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AbstractIn the present study, composite layer double hydroxide-metal oxide (Ni/Al-TiO2 and Ni/Al-ZnO) was successfully prepared andused as catalyst of oxidative desulfurization of dibenzothiophene. Characterization of catalyst was used XRD, FTIR, and SEM-EDS.The structure of Ni/Al-LDH, TiO2, and ZnO in composite Ni/Al-TiO2 and Ni/Al-ZnO was consistent, which also indicated that thepreparation of composite did not change the form of precursors. FTIR spectra of Ni/Al-TiO2 and Ni/Al-ZnO absorption band at 3398,1639, 1339, 832, 731, and 682 cm−1. The catalysts have an irregular structure, TiO2 and ZnO adhere to the surface of Ni/Al-LDH.The percent mass of Ti and Zn on the composite at 29.3% and 18.2%, respectively. The acidity of Ni/Al-LDH increased after beingcomposited with TiO2 and ZnO. The optimum reaction time, dosage catalyst, and temperature were 30 min, 0.25 g, and 50°C,respectively, and n-hexane as a solvent. The percentage conversion of dibenzothiophene on Ni/Al-LDH, TiO2, ZnO, Ni/Al-TiO2, andNi/Al-ZnO were 99.44%, 91.92%, 95.36%, 99.88%, and 99.90%, respectively. The catalysts are heterogeneous system and theadvantage is that can be used for reusability. After 3 times catalytic reactions, the conversion of dibenzothiophene still retains morethan 80%, even Ni/Al-TiO2 and Ni/Al-ZnO composites still 97.79% and 98.99%, respectively.
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1. INTRODUCTION

Fuel oil is an energy source that has a vital role in the global
economy (Zeng et al., 2017) . The fuel is oil from exploration
on the earth, known as petroleum. Although the availability of
petroleum continues to run low, its supply is still sucient for
the needs of human life on earth. However, the intensive use
of petroleum, especially in transportation, causes gas emissions
to be produced, namely SOx (Mahmoudi et al., 2021) . SOx
signicantly contributes to air pollution, acid rain, and damage
to the gas emission section of vehicles (Abedini et al., 2021;
Kang et al., 2018; Mousavi-Kamazani et al., 2020).

The specications issued by Japan and European Com-
mission show that the sulfur content in the oil is constantly
changing and revising due to the eects caused when the sulfur
content is found in large quantities in fuel oil. In 2005, the
sulfur content in fuel oil allowed in Europe was 10 ppm (Ren
et al., 2016) . The same thing happened in America, which
revised the permissible sulfur content in fuel oil to 15 ppm in
2006 (Bazyari et al., 2016) . The current trend shows that the

sulfur content in fuel oil is a maximum of 10 ppm (Luna et al.,
2022) . Sulfur compounds in fuel oil are organosulfur such as
dibenzothiophene (DBT) and derivatives (Mujahid et al., 2020;
Ye et al., 2020). The chemical structure of dibenzothiophene
is shown in Figure 1.

Figure 1. Chemical Structure of Dibenzothiophene

Reducing sulfur content in dibenzothiophene is known as
the desulfurization process using the catalytic principle of ox-
idation. The success of the desulfurization process is highly
dependent on the catalyst used, considering the process applied
in catalytic oxidation. Malani et al. (2021) used microorgan-
isms in the desulfurization process known as biodesulfurization.
However, this method has diculties in controlling the use
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of microorganisms and in the treatment of microorganisms,
so chemical methods with the principle of catalytic oxidation
continue to be developed until now. Several desulfurization
technologies for dibenzothiophene compounds have been car-
ried out such as photocatalytic desulfurization (Mgidlana et al.,
2021) , adsorptive desulfurization (Subhan et al., 2019) , and
oxidative desulfurization (ODS) (Li et al., 2020) . In addition,
in petroleum which is explored together with gas containing
sulfur, the desulfurization process is carried out using a separa-
tor column and the extractive desulfurization process (EDS)
(Rezaee et al., 2021) . Until now, the desulfurization process is
still being researched to nd eective materials to convert sulfur
by chemical processes, especially with the principle of catalytic
oxidation reactions using synthesized catalysts. Catalysts have
been reported for desulfurization of DBT, including montmo-
rillonite (Kang et al., 2018) , Fe promoted Ni/Co-Mo/Al2O3
(Muhammad et al., 2018) , silica (Teimouri et al., 2018) , and
layered double hydroxide (Masoumi and Hosseini, 2020; Wu
et al., 2018).

The potential catalyst to be used is Layered Double Hy-
droxide (LDH). LDH can be made easily, with low cost, and
has a high-eciency level (Taher et al., 2021) . LDH is de-
rived from the mineral clay brucite, whose general formula is
Mg(OH) 2. In the catalytic process, LDH has been used for
water remediation (Karim et al., 2022) , n-heptane hydrocon-
version (Zhu et al., 2019) , and biodiesel production (Gabriel
et al., 2021) . LDH is interested in catalysis due to its large
surface area and homogeneous distribution of various essential
components (Zhu et al., 2019) . The disadvantage of LDH is
easily exfoliated, so the reusability of LDH is less attractive.
Therefore, LDH is composited with metal oxide. LDH is easily
made into composites with metal oxides by calcining at high
temperatures to remove organic pollutants (Dang et al., 2021) .

