems for Eqs (3.12), (3.14) have a physical meaning only if U;(-,1), VA(+,1)
are sufficiently regular macro-lunctions.

The detailed discussion of the linearized version of Eqs (3.12), (3.14) can
be found in papers on the "refined macrodynamics” mentioned in Section 1.
Alternative forms and special cases of the derived equations were also discussed
by Wierzbicki et al. (1995) and Wierzbicki (1995).

4., Local models

The formulations of local macro-models on a basis ol the obtained in Sec-
tion 4 length-scale models can be easily done by applying the limit passage
[\, 0. To this end note that the constitutive equations (3.12) are independent
of the microstructure length parameter [ and equations of motion (3.13), after
substituting h4 = g4/, take the form

Shira (X,1) = (pR)UH(X, 1) + U{prg™ VA (X, 1) + (pR)bi = 0 (4.1)

prgtgBYVEB(X 1) + Uprg™ YU X, 1) + HA(X, 1) — L{prg™Yb; = 0

which depends on [ in the explicit form. Restricting consideration to the
problems in which the length-scale effect on the overall body behaviour can
be neglected (e.g., for quasi-stationary problems, provided that {(prg4) = 0)
one can neglect terms involving [ in Iqgs (4.1). Hence from Eqgs (4.1) we obtain
the equations of motion

Sisa (X, 1) = (pR)U(X,0) + (pR)b; = 0 (4.2)
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and the algebraic interrelation between macro-internal parameters V.4 and
macrodisplacement gradients U;,4

OZR(VU,V)

i (4.3)

Equations of motion (4.1), constitutive equations for macro-stresses

BER(VU(X,t),V(X,"L))

T (4.4)

S%i(xat) =
and algebraic equations (4.3) for macro-internal parameters, constitute a local
model of the micro-periodic elastic body under consideration. Now assume
that Eqs (3.1) have solutions of the form VA = ¥A(VU), where WA(-) are

known functions. In this case the macro-internal parameters can be eliminated
from the constitutive equations (4.4). Setting

T (VU) = Zr(VU,@(VD)) (4.5)
and bearing in mind Eq (4.3), we obtain

oz (VU)

(4.6)
It follows that in the case considered the governing equations (4.2), (4.6) re-
presenting the local model are similar to the equations of certain elastic ho-
mogeneous bodies, subjected to finite deformation, with the energy function
given by Eq (4.5).

Taking into account definitions (3.8), (3.11) it can be seen that Eq (4.3)
can be also written down in the form

{or(2,VU + VhB(Z)VE WA, (2))

=0
anaa

For a homogeneous body we have op = aR(VU + VILB(Z)VB). Since

(or(VU)RA 4 (2)) = or(VU){hA 4 (Z)) = 0 then it is easy to conclude that
for homogeneous elastic media subjected to finite deformations Eqs (4.3) have
always trivial solutions V.4 = 0. It follows that the macro-internal variables
and hence also disturbances h4VA in the formula (2.1), for homogeneous
bodies can be taken as equal to zero.

3 — Mechanika Teoreryczna
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5. Wave propagation

In order to apply the obtained macro model to the analysis of wave pro-
pagation and stability problems, an alternative form of Eqs (3.12), (3.14) will
be derived. To this end define

o 92 ZR(VU, V)
1ol v — R )
AR (VU V) ——8Ui,a 0
ia 2T R(VU,V)
Ajt R
BA(VU, V) = DV (5.1)
OXr(VU,V
povv - 2

Under denotations (5.1) and setting ¢g# = h“4l=! Eqs (3.12), (3.14) can be
written down in the form

AZP(VU VY, rap +BEP (VU VIVA . —~(pR)T + (pR)Y = o(
5.2)

*(pryg?gP)VE + GE,(VU, V) =0

which depends explicitly on the microstructure length parameter [. Since
the coefficients in Eqs (5.2) are known functions of U;,., V4, then Egs (5.2)
represent the system of 3 quasi-linear second order partial differential equ-
ations in macro-displacements U;, coupled with the system of 3N second
order ordinary differential equations in macro-inertial parameters V4. In this
section Eqs (5.2) will be used to the analysis of a wave propagation problem
for a micro-periodic elastic medium. Since the problem is investigated within
the framework of macro-model then the term ”"wave” will be understood in
a certain averaged manner related to this model. Considerations will be re-
stricted to acceleration waves described by the motion t — Sk .of a certain
smooth discontinuity surface Sk in f25. Let every Sk be oriented by a unit
normal vector field with components N, (X), X € S4. Let f(-,t) stand for a
continuous field, defined on (25 for every t € (1o,ts) having continuous first
order time derivatives and continuous material derivatives up to the (n—1)th
order. As it is known, the following compatibility conditions hold on every

oriented discontinuity surface .5%
s 60 0) = v Noy (X)oNo(X) X € S

where [-] stands for a jump-across .Sk, vp is the propagation. velocity of
the surface S% and ay is the amplitude of-a jump of the field f(-;t) across
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ShuIt-hasto be rememberedithat all entities in the problem considered are
related- to the reférence configuration of a -medium; the passage to the actual
configuration can be realized by using Eq (2.1).

