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AbstractThe Exponential Pareto (EP) model has been extended by applied and theoretical statisticians for wider applications and newknowledge using different techniques but theWeibull-X technique has not been considered. This article proposed a new extension ofthe EP model called the Weibull-Exponential Pareto (WEP) distribution to provide better modeling that fits real-life datasets and toexplore the statistical theory of order statistics from the proposed distribution. Statistical properties investigated include the Shannonand Renyi entropies; the moments and moment generating function. Distribution of order statistics and the moment of orderstatistics were derived including the mean and variance of order statistics. WEP distribution has unimodal, decreasing, and increasingfailure rates; and it can be negatively or positively skewed and approximately symmetric with the potential for fitting platykurtic,mesokurtic, and leptokurtic lifetime data. The parameters of the distribution were estimated using themethod ofmaximum likelihoodestimation (MLE), which was examined for consistency through a simulation study. The performance of the proposed distributionwas investigated by application to flood peaks exceedances and some lifetime datasets from engineering. The results from dataanalysis using the R-software revealed that the WEP distribution has the potential to provide a superior model that fits the three datasets better than some notable existing distributions and previous extensions of the EP model in the literature. The statistical propertyof order statistics extended in the study established some important results that characterized some notable lifetime distributions inthe literature.
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1. INTRODUCTION

Statisticians and researchers in general are motivated by burn-
ing desires to discover new distributions that are adequate and
more flexible in terms of application to real-life problems. Ex-
tension of classical distributions and some other existing mod-
els have been suggested and successfully implemented in the
statistical literature using various techniques. Previous efforts
towards the actualization of the objectives are contained in
Lee et al. (2007) using the beta-generator technique to extend
the Weibull distribution, the T-X family of distribution was
introduced by Alzaatreh et al. (2013b) and by taking T to be
a Weibull distribution random variable, the Weibull-X was
defined by Alzaatreh et al. (2013b) as a sub-family of the T-X
family. Several important distributions have been proposed
using the Weibull-X technique including the Weibull-Pareto
model by (Alzaatreh et al., 2013a) . The Weibull-Rayleigh dis-

tribution was developed by Akarawak et al. (2013) and later
by Ahmad et al. (2017) with different motives and diverse
applications when X follows the Rayleigh random variable.

Al Kadim and Boshi (2013) defined and studied the Expo-
nential Pareto (EP) distribution with the cumulative distribu-
tion function (CDF) and probability density function (PDF)
defined respectively as

F (x) = 1 − e− 𝛽 ( xk )
𝜃

(1)

f (x) = 𝛽 𝜃

k

( x
k

) 𝜃−1
e− 𝛽 ( xk )𝜃 ; 𝛽 , k , 𝜃 > 0 > 0; x > 0 (2)

𝛽 ,k,𝜃 are the parameters of the distribution The EP distri-
bution has further gained extensive studies with applications
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from Luguterah and Nasiru (2015) , using the quadratic rank
transmutation map (QRTM) to develop the Transmuted Ex-
ponential Pareto (TEP) distribution, the beta-G framework
was used by Aryal (2019) and later by Rashwan and Kamel
(2020) for the construction of Beta Exponential Pareto (BEP)
model. Kumaraswamy Exponential Pareto (KEP) distribution
was introduced by Elbatal and Aryal (2017) using the Kum-G
technique and most recently, the Gompertz-G technique was
explored for developing the Gompertz Exponential Pareto dis-
tribution by (Adeyemi et al., 2021) . Dikko and Faisal (2017)
proposed the generalized exponential Weibull (GEW) distri-
bution and the Topp Leone Weibull distribution (TLWD) was
introduced by (Tuoyo et al., 2021) .

In another dimension, the new Weibull Pareto distribution
(NWP) was developed by Nasiru and Luguterah (2015) ; and
thereafter, with the aid of the QRTM, Tahir and Akhter (2018)
extended the NWP to produce the Transmuted new Weibull
Pareto (TNWP) and most recently, Aljuhani et al. (2022) in-
troduced the Alpha Power Exponentiated New Wuibull Pareto
distribution from the NWP model and Hassan et al. (2022)
developed the Kumaraswamy extended Exponential (KwEE).
Nevertheless, instances abound where these existing distribu-
tions have not been able to explain some of the real-life prob-
lems adequately through the analysis of their corresponding
datasets, making this study gap a challenge that is constantly
been addressed by researchers.

This current study is aimed at exploring the versatility of
the Weibull distribution as a generator by using the Weibull-
X technique to extend the EP model. The proposed model
called the Weibull Exponential Pareto (WEP) distribution is ex-
pected to provide more flexibility for addressing various forms
of kurtosis and skewness associated with real-life datasets de-
scribing some of the random events in our environments. The
remaining part of the study is organized as follows; Section 2 is
devoted to describing and developing the proposed distribution
with the sub-models and some of the statistical properties. Sec-
tion 3 discussed the procedure for the estimation of parameters
and simulation study. Applications to three real-life datasets
were carried out to assess the importance of the distribution
in Section 3. Section 4 concludes the work and Section 5 for
acknowledgment.

2. EXPERIMENTAL SECTION

This section is used for the design of the new distributions from
some existing resources in the statistical literatures; properties
of the WEP distribution constructed are also investigated.

2.1 Materials and Method
A new method of generating continuous distribution proposed
by Alzaatreh et al. (2013b) has the CDF for the T-X class of
distribution defined as

G (x) =
∫ −log(1−F (x) )

0
r (t)dt = R{−log(1 − F (x))} (3)

Where R(t) the CDF of a non-negative continuous random
variable is T defined on [0,∞) and F(x) is the CDF of a random
variable X. The PDF associated with Equation (3) is given by,

G (x) = f (x)
1 − F (x) r{−log(1 − F (x))} (4)

Where r(t) is the PDF of random variable T and the deriva-
tive of R(t). Let T be a random variable from the Weibull
distribution with parameters 𝛼 and 𝛾 having the CDF given
by,

R(t) = 1 − exp
(
−

(
t
𝛾

)𝛼 )
; 𝛼 , 𝛾 > 0, t > 0 (5)

The CDF of the Weibull-X family is derived by inserting
t=-log(1-F(x)) into Equation (5) to obtain Alzaatreh and Ghosh
(2015) given by

G (x) = 1 − exp
(
−

(
−log(1 − F (x))

𝛾

)𝛼 )
(6)

And the PDF can be derived by taking the first derivative
of Equation (6) to get

g (x) =𝛼
𝛾

f (x)
1 − F (x)

(
−log(1 − F (x))

𝛾

)𝛼−1
exp(

−
(
−log(1 − F (x))

𝛾

)𝛼 )
(7)

2.2 The New Extension of Exponential Pareto Distribution
The CDF of the proposed lifetime distribution called Weibull
Exponential Pareto (WEP) distribution when X follows the EP
distribution in Equation (1) is developed as;

G1 (x) = 1 − exp

(
−

(
𝛽

( x
k

) 𝜃
𝛾

)𝛼 )
(8)

Then by replacing 𝛽 ⁄𝛾 with 𝜆 , the CDF in Equation (8) can
be written as

G (x) = 1 − exp
(
−

(
𝜆

( x
k

) 𝜃 )𝛼 )
(9)

The derivative of Equation (9) is the corresponding PDF
of the Weibull Exponential Pareto (WEP) distribution given
by

g (x) =𝛼𝜆 𝜃
k

( x
k

) 𝜃−1 (
𝜆

( x
k

) 𝜃 )𝛼−1
exp

(
−

(
𝜆

( x
k

) 𝜃 )𝛼 )
; 𝛼 , 𝜆 , 𝜃 , k > 0; x > 0 (10)

A random variable X that follows the Weibull Exponential
Pareto distribution with parameters 𝛼,𝜆 ,𝜃 , and k is character-
ized with the density function g(x) in Equation (10) and is
denoted by WEP (𝛼,𝜆 ,𝜃 ,k).
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2.3 Sub-Models of WEP Distribution
The important sub-models derived from the proposed distri-
bution are presented in Table 1.

