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We study two axi-symmetrical contact problems for a sliding/rotating
sphere on an elastic half space. The effect of frictional heating is consi-
dered. The problems are reduced to Fredholm integral equations of the
second kind which are solved numerically. Distributions of the contact
pressure and temperature are shown in terms of input parameters.
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1. Introduction

Many investigators have presented methods for prediction surface tempe-
rature. We can mention only some basic monographs by Carslaw and Jaeger
(1959), Parkus (1959), Boley and Weiner (1960), Ling (1973), Ozisik (1980),
Nowacki (1986), Roznowski (1988). Since the frictional heat is proportional to
the contact pressure in order to apply these theoretical approaches we must
know the pressure distribution and contact area dimensions in advance. The
usual approach is to assume that the pressure distribution and contact area
are independent of the thermal deformation and friction force. Then the Hertz
contact solution can be used to determine the contact area and pressure field
(cf Korovchinski (1968); Tiang and Winer (1989); Yevtushenko and Ukhanska
(1992)). However, owing, to some undefined factors in the real sliding process,
there appear discrepancies between the calculated and measured values (cf
Lingard (1984)).
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One possible factor contributing to such inconsistent results is the uncer-
tainty of the real contact area. Also, the assumption that the thermal defor-
mation does not change the pressure distribution is questionable.

Barber (1975) and (1976), Generalov et al. (1976), Grilitskij and
Kultchytsky-Zhyhailo (1991), Aleksandrov (1992) studied the axi-symmetrical
contact problem involving the steady-state {rictional heating. They found that
the effect of thermal deformation on the contact pressure and temperature di-
stributions is very essential.

The difference methods are employed for the solution of these problems.
So, Barber (1975) obtained an approximate solution representing a general
pressure distribution in terms of a finite series analogical to the form of Hert-
zian distribution but in which the radius of the loaded circle varies from 0 to
a, where a is unknown a priori radius of the contact area. Another approxi-
mate solution is obtained by Barber (1976) in terms of trigonometrical series.
The essence of this paper is formulation of considered problems in terms of the
governing Fredliolm integral equation for unknown pressure at the interface.
The equation is solved numerically, using the approximate method proposed
by Barber (1975).

2. Formulation of the problem

Let an elastic sphere of the radius R (body 1) be pressed by the force P
into an elastic isotropic half space (body 2). Two cases of the uniform motion
of the splere are considered:

1. Sliding at the velocity V (problem 1)
2. Rotation about the symmetry axis at the angular speed w (problem 2).

Friction effect involves heat sources in the contact region. We suppose
that the total amount of heat, generated in the contact region, in the case
of problem 1 is absorbed by one sliding body 1 but in the case of problem 2
by two contacting bodies (with the condition of temperature equality in over
the contact area imposed). Remaining parts of the half space and sphere are
assumed to be insulated and unloaded. We assume that there is no coupling
between tangent and normal tractions however the tangent traction on the
surface is not neglected. Indeed, the work done against these tractions is the
source of the heat generation. However, the elastic displacements normal to
the surface, caused by the tangencial tractions, are much smaller than those
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produced by the normal tractions, and the coupling effect is negligible. This
approximation becomes more accurate if the clastic properties of two solids
are similar.

We introduce now the cylindrical coordinate axes 7, z, rigidly connected
to the sphere; in these coordinate axes the contact region 0 <r<a,z=01is
motionless and thermomechanical processes are steady.

In such statement both problems will be axi-symmetrical and reduced to
the solution of equations for the thermoelastic half spaces z > 0 and z <0,
respectively, (cf Nowacki (1986))
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oT®

P 0 r>a (2.9)
T() ~ 7(2) r <a; (problem 2) (2.10)
u£i) ,ugi) ,T6 0 as r? 422 - o0

coefficient of friction
thermal conductivity
radius of the sphere

contact pressure.

The values, referring to the sphere and half space, here and hercinafter are

denoted by

the indices i = 1,2, respectively.

3. Reduction to the integral equation

The general solution of Eqs (2.1) and (2.2) which satisfies Eq (2.11), obtai-
ned by applying the Hankel integral transformation of zero order with respect

to variable

u(r,2)

r has the form

I
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0
where

v; — Poison ratios

o — coeficients of thermal expansion

Jo(+) — Bessel function of the first kind.