Since ‘displacement- gradients in :the definition (3.8) are given by
Uiyo +h4,6 VA then discontinuities of the second derivatives in the displa-
cement field. u; ¢am be described, within the framework of macro-model under
consideration, by discontinuities of the second order derivatives - U; 0z, U; ol
the macro-displacément field Ui(-) and discontinuities of the first order deri-
vatives . Vi,4.0f the macro-internal variables V4(-). Thus, the acceleration
macro wave of the second. order will be defined as the discontinuity surface

R in g across which U, VA, U;, Ui, are continuous and Uisap, Usras

Ui, VAo, suffer jump: discontinuities. Taking the jumps [-] across Sk of the
left- hand sides of Eqs (5. 2) we obtain

AP TU V)L mu—m [0 1|+B*‘”°‘|[v;‘.,a ]=0
(prg*9B) VB =0

Since (prg?g®) represent elements of a non:singular N x N matrix then
[VB] = 0, i.e., fields VP are continuous across Sk. Taking the derivative
with respect to X of the left-hand sides from the second one of Eqs (5.2)
and denoting

AB, _9*ZR(VU,V)
t J
we arrive at the system of equations '
A;gjﬁU]',o,g —(pR)U“'. + Bgija V]-A',g +<pR)bi =0 (5.4)

CREIVE o +1prg? 9P )V Pl e + BRP Uspa = 0

Let us take the jumps [} across 5 of the left-hand sides of the above
equatlons after denotations | o v ‘
{10 A A;Oﬂ]ﬁ/\, A’ T BAU e BAZ]ON
the aforementloned compamblhty /condmons oft! S yleld the system of. hneaJr
algebraic equations it the amphtudes a;y afy 1o}ated to jumps of fields U; and

VA, respectively

(A% — (pR)VEEYa; + DA af =0
(5.5)

“BHNaaj + (Cp?M +1?=<pR=g<‘~gB>=v%6“)A'aa§* =0
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The condition of existence of non-trivial solution a;, a# to the above system of
linear algebraic equations yields the propagation condition. It can be seen that
the form of this condition depends on the microstructure length parameter [,
l.e., it takes into account the microstructure length-scale effect on the dynamic
behaviour of the medium.

Treating % in Eqs (5.5) as a small parameter one can verify that the linear
transformation R®™ — R>" given by CABij +1%(prgtgP)éiivg, is invertible.
Denoting by Dp ABij the elements of the linear transformation inverse to that
given by CSB” (which is also assumed to be invertible) we obtain from the
second one of Eqgs (5.5) the following asymptotic formula

aBi — _(DgCij _ 12UﬁDgDik<ﬂRngE)Dgcjk)nglal‘ + 0(12)

It follows that the amplitudes a® can be eliminated from Eqs (5.5). Substi-
tuting the right-hand side of the above formulae into the first one from Eqs
(5.5), after introducing the denotations

Q% = A% _ BgikDnglBglj
(5.6)

]V[;_?] = BgikDngl(pRngE)DgCIlntmj (pR)—l
we arrive at the system of equations in the amplitudes a;
[Q ~ (pr)(E7 = P MK )oh + o(1*)]a; = 0

Neglecting terms o(l?) as small ones when compared to (pgr)v%, we obtain
finally the propagation condition

detQd — (pr)(69 — PMF)vR] = 0 (5.7)

Since [%is treated in Eq (5.7) as a small parameter then the 3 x 3 matrix with
components Y — IZM J is positive definite. A matrix with components QR
will be called the macro-acoustic matrix. Hence the final conclusion is that the
squares of propagation velocities v for the macro-wave under consideration
are generalized eigenvalues of the macro-acoustic matrix.

Let us observe that after neglecting the length-scale effects, i.e., after using
the limit passage [\, 0 in Eq (5.6), we obtain

det(Q ~ (pr)6Iv}) = 0

The above condition has a similar form to that for a homogeneous elastic body.
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6. Stability

Let us assume that the micro-periodic elastic body under consideration is
subjected to a certain finite deformation, which due to Eqs (2.1) is given by
the fields U; = Uy(X), VA = VA(X), X € 2g. Neglecting the body forces,
from Eqs (6.2) we obtain for U;, V4 the system of equations

APV, V)Ujap+ BRI (VU VIVA =0

GA(VU, V) =0

with the functional coefficients defined by formulae (5.1), which has to be con-
sidered together with the boundary conditions for macro-displacements U;.
It can be seen that the macro-internal parameters V4 are governed by a
system of 3N nonlinear algebraic equations. Let us assume that the solu-
tion to this boundary-value problem has been found and hence the functions
Ui(X), VA(X) are known and depending on the boundary surface tractions
related to df2z. The model involved is local and hence the solution obtained
is independent of /.