Plots of the shapes for the CDF and PDF of the distribution
for some parameter values are displayed in Figure 1. Figure
2 provides the visual view of the shapes of the hazard rate
function of the proposed distribution for some values of the
parameter (𝛼,𝜆 ,𝜃 ,k).

Figure 1. Plots of the CDFs and PDFs of WEP Distributions
for Some Values of the Parameters

Figure 2. Plots of Hazard Rate Functions of WEP
Distributions for Some Values of the Parameters

2.4 Properties of the Weibull Exponential Pareto Distribu-
tion

Some of the properties of the distribution are discussed in this
section

2.4.1 The Reliability and the Hazard Rate Function
The reliability function is defined in similar works including
Adeyemi et al. (2021) and is given by

S (x) = 1 −G (x) = exp
(
−

(
𝜆

( x
k

) 𝜃 )𝛼 )
(11)

The hazard rate function is derived from Equation (9) and
Equation (10) and is given by

h(x) = g (x)
1 −G (x) =

𝛼𝜆 𝜃

k

( x
k

) 𝜃−1 (
𝜆

( x
k

) 𝜃 )𝛼−1
(12)

2.4.2 Asymptotic Behavior of WEP
The Asymptotic properties of the proposed model are inves-
tigated by taking limits of the density function, CDF, and the
hazard rate function as x→∞ and as x→0.

Proposition 1: The limit of the WEP density function as
x→∞ is 0 and as x→0 is;

lim
x→0

g (x) =


0 , 𝛼𝜃 > 1
𝜆
k , 𝛼𝜃 = 1
∞ , 𝛼𝜃 < 1

Proof:

lim
x→∞

g (x) = lim
x→∞


𝛼𝜆 𝜃
k

( x
k

) 𝜃−1 {𝜆 ( x
k

) 𝜃 }𝛼−1
exp

(
−{𝜆

( x
k

) 𝜃 }𝛼 )
 = 0

lim
x→0

g (x) = lim
x→0

𝛼𝜆 𝜃

k

( x
k

) 𝜃−1
{𝜆

( x
k

) 𝜃
}𝛼−1

exp
(
−{𝜆

( x
k

) 𝜃
}𝛼

)

The limit of exp
(
−

{
𝜆

( x
k

) 𝜃 }𝛼 )
as x→0 is 1,

We now have a situation where as x→0 when 𝜃>1, 𝛼𝜃>1 it
becomes 0, when 𝜃<1, 𝛼𝜃<1 it becomes ∞ ;
when 𝛼=𝜃=1 we have limx→0

𝜆
k exp (-{𝜆 ( xk )}) which reduces to

constant 𝜆
k . This completes the proof.

Proposition 2: The limit of WEP cdf as x→∞ is 1 and as
x→0 is 0

Proof:

lim
x→∞

G (x) = lim
x→∞

[
1 − exp

(
−{𝜆

( x
k

) 𝜃 }𝛼 ) ]
= 1 − 0 = 1

lim
x→0

G (x) = lim
x→0

[
1 − exp

(
−{𝜆

( x
k

) 𝜃 }𝛼 ) ]
= 1 − 1 = 0

Proposition 3: The limit of the WEP hazard rate function
as x→∞ is ∞ and as →0 is given by

0 , 𝛼𝜃 > 1
𝜆
k , 𝛼𝜃 = 1
∞ , 𝛼𝜃 < 1

Proof: The hazard rate function is defined as,

h(x) = 𝛼𝜆 𝜃

k

( x
k

) 𝜃−1 {
𝜆

( x
k

) 𝜃 }𝛼−1
lim
x→∞

h(x) = ∞
0

= ∞ when 𝛼𝜃 > 1; lim
x→∞

h(x) = ∞
0

= ∞

when 𝛼𝜃 < 1. The asymptotic limits when 𝛼𝜃 = 1 is also

lim
x→∞

h(x) = 𝜆

k

(
1
0

)
= ∞.
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Table 1. Sub-Models of WEP Distribution

𝛼 𝜆 𝜃 k Reduced Model Author/References

𝛼 1
2𝛽 2 k Weibull-Rayleigh Ahmad et al. (2017)

𝛼 1
p 2 1 Weibull-Rayleigh Akarawak et al. (2017)

1 𝜆 𝜃 k Exponential Pareto Al Kadim and Boshi (2013)
2 1

8𝜎2 2 𝛽 Rayleigh Rayleigh Ateeq et al. (2019)
1 𝜆∗

2 2 k Exponential Rayleigh New
1 1 𝜆 k Exponential Exponential New
1 1

2 2 k Rayleigh Rayleigh (1896)
1 1

2 𝜃 k Weibull Weibull (1951)

Asymptotes of hazard rate as x→0

lim
x→0

h(x) = 0
1
= 0 when 𝛼𝜃 > 1; lim

x→0
h(x) = ∞

1
= ∞

when 𝛼𝜃 < 1. The asymptotic limits when 𝛼𝜃 = 1 is also

lim
x→0

h(x) = 𝜆

k
, the proof is completed.

Proposition 4: Let g(x) be the PDF and h(x) the hazard rate
function of WEP distribution then, as x→0 we have g(0)=h(0).
Proof: Combining results from propositions (1) and (3) estab-
lished the proof and is given by,

lim
x→0

h(x) =


0 , 𝛼𝜃 > 1
𝜆
k , 𝛼𝜃 = 1
∞ , 𝛼𝜃 < 1

= lim
x→0

g (x)

2.4.3 Quantile Function, Simulation, and Median
Let U be a uniform random variable on the interval (0, 1); the
quantile function is defined by Q(u)=G−1 (x), and the WEP
distribution has the quantile function derived and presented
as;

Q (u) = k
{

1
𝜆

[
−log(1 − u) 1𝛼

] } 1
𝜃

(13)

Let X be a random variable from the Weibull Exponential
Pareto distribution, simulation can be done through the inverse
transformation of the variable using uniform interval U (0, 1)
and the random variable X taking as,

X = k
{

1
𝜆

[
−log(1 − u) 1𝛼

] } 1
𝜃

(14)

The median of the WEP can be derived by substituting
u=0.5 in Equation (14) to get

median = k
{

1
𝜆

[
−log(0.5) 1𝛼

] } 1
𝜃

(15)

2.4.4 Moments of WEP Distribution
Theorem 1: Let X be a continuous random variable from
the WEP distribution with density function g(x), then the rth

moment about the origin is given by;