From the stress-strain relation we have
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[ee]
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where p; are the shear moduli.
Substituting for aﬁ'), o{) from Eqs (3.3), (3.4) into the boundary condi-
tions (2.3) + (2.5), we find the [ollowing relations between A;(€) and B;(€)

AL(€) = (1 - 20:) Bi(€) (3.5)
2 By (€) = 2ua By (€) = B(E) = — / sp(s)Jo(€s) ds  (3.6)
0

By substituting Eq (3.2) into the conditions (2.7) + (2.9) we obtain

'ﬁ}//sp(s)Jo(fs) ds Cy(€) =0 (problem 1) (3.7)
i1 2

Ci(&) =

a

Ci1(é) = Cy(&) = %/321)(3)J0(§s) ds N = K, + K, (problem 2)(3.8)
0

After substituting Eqs (3.1) into the boundary condition (2.6) and taking
into account Eqs (3.5) + (3.8) we obtain the intcgral equation

r
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0 0

0]

(3.9)
r<a j=1,2
Here
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K I;

The superscript 7 = 1 here and hercin after denotes the problem 1, while
7 = 2 denotes the problem 2.
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The solution of the Fredholm integral equation (3.9) must satisfy the equ-

ation of equilibrium
a

27r/7‘p(7‘) dr = P (3.11)
0

4. Numerical solution and analysis

An approximate solution of the integral equation (3.9) we obtain by the
numerical method of Barber (1975). We divide the contact region 0 < r < a
into N rings by introducing points r, = rAr (n = 0,1,...,N), Ar = a/N,
and the contact pressure p(r) can be writtenin tlie form

N
p(r) = Z Tp\/72 — 12 r<a (4.1)

where m is the smallest integer greater than r/Ar.

Finally, substituting Eq (4.1) into the integral equation (3.9) and calcu-
lating integrals at the points r, (m = 1,2,...,N), we obtain the system of
linear algebraic equations

N
3" Xa(@nm — Bibl,,) =m m=1,2.,N j=1,2 (4.2)
n=1
Here
TRz,
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B; = v;d ji=1,2 (4.4)
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m>n

4AmN?



TWO AXI-SYMMETRICAL CONTACT PROBLEMS... 773

From Eq (3.11) we find the total load as

P=Py Y \(%)3 (4.8)

where s
8a’u
Py = .
H=73R (4.9)

is the force, necessary for attaimment the contact radius a in the isothermal
case (Hertz contact problem, cf Johnson (1985)).

In the case of absence of heat generation (3; = 0, 7 = 1,2), Egs (4.2),
have the trivial solution

X, =b.n (4.10)

é,n is the Kronecker delta and Lq (4.8) gives P = Py.

To solve the problem numerically it is necessary to select the parame-
ters N, 3; (7 =1,2). The method (cl Yevtushenko and Kultchtsky-Zhyhailo
(1995)) was employed for obtaining results for N = 20 and a range of values
f; between 0 and ﬂ;‘

By =2 (problem 1) (4.11)
B3 = 1?2 ~ 3.82 (problem 2) (4.12)

The constants f7 (j = 1,2) appearing in Eqs (4.11), (4.12) are critical
values of parameters f3;, for which the solutions of the considered contact
problems exist and are unique.

Relationships between the dimensionless load Py /P and the parameters
B; (4.4) are linear, what corresponds to the equations (cf Barber (1975); Bar-
ber (1976); Yevtushenko and Kultchtsky-Zliyhailo (1995))

Pu _ B j=1,2 (4.13)

P B;

Taking into account Eqs (4.11), (4.12) and Eqs (4.4), we obtain the critical
values of contact radius

B
VTSV
B3

& fup

(problem 1) (4.14)

(problem 2) (4.15)

ay =
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At a constant speed Eqs (4.14), (4.15) yield the limited value of the contact
region radius for increasing load P. We note that in the isothermal case in
the absence of frictional heating such limit does not exist.

Denote
ay
b=— 4,
; (4.16)
b = 2 i=1,2 (4.17)
a”
3
where
3PRR
ay = (== (4.18)

Sp

is the radius of contact circle in the isothermal Hertz problem under fixed
load P (cf Johnson (1985)). The non-dimensional parameter b characterizes
decreasing of the radius of contact arca due to frictional heating. We note
that b2 is the ratio of the mean contact pressure in the present problem to
the mean pressure in the Ilertz contact problem. The input parameter b;
(see Eq (4.17)) depends on mechanical, thermal and geometrical properties,
respectively, of the contacting pair of materials and on the assumed conditions
in the contact region. Taking into account Eqs (4.16) and (4.17), Eq (4.13)
can be rewritten in the following form

- bIbP =1 j=1,2 (4.19)
3
b
2
2
1
0 1 2 b 3

i

Fig. 1. Dependence of ag/a from ay/a}; j =1 -sliding, j =2 - rotating

The relation of the non-dimensional parameter b (4.16) on the input para-
meter b; (4.17) is given in Fig.1. In the absence of frictional heating we have
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bj =0 (a7 = 00) and b =1 (a = ay). As b;j increases (e.g. by increasing a
sliding/rotational speed), the radius a of the contact circle falls, approaching
at b; > 2.5 the critical value @}, (j = 1,2) (see Eqs (4.14) and (4.15)).