Now substitute the fields U;(X) + ¢ 'U;(X,1), VA(X) + ¢ 'VA(X,1) into
Eqs (5.2), where ¢ is a small parameter and U;, V;4 determine a certain
small motion superimposed on the known finite deformation given by U;(X),
VA(X). In this case Eqs (5.2), after linearization with respect to ¢, assume
the form

A;gmUj,aﬂ —<PR>I7i + B}gijanA,a -0

(6.1)

prggPYVE + CRPIVE + BRI U= 0
Bearing in mind Eqs (5.1), (5.3) it is easy to conclude that the functions Ajgjﬁ,
B,‘gija, C,’gBij are known and depending on the surface tractions acting on the
body. That is why the stability after the known finite deformation of the
micro-periodic elastic body (within the framework of macro-model proposed
in the paper) can be analysed using the approach similar to that used in the
finite deformation of homogeneous bodies. Setting

~
i

"i(X,1) = Uy(X)e" "WAX, 1) = VA(X)e (6.2)
where w = a + 1 and substituting solutions (6.2) into Eqs (6.1), we obtain

Ajgmﬁ,ag +B,’3ija\7»’4,a —(prW?U =0
’ ’ (6.3)

(CI/;BI']' +l2</)RgAgB>(Sijw2)‘7jB +B}/;1],Gl’7],ﬂ: 0
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Define '
ERP7 = DAP*(ppgPy )DEB“(pR)'1 (6.4)

where DA2Y were deﬁned in Sectlon 5. From the second-of Eqs (6.3) it foHows
that ' ‘

— (DAY~ Plor)? EAT) BT 4 (1)

where {2 is treated as a small parameter. After neglecting terms o(?) in
the above formiulae, one eliminate the functiods V4 frgm Eqs (6.3). Under
denotations

Nza]ﬁ Alajﬁ BAil,c}aDABk'bBBl'jﬁ (65)
we obta,m ﬁna,]ly the fdllowing system of equzmons in U; = (X) X € 2n
' NR JﬁU aﬁ_BAzka(DABleBlJﬁ) U ' \

= (prijw 2[U; +1?B"”"(EAB“UI,3),0] V

Since e“! = e*(cosft -,i— isin ,B‘t)' then, for,gt —. 00 :the,supe;rimp%ed-motion,
given by Ui(X,t), VA(X,t), X € g, tends to zero if « <,0, Taking into
account the boundary value problem for U; determined by Egs;(6.6) and the
homogeneous boundary: conditions Ui(X) =0, X €.00g, we obtain, non;
trivial solutions anly: for cexta,m1 values of w,= a;+ i, The loss of stability
takes place where a.is passing from negative to posmve values together with a
continuous increment of boundary surface tractions which are involved.in the
coefficients N8 paike pABK EABIk of Bas (6.6). It can be seen that the
solutions to the boundaly value ploblem under consideration also depend on
the microstructure length parameter since Eqs (6.6) depend explicitly on 2.

7. Final rervarks

The objective of thlS COHtIlbutIOH was twofold. Fust it ha,s beet shown
that the field equations leplesentmg length scalé macto-model of a composn:e
can be obtained by simple averaging of certain residuals related to the equa-
tions of motion for'an elasti¢ micro-periodic body 'under. finite deformations.
The procedure proposed does not involve any asymptotlc approximation and
hence describes the effect of the microstructure length parameter on the glo-
bal behaviour of thei body. Second,.on the basis of the obtained model new
equations were proposed for the analysis of wave propagation and stability pro-
blems in finite deformations of ‘elastic micro-perjodic composites. The general



LENGTH-SCALE EFFECTS IN WAVE PROPAGATION... 767

conclusion is that'solutions to special problems, both for the wave propagation
and stability, performed within the framework of the macro-model proposed,
can be obtained using the procedures similar to those met in the corresponding
pfoblems for elastic homogeneous bodies under finite deformations.
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Efekt skali w problemach propagacji fal i stabilnosci dla kompozytéw
sprezystych poddanych skoiiczonym deformacjom

Streszczenie

W pracy zaproponowano nowe podejscie do modelowania mikro-periodycznych
kompozytéw sprezystych. W otrzymanych réwnaniach uwzgledniono wplyw liniowego
parametru mikrostruktury na dynamike ciala. W przyblizeniu liniowym redukuja sie
one do pewnego uogdlnienia réwnar ”wzbogacone] makrodynamiki”, zaproponowa-
nej przez Wozniaka 51993). Celem pracy jest zastosowanie otrzymanych réwnan do
analizy propagacji fal i statecznosci kompozytdw sprezystych poddanych skoriczonym
deformacjom.

Manuscriptl received June 2, 1995; accepled for print August 21, 1995