𝜇 (r ) = kr
(
1
𝜆

)r/𝜃
Γ

( r
𝛼𝜃

+ 1
)

(16)

Proof :
The moment of X is defined as E(xr )=

∫ ∞
−∞ xr g(x)dx

E(xr ) =
∫ ∞

0
xr

𝛼𝜆 𝜃

k

( x
k

) 𝜃−1 {
𝜆

( x
k

) 𝜃 }𝛼−1
exp

(
−

{
𝜆

( x
k

) 𝜃 }𝛼 )
dx (17)

Let u = 𝜆

( x
k

) 𝜃
which implies that x = k

( u
𝜆

)1/𝜃
then substitute new variables so that

du
dx

=
𝜆 𝜃

k

( x
k

) 𝜃−1
and du =

𝜆 𝜃

k

( x
k

) 𝜃−1
dx

E(xr ) =
∫ ∞

0

(
k
( u
𝜆

)1/𝜃 )r 𝛼𝜆 𝜃
k

( x
k

) 𝜃−1
u𝛼−1exp(−u𝛼)

1
𝜆 𝜃
k

( x
k

) 𝜃−1 du ,
= 𝛼kr

(
1
𝜆

)r/𝜃 ∫ ∞

0
u
r
𝜃
+𝛼−1 (−u𝛼)du ,

let y = u𝛼 , so that u = y1/𝛼hence
dy
du

= 𝛼u𝛼−1 = 𝛼 (y1/𝛼)𝛼−1
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E(xr ) =𝛼kr
(
1
𝜆

)r/𝜃 ∫ ∞

0
(y1/𝛼) r𝜃 +𝛼−1exp(−y) 1

𝛼 (y1/𝛼)𝛼−1
dy

E(xr ) = kr
(
1
𝜆

)r/𝜃 ∫ ∞

0
y

r
𝛼𝜃 exp(−y)dy;

Using
∫ ∞

0
ymexp(−y)dy = Γ(m + 1)completes the proof.

The first four raw moments can be obtained from Equation
(16) as follows

𝜇′1 = k
(
1
𝛼

)1/𝜃
Γ

(
1
𝛼𝜃

+ 1
)
;

𝜇′2 = k
2
(
1
𝛼

)2/𝜃
Γ

(
2
𝛼𝜃

+ 1
)
;

𝜇′3 = k
3
(
1
𝛼

)3/𝜃
Γ

(
3
𝛼𝜃

+ 1
)
;

𝜇′4 = k
4
(
1
𝛼

)4/𝜃
Γ

(
4
𝛼𝜃

+ 1
)
;

2.4.5 The Mean, Variance, Skewness, and Kurtosis of WEP
Distribution

The mean is the first moment about the origin when r = 1, and
is derived as

E(X) = 𝜇′1 = k
(
1
𝜆

)1/𝜃
Γ

(
1
𝛼𝜃

+ 1
)

(18)

The variance is obtained as

Variance(X) = 𝜇′2 − [𝜇′1]
2

= k2
{ (

1
𝜆

)2/𝜃
Γ

(
2
𝛼𝜃

+ 1
)
−

((
1
𝜆

)1/𝜃
Γ

(
2
𝛼𝜃

+ 1
))2 }

(19)

The measures of skewness and kurtosis denoted by Skew and
Kurt respectively are obtained using the first four raw moments
in sub-section 2.4.4 as follows;

Skew =
𝜇′3 − 3𝜇

′
2 𝜇 + 2𝜇3

(𝜇′2 − 𝜇2)3/2

=

©«
k3

(
1
𝜆

)3/𝜃
Γ

(
3
𝛼𝜃

+ 1
)

−3k2
(
1
𝜆

)2/𝜃
Γ

(
2
𝛼𝜃

+ 1
)
k
(
1
𝜆

)1/𝜃
Γ

(
1
𝛼𝜃

+ 1
)

+2
[
k
(
1
𝜆

)1/𝜃
Γ

(
1
𝛼𝜃

+ 1
)]3 ª®®®¬(

k2
(
1
𝜆

)2/𝜃
Γ

(
2
𝛼𝜃

+ 1
)
−

[
k
(
1
𝜆

)1/𝜃
Γ

(
1
𝛼𝜃

+ 1
)2]3/2 )

(20)

Kurt =
𝜇′4 − 4𝜇

′
3 𝜇 + 6𝜇2 𝜇2 − 3𝜇4

(𝜇′2 − 𝜇2)2

=

©«
k4

(
1
𝜆

)4/𝜃
Γ

(
4
𝛼𝜃

+ 1
)
− 4k3

(
1
𝜆

)3/𝜃
Γ

(
3
𝛼𝜃

+ 1
)

k
(
1
𝜆

)1/𝜃
Γ

(
1
𝛼𝜃

+ 1
)
+ 6k2

(
1
𝜆

)2/𝜃
Γ

(
2
𝛼𝜃

+ 1
)[

k
(
1
𝛼𝜃

)1/𝜃
Γ

(
1
𝛼𝜃

+ 1
)]2

− 3
[
k
(
1
𝛼𝜃

)1/𝜃
Γ

(
1
𝛼𝜃

+ 1
)]4

ª®®®®®®¬(
k2

(
1
𝜆

)2/𝜃
Γ

(
2
𝛼𝜃

+ 1
)
−

[
k
(
1
𝜆

)1/𝜃
Γ

(
1
𝛼𝜃

+ 1
)2]3/2 )

(21)

Proposition 5: Let X be a random variable from the WEP
distribution, the coefficient of variance denoted CV is given by

CV =

√√{(
1
𝜆

)2/𝜃
Γ

(
2
𝛼𝜃

+ 1
)
−

((
1
𝜆

)1/𝜃
Γ

(
2
𝛼𝜃

+ 1
))2}

(
1
𝜆

)1/𝜃
Γ

(
1
𝛼𝜃

+ 1
)

(22)

Proof The coefficient of variance is defined as

CV =

2
√

variance
E(x)

By using Equations (18) and (19), the result is obtained.

2.4.6 Moment Generating Function of WEP Distribution
Theorem 2: Let X be a Weibull Exponential Pareto random
variable with probability density function g(x), the moment
generating function of X denoted Mx (t) is given by

∞∑︁
i=0

ti

i !
ki

(
1
𝜆

) i/𝜃
Γ

(
i
𝛼𝜃

+ 1
)

(23)

Proof: The moment generating function for a continuous
random variable is defined Alzaatreh et al. (2013a) as;

Mx (t) = E(etx) =
∫ ∞

0
etxg (x)dx

∫ ∞

0
etx

𝛼𝜆 𝜃

k

( x
k

) 𝜃−1 {
𝜆

( x
k

) 𝜃 }𝛼−1
exp

(
−

{
𝜆

( x
k

) 𝜃 }𝛼 )
dx

etx =
∞∑︁
i=0

(
1 + t

ixi

i!