1.0
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0.5

0 0.5 1.0
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Fig. 2. Distribution of the dimensionless contact pressure p*(r) = p(r)/p(0) lor the
sliding sphere
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Fig. 3. Distribution of the dimensionless contact pressure p*(r) = p(r)/p(0) for the
rotation sphere

The non-dimensional contact pressure distribution p*(r) = p(r)/p(0) in
the case of problem 1 (sliding) is shown in Fig.2. The maximum value of
contact pressure in sliding is reached at the centrum of the contact circle.
In the case of problem 2 (rotation) the distribution p*(r) is given in Fig.3.
The contact pressure distribution in rotation (Fig.3) essentially differs from

the case of sliding of the bodies (Fig.2). The maximum value of the contact

pressure in rotation is reached at a point r = 0.5¢. Thus, at §; = 3.82,

=1.202 at r = 0.52a.

*
pmaa:
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5. Themperature field

Taking into account Eqs (3.2), (3.7), (3.8) and (4.1), we have the tempe-
rature of the sphere

N .
, n\1+1 . .
T (o, ) = 4530 Xu(57) " Lhous i=12 (5.1)

n=1

Here

V1 -—s2

Lk = ;0/\/(5)2+ (S+%)2K[\/(§>z+ (S+%)2

_3fVPy

]ds j=1,2(5.2)

1, = .
Y7 oraky Y'Y (53)
k
Pm = % (p = N m,k=0,1,2,... (5.4)
where K(-)is a complete elliptic integral of the first kind.
The total heat flux through the contact region is
N .
n\2+y .
Q=4 ; -’Yn(ﬁ) j=1,2 (5.5)
where 3
g1 = fVPy = 1—67rfwaPH (5.6)
The distribution of dimensionless temperature
AT
T = J j=1,2 5.7
i =g, (5.7)
where
2 . 2 .
Ay = §7ra1\1 Ay = §7ra1\ (5.8)

for (7 = 2 (sliding) and 3 = 3.82 (rotation) is shown in I'ig.4 + Fig.7. The
surface z = 0 temperature T (j = 1,2) of the sliding/rotation sphere is
given in Fig.4 and its change along the symmetry axis r = 0in Fig.5. We can
see that the maximum values of the contact temperature are reached at the
points of maximum values of the contact pressure.

The isotherms of temperature fields 77 (5.9) in the case of sliding j =1
and rotation j = 2 sphere are shown in I'ig.6 and Fig.7, respectively.
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Fig. 4. Distribution of the dimensionless temperature T over the surface 2 =0 at:
j=1-shding for 8, =2, j =2 - rotation for By = 3.82
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T
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g g. .0 i.5
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Fig. 5. Change of the dimensionless temperature T} along the axis of symmetry
r=0: j=1-sliding for 8) =2, j =2 - rotation for B, = 3.82

zja

1.5

Fig. 6. The isotherms of the temperature field T} in case of sliding sphere at £, = 2

7 — Mechanika teoretyczna
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0.5

1.0

3
N
1.5
Fig. 7. The isotherms of the temperature field Ty in case of rotation sphere at
B2 = 3.82
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O dwéch osiowosymetrycznych zagadnieniach kontaktowych w ustalonym
stanle ogrzania wywolanego tarciemn

Streszczenie

W pracy rozpatrzono dwa zagadnienia kontaktowe dla S$lizgajacej sie lub
obracajacej sie sfery na sprezystej polprzestrzeni. Zbadano efekt ogrzania wywolanego
tarciem. Zagadnienia zostaly zredukowane do calkowych réwnan Fredholma drugiego
rodzaju, ktore nastepnie rozwigzano numerycznie. Rozklady cisnienia kontaktowego
i temperatury zostaly przedstawione na wykresach.

Manuscript received August 7, 1995; accepled for print February 15, 1996