)
=

∞∑︁
i=0

tixi

i!
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E(etx) ==
∞∑︁
i=0

ti

i!
E(xi )

By substituting E(xi ) in Equation (16), we shall obtain

Mx (t) =
∞∑︁
i=0

ti

i!
E(xi ) =

∞∑︁
i=0

ti

i!
ki

(
1
𝜆

) i/𝜃
Γ

(
i
𝛼𝜃

+ 1
)

2.4.7 Relationship between WEP and the Weibull-Pareto
(WPD) Distribution

The relationship between the WEP and WPD is established as
follows:

Theorem 3: Let Y be a random variable that follows the
Weibull-Pareto distribution with parameter (𝛼,𝜆 ,k) defined
and studied by (Alzaatreh et al., 2013b) , then the random
variable x=k(log

( y
k

)
) 1/𝜃 follows the WEP distribution with pa-

rameters (𝛼,𝜆 ,𝜃 ,k).
Proof: Given thatY follows the Weibull-Pareto distribution,

then Y∼(𝛼,𝜆 ,k), required to show that X∼(𝛼,𝜆 ,𝜃 ,k). The CDF
is given by Alzaatreh et al. (2013b) as

1 − exp
(
−

{
𝜆 log

( y
k

)}𝛼 )
(24)

Required to show that X∼(𝛼,𝜆 ,𝜃 ,k),

X = k
(
log

(
Y
k

))1/𝜃
By transformation of variable,
(log(Yk ))=(Xk ) 𝜃 , this implies that (Yk ) = e( Xk ) 𝜃 and the ran-

dom variableY = ke(
X
k ) 𝜃

By substituting Y into Equation (24), the CDF of WEP
distribution in Equation (9) is obtained.

2.4.8 Shannon Entropy of Weibull Exponential Pareto Dis-
tribution

Shannon (2001) defined entropy as the measure of the level of
variation of uncertainty associated with a random variable. If a
random variable T follows the Weibull distribution with param-
eters c and 𝛾 , the Shannon entropy for the Weibull distribution
by Song (2001) is given by

𝜂T = 𝜗

(
1 − 1

c

)
− log

(
c
𝛾

)
+ 1 (25)

The Shannon entropy for the Weibull-X family of distri-
bution by Alzaatreh et al. (2013b) is given by

𝜂x = −{log f (F−1 (1 − e−T ))} − 𝛾Γ

(
1 + 1

c

)
+ 𝜗

(
1 − 1

c

)
− log

(
c
𝛾

)
+ 1 (26)

Where 𝜗 the Euler’s constant in both equations. The mean of
Weibull distribution for the random variable T is

𝜇T = 𝛾Γ

(
1 + 1

c

)
(27)

Theorem 4: Let X be a random variable from the WEP
distribution, then the Shannon entropy 𝜂 xfor the WEP distri-
bution is given by

k
(
1
𝜆

)1/𝜃
Γ

(
1
𝛼𝜃

+ 1
)
− Γ

(
1 + 1

𝛼

)
+ 𝜗

(
1 − 1

𝛼

)
− log(𝛼) + 1 (28)

Proof: By definition, Shannon entropy 𝜂X is the expecta-
tion of the negative logarithm of the density function g(x). The
expectation of the PDF of the Weibull-X family in Equation
(4) is given by

E [−log{g (x)}] = E
[
−log

(
f (x)

1 − F (x) r{−log(1 − F (x))}
)]

E [−log{ f (x)} + log(1 − F (x)) − log[r{−log(1 − F (x))}]]

E [−log( f (x))] + E [log(1 − F (x))]+
E [−log[r{−log(1 − F (x))}]]

By variable transformation, if T= -log (1-F(x)), then (1-
F(x))=e−T ,

𝜂x = E [−log{g (x)}] = E [−log(x)] − E [T ]+
E [−log[r (t)]] = 𝜇x − 𝜇T + 𝜂T

Where
𝜇x = The mean of WEP distribution
𝜇T= The mean of Weibull distribution
𝜂T= The Shannon entropy of Weibull distribution
𝜂X= The Shannon entropy of the Weibull-X distribution

By substituting for 𝜇x which is the mean of WEP in Equa-
tion (18) and also the values of 𝜂T and 𝜇T in Equations (19)
and (27) respectively, the Shannon entropy 𝜂X of the WEP
distribution is obtained as

𝜂x = k
(
1
𝜆

)1/𝜃
Γ

(
1
𝛼𝜃

+ 1
)
− Γ

(
1 + 1

𝛼

)
+ 𝜗

(
1 − 1

𝛼

)
− log(𝛼) + 1
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2.4.9 Renyi Entropy of Weibull Exponential Pareto Distri-
bution

The Renyi entropy of a continuous random variable X with
PDF g(x) is defined by Rényi (1961) as the measure of uncer-
tainty associated with X, and the Renyi entropy of X is defined
by

∥R (X) =
1

1 − 𝛿
log[∥(𝛿)] (29)

Where

∥ (𝛿 ) =
∫ ∞

−∞
. f 𝛿 (x)dx , 𝛿 > 0 and 𝛿 ≠ 1 (30)

The Renyi entropy of a random variable X that follows the
WEP distribution is derived by substituting the PDF of WEP
into Equation (30)

∥ (𝛿 ) =
∫ ∞

∞

(
𝛼𝜆 𝜃

k

)𝛿 ( x
k

)𝛿 (𝜃−1) {
𝜆

( x
k

) 𝜃 }𝛿 (𝛼−1)
exp

(
−

{
𝛿𝜆

( x
k

) 𝜃 }𝛼 )
dx

Let u = 𝛿𝜆

( x
k

) 𝜃
and obtain x = k

( u
𝛿𝜆

)1/𝜃
du
dx

=
𝛿𝜆 𝜃

k

( x
k

) 𝜃−1
du =

𝛿𝜆 𝜃

k

( x
k

) 𝜃−1
dx

∥ (𝛿 ) =
∫ 0

∞
x𝜃𝛿𝛼−𝛿 (𝛼𝜆 𝜃)𝛿

𝜆 𝛿𝛼−𝛿 ( 1k )
𝜃𝛿𝛼exp(−u𝛼)

𝛿𝜆 𝜃
k ( 1k )𝜃−1

(
k( u

𝛿𝜆
)1/𝜃

) 𝜃−1 du
=

∫ 0

∞

(
1
𝜆

)− 𝛿
𝜃
+ 1
𝜃 ( u

𝛿

)𝛿𝛼− 𝛿
𝜃
+ 1
𝜃

𝛼𝛿

(
𝜃

k

)𝛿−1
exp(−u𝛼) (u)−1du

Let y = u𝛼 ,
dy
du

= 𝛼u𝛼−1 = 𝛼 (y1/𝛼)𝛼−1

∥ (𝛿 ) =
∫ 0

∞

(
1
𝜆

)− 𝛿
𝜃
+ 1
𝜃
(
y1/𝜆

𝛿

)𝛿𝛼− 𝛿
𝜃
+ 1
𝜃

𝛼𝛿

(
𝜃

k

)𝛿−1
exp(−y) (y1/𝛼)−1

𝛼 (y1/𝛼)𝛼−1
dy

=

∫ 0

∞
(𝜆 ) 1−𝛿𝜃

(
1
𝛿

)𝛿𝛼− 𝛿
𝜃
+ 1
𝜃
(
𝛼𝜃

k

)𝛿−1
exp(−y)y𝛿− 𝛿

𝛼𝛿
+ 1
𝛼𝜃

−1dy

∥(𝛿) = (𝜆 ) 1−𝛿𝜃
(
1
𝛿

) 𝛿𝛼𝜃−𝛿+1
𝜃

(
𝛼𝜃

k

)𝛿−1
Γ

(
𝛿𝛼𝜃 − 𝛿 + 1

𝛼𝜃

)
(31)

Substitute the quantity in Equation (31) into Equation (29)
to get the desired result given by

∥R (X) =
1

1 − 𝛿
log[∥(𝛿)]

=
1

1 − 𝛿
log

[
(𝜆 ) 1−𝛿𝜃

(
1
𝛿

) 𝛿𝛼𝜃−𝛿+1
𝜃

(
𝛼𝜃

k

)𝛿−1
Γ

(
𝛿𝛼𝜃 − 𝛿 + 1

𝛼𝜃

)]
2.4.10 Distribution of the Order Statistics of WEP Distri-

bution
Let X1,X2,. . . ,xn be a random sample of size n from the WEP
distribution with the CDF and PDF given as G(x) and g(x)
respectively, if X(1) , X(2) ,....,X(n) is the order statistics of the
random sample, the PDF of the rth order statistics defined by
David and Nagaraja (2003) is given by

f xr :n (x) =
n

(r − 1) (n − r)!G (x)r−1 (1 −G (x))n−rG′ (x)

(32)

Substitute the CDF and PDF of the Weibull Exponen-
tial Pareto distribution defined in Equations (9) and (10) into
Equation (32) to get

f xr;n (x) =


n

(r−1) (n−r )!

[
1 − exp

(
−

{
𝜆

( x
k

) 𝜃 }𝛼 )] r−1[
exp

(
−

{
𝜆

( x
k

) 𝜃 }𝛼 )]n−r+1
X 𝛼𝜆 𝜃

k

( x
k

) 𝜃−1 {
𝜆

( x
k

) 𝜃 }𝛼−1
(33)

The first-order statistics is obtained from Equation (33)
when r=1 and is given by

f x1:n (x) =
[
exp

(
−

{
𝜆

( x
k

) 𝜃 }𝛼 )]n n𝛼𝜆 𝜃
k

( x
k

) 𝜃−1
{
𝜆

( x
k

) 𝜃 }𝛼−1
(34)

The maximum order statistics is derived from Equation
(33) when r=n and is given by

f xn;n (x) =



[
1 − exp

(
−

{
𝜆

( x
k

) 𝜃 }𝛼 )]n−1[
exp

(
−

{
𝜆

( x
k

) 𝜃 }𝛼 )]
X n𝛼𝜆 𝜃

k

( x
k

) 𝜃−1 {
𝜆

( x
k

) 𝜃 }𝛼−1 (35)
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2.4.11 Moments, Mean, and Variance of Order Statistics of
WEP Distribution

The moment of order statistics including the mean and variance
of order statistics are derived here

Theorem 5: Let X1:n , X2:n , . . . , Xn:n be the order statistics
of the random sample from the WEP distribution of the density
function fxr;n(x), derived in Equation (33), then the sth moment
of the rth order statistics is given by

𝜇sr .n =


n

(r−1)!(n−r )!
∑r−1
i=0 (−1)i

(
r − 1
i

)
ks

(
1
𝜆

) s/𝜃
X

(
1
m

) ( s
𝛼𝜃

+1)
Γ

( s
𝛼𝜃

+ 1
)

(36)

Proof: The sth moment of X(r :n) is defined as

E(X s
r :n) =

∫ ∞

−∞
xs f xr;n (x)dx (37)

Equation (33) can be expressed by series expansion as


n

(r−1)!(n−r )!
∑r−1
i=0 (−1)i

(
r − 1
i

)
𝛼𝜆 𝜃
k

( x
k

) 𝜃−1
X

{
𝜆

( x
k

) 𝜃 }𝛼−1 exp
(
−

{
m𝜆

( x
k

) 𝜃 }𝛼 ) (38)

Where m=n-r+i+1, and Cr :n = n
(r−1)!(n−r )!

Substitute Equation (38) into (37) to obtain


Cr :n

∑r−1
i=0 (−1)i

(
r − 1
i

) ∫ ∞
0 xs 𝛼𝜆 𝜃k

( x
k

) 𝜃−1
X

{
𝜆

( x
k

) 𝜃 }𝛼−1 exp
(
−

{
m𝜆

( x
k

) 𝜃 }𝛼 ) dx (39)

By following the steps in subsection 2.4.4, Theorem 1, the
solution to the integral in Equation (39) is obtained as

ks
(
1
𝜆

) s/𝜃 (
1
m

) ( s
𝛼𝜃

+1)
Γ

( s
𝛼𝜃

+ 1
)

(40)

And the sth moment of the rth order statistics of WEP dis-
tribution is given by

Cr :n
r−1∑︁
i=0

(−1)i
(
r − 1
i

)
ks

(
1
𝜆

) s/𝜃 (
1
m

) ( s
𝛼𝜃

+1)
Γ

( s
𝛼𝜃

+ 1
)

Corollary 1: The mean of order statistics of the WEP dis-
tribution is obtained as

𝜇r;nWEP =


n

(r−1)!(n−r )!
∑r−1
i=0 (−1)i

(
r − 1
i

)
k
(
1
𝜆

)1/𝜃
X

(
1
m

) ( 1
𝛼𝜃

+1)
Γ

(
1
𝛼𝜃

+ 1
)

(41)

Corollary 2: Let 𝜎 s
r :n (WEP ) denote the variance of order

statistics of the WEP distribution, then the explicit expression
for the variance is given by

𝜎 s
r :nWEP =



n
(r−1)!(n−r )!

∑r−1
i=0 (−1)i

(
r − 1
i

)
k2(

1
𝜆

)2/𝜃 (
1
m

) ( 2
𝛼𝜃

+1)
Γ

(
2
𝛼𝜃

+ 1
)

−
[

n
(r−1)!(n−r )!

∑r−1
i=0 (−1)i

(
r − 1
i

)
k(

1
𝜆

)1/𝜃 (
1
m

) ( 1
𝛼𝜃

+1)
Γ

(
1
𝛼𝜃

+ 1
)]2

(42)

Proof: The variance is proved using the relation;

𝜎 s
r :nWEP = 𝜇2r :n − (𝜇r :nWEP )2

Using Equation (36), 𝜇2r :n is obtained as

𝜇2r :n =
n

(r − 1)!(n − r)!

r−1∑︁
i=0

(−1)i
(
r − 1
i

)
k2

(
1
𝜆

)2/𝜃
(
1
m

) ( 2
𝛼𝜃

+1)
Γ

(
2
𝛼𝜃

+ 1
)

Using Equation (41), (𝜇r;nWEP ) 2 is obtained as

(𝜇r :nWEP )2 =
[

n
(r − 1)!(n − r)!

r−1∑︁
i=0

(−1)i
(
r − 1
i

)
k
(
1
𝜆

)1/𝜃 (
1
m

) ( 1
𝛼𝜃

+1)
Γ

(
1
𝛼𝜃

+ 1
)]2

3. RESULTS AND DISCUSSION

3.1 Generalization of Properties of Order Statistics for Some
Lifetime Distribution

The mean, variance, skewness, kurtosis, and some other im-
portant statistical properties can be derived for some lifetime
distributions using the theory and application of order statis-
tics. This sub-section generalized some few properties of order
statistics for some lifetime distribution as follows:
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3.1.1 Exponential Pareto Distribution (Al Kadim and Boshi,
2013)

Corollary 3: If 𝛼=1, in Equation (36) the result for sth moment
of the rth order statistics of the EP distribution is given by

𝜇sr :nEP =


n

(r−1)!(n−r )!
∑r−1
i=0 (−1)i

(
r − 1
i

)
ks

(
1
𝜆

) s/𝜃
X

(
1
m

) ( s𝜃 +1)
Γ

( s
𝜃
+ 1

)
(43)

The mean of order statistics of EP distribution is derived and
given by

𝜇r :nEP =


n

(r−1)!(n−r )!
∑r−1
i=0 (−1)i

(
r − 1
i

)
k
(
1
𝜆

)1/𝜃
X

(
1
m

) ( 1𝜃 +1)
Γ

(
1
𝜃
+ 1

)
(44)

The mean of the minimum X(1:n) order statistics of EP distri-
bution is given by

𝜇1:nEP = nk
(
1
𝜆

)1/𝜃
Γ

(
1
𝜃
+ 1

)
(45)

The mean of the maximum X(n:n) order statistics of EP distri-
bution is given by

𝜇n:nEP =

n−1∑︁
i=0

(−1)i
(
n − 1
i

)
nk

(
1
𝜆

)1/𝜃 (
1
i + 1

) ( 1𝜃 +1)
Γ

(
1
𝜃
+ 1

)
(46)

Corollary 4: If r=n=1 and 𝛼=1, the result for a central
moment about the origin and the mean for the EP distribution
Al Kadim and Boshi (2013) is obtained from this study as

𝜇′s = k
s
(
1
𝜆

) s/𝜃
Γ

( s
𝜃
+ 1

)
(47)

The mean of a random variable X from the EP distribution is

E(X) = k
(
1
𝜆

)1/𝜃
Γ

(
1
𝜃
+ 1

)
(48)

3.1.2 Weibull-Rayleigh Distribution (Ahmad et al., 2017)
Corollary 5. If 𝜃=2 and 𝜆 = 1

2𝛽 , in Equation (36) the sth mo-

ment of the rth order statistics of the WR distribution is given
by

𝜇sr :nWR =


n

(r−1)!(n−r )!
∑r−1
i=0 (−1)i

(
r − 1
i

)
ks

X (2𝛽 )s/2
(
1
m

) ( s
2𝛼 +1)

Γ
( s
2𝛼 + 1

) (49)

The mean of order statistics of WR distribution is derived and
given by

𝜇r :nWR =


n

(r−1)!(n−r )!
∑r−1
i=0 (−1)i

(
r − 1
i

)
k

X (2𝛽 )1/2
(
1
m

) ( 1
2𝛼 +1)

Γ

(
1
2𝛼 + 1

) (50)

The mean of the minimum X(1:n) order statistics of WR distri-
bution is given by

𝜇1:nWR = nk(2𝛽 )1/2Γ
(
1
2𝛼

+ 1
)

(51)

The mean of the maximum X(n:n) order statistics of WR dis-
tribution is given by

𝜇n:nWR =


∑n−1
i=0 (−1)i

(
n − 1
i

)
nk(2𝛽 )1/2

X
(
1
i+1

) ( 1
2𝛼 +1)

Γ

(
1
2𝛼 + 1

) (52)

Corollary 6. The sth moment of the WR distribution de-
veloped by Ahmad et al. (2017) is given by

𝜇′s = (2𝛽 )s/2ksΓ
( s
2𝛼

+ 1
)

(53)

Proof: If r=n=1 and 𝜃=2 and 𝜆=1/2𝛽 in Equation (36) the
desired result is obtained The mean of a random variable X
from the WR distribution is

E(X) = (2𝛽 )1/2kΓ
(
1
2𝛼

+ 1
)

(54)

Remark: Similar results can be deduced for the Rayleigh-
Rayleigh distribution developed by Ateeq et al. (2019) and for
other models presented in Table 1.

3.2 Parameter Estimation and Simulation
This section is for determining the estimates of parameters of
WEP distribution using the method of maximum likelihood
estimation (MLE). A Simulation study is also conducted to
assess the performance of the procedure.
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3.2.1 Maximum Likelihood Estimation
Let X1, X2,..., Xn ,be independent and identically distributed
random sample of size n from the WEP distribution with
PDF derived as g (x) in Equation (9) with a set of parame-
ters 𝜑=(𝛼,𝜃 ,𝜆 ,k). The likelihood function of the distribution is
obtained as;

Lik [g (x , 𝜑)] =
n∏
i=1

[
n𝛼𝜆 𝜃
k

( x
k

) (𝜃−1) {
𝜆

( x
k

) 𝜃 } (𝛼−1)

exp
(
−

{
𝜆

( x
k

) 𝜃 }𝛼 )]
(55)

The log-likelihood function logLik[g(x,𝜙)] denoted as LL
is

LL =



nlog𝛼 + nlog𝜆 + nlog𝜃 − nlogk+
(𝜃 − 1)∑ logx − n(𝜃 − 1)logk

+n(𝛼 − 1)log𝜆 − n(𝛼 − 1)logk𝜃

+(𝛼 − 1)∑ logx𝜃 − ∑ {
𝜆

( x
k

) 𝜃 }𝛼 (56)

The normal Equations are obtained as derivatives of LL
for the parameters

0 =
dLL
d𝛼

=


n
𝛼
+ nlog𝜆 − nlogk𝜃 + ∑

logx𝜃

−∑ {
𝜆

( x
k

) 𝜃 }𝛼 log
(
𝜆

( x
k

) 𝜃 ) (57)

0 =
dLL
d𝜆

=
n
𝜆
+ n𝛼

𝜆
+ 𝛼

𝜆

∑︁ {
𝜆

( x
k

) 𝜃 }𝛼
(58)

0 =
dLL
dk

=


− n
k −

n (𝜃−1)
k + n (𝛼−1)

k

+ 𝛼𝜃
k

∑ {
𝜆

( x
k

) 𝜃 }𝛼 (59)

0 =
dLL
d𝜃

=


n
𝜃
+ ∑

logx − nlogk − n(𝛼 − 1) 𝜃k

+(𝛼 − 1)∑ 𝜃
x − 𝛼

∑ {
𝜆

( x
k

) 𝜃 }𝛼 log
( x
k

)
(60)

A numerical solution to the above equations is adopted
for the estimates of the parameters which are easier using the
statistical software.

3.2.2 Simulation Study
Assessment of the estimation of parameter procedure is per-
formed by conducting a simulation study using the R-statistical
software as follows;

1. Simulated data are generated using Equation (14) given
by

X = K
{
1
𝜆

[
−log(1 − u) 1𝛼

]} 1
𝜃

2. The sample sizes taken are n = 20, 50, 250, 350, 500
3. Two sets I and II of parameter values are defined as I =

(𝛼=0.5, 𝜃=1, 𝜆=2.5, k=1.5) and II = (𝛼=1.0, 𝜃=2, 𝜆=3.5,
k=2.0)

4. Replicate the process for each sample size N=10,000
number of times

5. Compute the MSE by using MSE ∅ = 1
N

∑N
i=1 (∅i ’- ∅) 2

where ∅’irepresents WEP parameters
6. Step five is carried our repeatedly for each parameter.
The estimated values are obtained for the Bias, Mean Square

Error (MSE), Root Mean Square Error (RMSE), and standard
errors. The simulation study shows that the parameters of the
distribution are stable in addition; the consistency of the MSE
values for the maximum likelihood estimations implies that the
estimation procedure is adequate. The results revealed that the
MSE and RSME decrease as the sample size increases for both
sets of actual values of the parameter. The standard errors also
converge to zero as the sample size increases. The results from
the simulation studies are presented in Table 2 for the first set
of parameters and Table 3 for the second set of parameters.

3.3 Application to Lifetime Datasets
The usefulness of the distribution is demonstrated by analyzing
three real-life datasets using the R software (Core Team, 2013) .
The best-fitted model is usually identified with the smallest
values of goodness-of-fit criteria which are the Log-likelihood
(LL), Akaike information criterion (AIC), Bayesian informa-
tion criterion (BIC), Consistent Akaike information criterion
(CAIC), Hannan-Quinn information criterion (HQIC), the
Kolmogorov statistics and P-value. The criteria are defined as
follows;

AIC=-2LL+2c; BIC=-2LL+clog(n); CAIC=-2LL+2c (n−2)n−c−2 ;
HQIC = 2log (log(n)(c − 2LL)). The performance of the WEP
distribution is compared with some similar families of distribu-
tions and some notable models existing in the literature with
the density functions defined by

1. Generalized Exponential Weibull (GEW) distribution

GEW (x; 𝛼 , 𝛽 , 𝜃 , k) = 𝜃 (𝛼 + 𝛽 kx (k−1) )
exp(−(𝛼x + 𝛽 xk)) (1 − exp(𝛼x + 𝛽 xk))𝜃−1

2. Transmuted New Weibull Pareto (TNWP) distribution

TNWP (X ; 𝜆 , 𝛽 , 𝜃 , k) = 𝛽 𝜃

k

( x
k

) ( 𝛽−1)
e (−𝜃 ( xk )

𝛽(
1 − 𝜆 + 2𝜆 e−𝜃 ( xk )

𝛽
)
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3. Kumaraswamy Exponential Pareto (KEP) distribution

KEP (X ; 𝛼 , 𝛽 , 𝜃 , k) = 𝛼 𝛽𝜆 𝜃

k

( x
k

) (𝜃−1)
e−𝜆 ( xk )

𝜃

(
1 − e−𝜆 ( xk )

𝜃
)𝛼−1 (

1 −
(
1 − e−𝜆 ( xk )

𝜃
)𝛼 ) 𝛽−1

4. Gompertz Exponential Pareto (GEP) distribution

GEP (X ; 𝛼 , 𝜆 , 𝛽 , 𝜃 , k) = 𝛼𝜆 𝜃

k

( x
k

) (𝜃−1)
(
e−𝜆 ( xk )

𝜃
)− 𝛽

e
𝛼
𝛽

[
1−

(
e−𝜆 ( xk )

𝜃
)− 𝛽

]

5. Beta Exponential Pareto (BEP) distribution

BEP (X; 𝛼 , 𝜆 , 𝛽 , 𝜃 , k) = 𝛼𝜃

𝜆B(𝛼 𝛽 )

( x
𝜆

) (𝜃−1)
e−𝛼 𝛽 ( x𝜆 )𝜃

[
1 − e− 𝛽 ( x𝜆 )𝜃

]𝛼−1
3.3.1 Application to the Hydrological Data Set
The first data contain 72 exceedances of flood peaks (inm3/s) of
the Wheaton River discharge near Carcross in Yukon Territory,
Canada for the years 1958-1984. The data set has been applied
by several authors including Aryal (2019) using BEP, Tahir and
Akhter (2018) using TNWP, and recently by Adeyemi et al.
(2021) for evaluating the performance of the GEP distribution.

Figure 3. Plots of PDFs and CDFs of Fitted Distributions
Fitted to the Hydrological Data

First Data Set: 1.7, 2.2, 14.4, 1.1, 0.4, 20.6, 5.3, 0.7, 1.4,
18.7, 8.5, 25.5, 11.6, 14.1, 22.1, 1.1, 0.6, 2.2, 39.0, 0.3, 15.0,
11.0, 7.3, 22.9, 0.9, 1.7, 7.0, 20.1, 0.4, 2.8, 14.1, 9.9, 5.6,
30.8, 13.3, 4.2, 25.5, 3.4, 11.9, 21.5, 1.5, 2.5, 27.4, 1.0, 27.1,
20.2, 16.8, 5.3, 1.9, 10.4, 13.0, 10.7, 12.0, 30.0, 9.3, 3.6, 2.5,
27.6, 14.4, 36.4, 1.7, 2.7, 37.6, 64.0, 1.7, 9.7, 0.1, 27.5, 1.1,
2.5, 0.6, 27.0.

The values of the estimated parameters of the competing
models and the goodness-of-fit criteria are displayed in Table
4 and Table 5 respectively. The visual result of goodness-of-fit
from data analysis in form of the histogram with the estimated
densities and the CDFs of the fitted models are displayed in
Figure 3. Table 4 revealed that the WEP distribution com-
petes favorably with the GEP model and performs better than

TNWP, KEP, and BEP distributions based on the smallest
values of goodness-of-fit statistics. Figure 3 supported the se-
lection of the proposed model as more flexible than the other
models for the dataset.

3.3.2 Application to Tensile Strength of Polyester Fibers
The second data represents 30 measurements of the tensile
strength of polyester fibers available in (Quesenberry and Hales,
1980) .

Figure 4. Plots of Histogram with Densities and CDFs of
Fitted Distributions to the Tensile Strength Data

Second Data Set: 0.023, 0.032, 0.054, 0.069, 0.081, 0.094,
0.105, 0.127, 0.148, 0.169, 0.188,0.216, 0.255, 0.277, 0.311,
0.361, 0.376, 0.395, 0.432, 0.463, 0.481, 0.519,0.529, 0.567,
0.642, 0.674, 0.752, 0.823, 0.887, 0.926

The computed results of estimated parameters and the
goodness-of-fit criteria are displayed in Table 6 and Table 7
respectively for the models under consideration. Figure 4 is
the pictorial display of goodness-of-fit from data analysis in
form of the histogram with the estimated densities and CDFs
of the fitted models to the tensile strength data set. The fit of
the WEP model is compared with TNWP, GEP, GEW, and
KEP models. Results displayed in Table 6 revealed that the
WEP model has more flexible capabilities for the data than the
competitors. The visual results from the estimated densities
and CDFs in Figure 4 strengthened the choice of the WEP
model.

3.3.3 Application to Lifetimes of Steel Specimens
The data represents the lifetimes (t) of steel specimens tested at
stress (s) level of s=38.5 obtained from the 14 different stress
levels reported in (Lawless, 2011) .

Third Data Set: 60, 51, 83, 140, 109, 106, 119, 76, 68, 67,
111, 57, 69, 75, 122, 128, 95, 87, 82, 132. The lifetime data is
fitted to the WEP model and compared with GEP, GEW, and
KEP models. Computed results of estimated parameters and
the goodness-of-fit criteria are presented in Table 8 and Table 9
respectively. The plots for the densities and CDFs are displayed
in Figure 5. Application of the proposed models to the data set
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Figure 5. Plots of PDFs and CDFs of Fitted Distributions to
the Steel Specimens Data

of steel specimens revealed the suitability of the WEP model
as a better lifetime distribution for fitting the data compared to
some other existing distributions in the literature. The WEP
model provides the smallest AIC, CAIC, and BIC and the plots
in Figure 5 substantiate our choice of WEP distribution.

4. CONCLUSION

The WEP model is a new lifetime distribution with adequate
potential for analyzing left-skewed, right-skewed, and approx-
imately symmetric phenomena from the field of hydrology,
reliability engineering, actuarial and finance, and public health.
It is also suitable for fitting real-life datasets in other areas of ap-
plications characterized by risky kurtosis. It is confirmed in this
study that WEP has superior performance than the competing
distributions for modeling the reliability and the hydrological
data sets and the lifetime of steel specimens. The discover-
ies from the theory of order statistics extended in the study
established a novel area of study in distribution theory which
also contributed to the conclusion that the WEP distribution
provides sufficient characterizations for WR, EP, RR distribu-
tions, and some other existing lifetime distributions. Other
important areas of further research include the estimation of
parameters by order statistics and the real-life application of
moments of order statistics in predictive modeling.
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Table 2. Simulation Study for Set of Parameters I=(𝛼=0.5,𝜃=1,𝜆=2.5,k=1.5)

Bias MSE
n â 𝜆 𝜃 k̂ â 𝜆 𝜃 k̂

20 0.6987 -1.2998 0.1999 -0.2995 0.8459 2.0494 0.3998 0.4515
50 0.6990 -1.3005 0.2006 -0.3007 0.6336 1.8353 0.1832 0.2352
250 0.6987 -1.3006 0.2003 -0.2991 0.5183 1.7200 0.0691 0.1185
500 0.7000 -1.3001 0.2001 -0.2989 0.5044 1.7048 0.0544 0.1042
1000 0.6986 -1.3000 0.1998 -0.2992 0.4973 1.6972 0.0471 0.0972

RMSE St.Error
n â 𝜆 𝜃 k̂ â 𝜆 𝜃 k̂
20 0.9198 1.4316 0.6323 0.6719 0.5981 0.5999 0.5998 0.6015
50 0.7960 1.3547 0.4208 0.4849 0.3793 0.3795 0.3781 0.3804
250 0.7199 1.3115 0.2628 0.3442 0.1695 0.1688 0.1701 0.1704
500 0.7102 1.3057 0.2334 0.3228 0.1199 0.1202 0.1199 0.1196
1000 0.7052 1.3028 0.2171 0.3117 0.0848 0.0846 0.0848 0.0851

Table 3. Simulation Study for Set of Parameters II=(𝛼=1.0,𝜃=2,𝜆= 3.5,k=2.0)

Bias MSE
n â 𝜆 𝜃 k̂ â 𝜆 𝜃 k̂

20 -0.0523 -2.5528 -1.0522 -1.0528 0.0150 6.5292 1.1193 1.1208
50 -0.0526 -2.5526 -1.0525 -1.0527 0.0077 6.5207 1.1126 1.1130
250 -0.0526 -2.5526 -1.0527 -1.0525 0.0038 6.5168 1.1092 1.1088
500 -0.0526 -2.5526 -1.0526 -1.0524 0.0032 6.5161 1.1086 1.1082
1000 -0.0526 -2.5526 -1.0525 -1.0523 0.0030 6.5160 1.1080 1.1081

RMSE St.Error
n â 𝜆 𝜃 k̂ â 𝜆 𝜃 k̂
20 0.1225 2.5552 1.0579 1.0587 0.1108 0.1109 0.1107 0.1111
50 0.0875 2.5535 1.0548 1.0549 0.0699 0.0701 0.0701 0.0702
250 0.0612 2.5528 1.0532 1.0530 0.0314 0.0314 0.0313 0.0313
500 0.0571 2.5526 1.0528 1.0526 0.0221 0.0222 0.0221 0.0220
1000 0.0549 2.5526 1.0526 1.0526 0.0156 0.0157 0.0156 0.0156

Table 4. Log-likelihood and Maximum Likelihood Estimates of the Parameters for the Flood Peaks Data

Model â 𝛽 𝜆 𝜃 k̂ -LL

GEP 0.6735 0.2594 0.3099 0.7474 0.8814 499.7330
WEP 0.0786 - 3.1539 11.1779 10.1814 501.1056

TNWP 0.4514 - 0.4092 6.7312 0.8771 502.9130
KEP 0.9245 0.2594 0.3099 0.7624 0.8814 501.1506
BEP 0.0332 0.4984 0.7474 0.2985 0.5482 501.9790

Table 5. Goodness-of-fit Statistics for the Flood Peaks Data

Model AIC CAIC BIC HQIC K-S p-value

WEP 509.1056 509.7026 518.2122 512.7310 0.1067 0.3850
GEP 509.7330 510.6461 521.1164 514.2648 0.1029 0.4310

TNWP 510.9130 511.5100 520.0197 514.5384 0.1069 0.3812
KEP 511.1506 512.0589 522.5340 515.6824 0.1071 0.3802
BEP 511.9590 512,8680 523.3420 516.4910 - -
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Table 6. Log-likelihood and Estimated Parameters for the Tensile Strength Data

Model â 𝛽 𝜆 𝜃 k̂ -LL

WEP 0.0402 - 2.4076 32.9847 0.3891 -1.7503
TNWP 6.5409 - 0.2768 1.7556 1.3982 -1.7377
GEP 15.9217 30.1267 0.3245 0.9161 4.9943 -2.3263
GEW 3.1808 - 2.9046 21.1988 0.1269 -1.2846
KEP 0.1795 13.5155 11.7830 7.4832 4.1216 -2.2521

Table 7. Goodness-of-fit Statistics for the Tensile Strength Data

Model AIC CAIC BIC HQIC K-S p-value

WEP 4.4993 6.0993 10.1041 6.2923 0.0826 0.9760
TNWP 4.5246 6.1246 10.1294 6.3176 0.0853 0.9679
GEP 5.3473 7.8473 12.3533 7.5886 0.0859 0.9661
GEW 5.4308 7.0308 11.0357 7.2238 0.0884 0.9568
KEP 5.4959 7.9959 12.5018 7.7371 0.0917 0.9427

Table 8. Log-likelihood and Estimated Parameters for the Steel Specimen Data

Model â 𝛽 𝜆 𝜃 k̂ -LL

WEP 1.9542 - 33.5981 1.409 9.6908 102.9148
GEP 0.0065 0.7775 0.5749 5.6195 1.1537 102.9122
GEW 0.0232 - 1.0449 10.9496 -0.1876 104.4920
KEP 9.1038 3.5236 0.1109 0.6503 1.4219 105.6481

Table 9. Goodness-of-fit Statistics for the Steel Specimen Data

Model AIC CAIC BIC HQIC K-S p-value

WEP 213.8297 216.4964 217.8126 214.6072 0.1057 0.9615
GEP 214.8244 219.8031 219.8031 215.7963 0.1096 0.9485
GEW 214.8244 219.6506 220.9669 217.7615 0.1387 0.7871
KEP 221.2962 225.5819 226.2748 222.2680 0.1405 0.7744
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