In the experiment part, Ni/Al-TiO2 and Ni/Al-ZnO were
prepared as catalysts and DBT was the sulfur compound. Char-
acterization of catalysts used XRD, FTIR, and SEM-EDS to
know the successful preparation of the catalysts. The process
of optimizing the oxidative desulfurization of DBT was car-
ried out with variations in time, UV-Vis spectrum, the dosage
of catalyst, temperature, solvent (n-pentane, n-hexane, and
n-heptane), acidity test, heterogeneous test, and reusability.

2. EXPERIMENTAL SECTION

2.1 Chemicals and Instrumentation
Dibenzothiophene (DBT) was obtained from Sigma-Aldrich
and directly used as received. Other chemicals such as hydro-
gen peroxide (H2O2), acetonitrile (CH3CN), pyridine (C5H5N),
n-pentane (C5H12), n-hexane (C6H14), n-heptane (C7H16),
nickel (II) nitrate hexahydrate (Ni(NO3) 2.6H2O), aluminum
nitrate nonahydrate (Al(NO3) 2.9H2O), sodium carbonate (Na2
CO3), and sodium hydroxide (NaOH), titanium(IV) oxide
(TiO2), and zinc(II) oxide (ZnO) were also directly used with-
out further purication. Water was supplied from the Research
Center of Inorganic Materials and Complexes FMIPA Uni-
versitas Sriwijaya after several cycles of water purication us-

ing Puriter. Instrumentation such as X-Ray Diractometer
(XRD) type Rigaku Miniex-6000, EMC-18PC-UV Spec-
trophotometer, Fourier Transfer Infra-Red (FTIR) type Shi-
madzu Prestige-21, and Scanning Electron Microscope Energy
Dispersive Spectrometer (SEM-EDS) Quanta 650.

2.2 Synthesis and Preparation of Catalyst and Characteriza-
tion

Synthesis of Ni/Al-LDH was conducted according to Lesbani
et al. (2021) as follows: 0.75 M (Ni(NO3) 2.6H2O) and 0.25
M (Al(NO3) 2.9H2O) dissolved in 100 mL of distilled water,
stirred for 2 h. Then slowly added the mixture of NaOH and
Na2CO3 (ratio 2:1) to pH 10. The mixture was stirred for 17
h at 70°C, then ltered and dried.

Preparation Ni/Al-Oxide was conducted 0.75M (Ni(NO3)
2.6H2O) and 0.25 M (Al(NO3) 2.9H2O) dissolved in 100 mL
distilled water, stirred for 2 h. Then slowly added the mixture
of NaOH and Na2CO3 (ratio 2:1) to pH 10. The mixture
was stirred for 17 h at 70°C then added TiO2/ZnO (ratio 1:1),
shaken for 3 h. Themixture was added 150mL0.37MNaOH,
shaken for 17 h at 70°C, ltered, dried, and then calcinated at
300°C for 7 h.

2.3 Oxidative Desulfurization of Dibenzothiophene
Dibenzothiophene with the concentration of 500 ppm was pre-
pared in n-hexane and transferred to a two-pronged catalytic
reaction ask. The ask is connected to a condenser to prevent
evaporation of n-hexane. 0.25 g Catalysts (Ni/Al-Oxide) fol-
lowed by adding 1 mL of 30% hydrogen peroxide. The reaction
was observed per 10 minutes time interval through extraction
with acetonitrile followed by measuring using a UV-Visible
spectrophotometer at 235 nm. The percentage conversion of
DBT followed the equation:

%conversion of DBT =
(C0,DBT − Cf,DBT)

C0,DBT
× 100

Where, C0,DBT and Cf,DBT are the initial and nal concentra-
tions of DBT, respectively.

The process of optimizing the oxidative desulfurization
of DBT was carried out with variations in time (10-60 min),
UV-Vis spectrum (220-250 nm), the dosage of catalyst (0.05-1
g), temperature (30-50°C), solvent (n-pentane, n-hexane, and
n-heptane), acidity test, heterogeneous test, and reusability.
Reusability of catalyst is carried out by centrifugation of the
reaction mixture after 1 h to recover the Ni/Al-oxide catalyst.
The catalyst was washed with n-hexane several times, dried,
and reused in the desulfurization of DBT.

3. RESULTS AND DISCUSSION

XRD powder diraction of Ni/Al-LDH, TiO2, ZnO, Ni/Al-
TiO2, and Ni/Al-ZnO is shown in Figure 2. XRD peaks of
Ni/Al-LDH were analyzed from the JCPDS No. 15-0087
(Chen et al., 2022) . Ni/Al-LDH peaks were detected at 2𝜃=
11.48°(003), 23.30°(002), 35.03°(311), and 61.40°(013) (see
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Figure 2a). The diraction peaks at 2𝜃= 11.48°(003) and
61.40°(013) indicate crystal planes of Ni/Al-LDH (Xie et al.,
2021) . Figure 2b shown diraction of TiO2 at 2𝜃= 25.59°(101),
37.09°(004), 48.16°(200), 54.03°(211), 55.26°(105), and 62.29°
(204). Figure 2c shown diraction of ZnO at 2𝜃= 31.75°(100),
34.41°(002), 36.24°(101), 47.52°(002), 56.56°(110), and 62.84°
(103). TiO2 and ZnO followed JCPDS No. 73-1764 and
36-1451, respectively (Basnet et al., 2019) . The structure of
Ni/Al-LDH, TiO2, and ZnO in composite Ni/Al-TiO2 and
Ni/Al-ZnO was consistent, which also indicated that the prepa-
ration of composite did not change the form of precursors (see
Figures 2d and 2e).

Figure 2. XRD Powder Diraction of Ni/Al-LDH (a), TiO2 (b),
ZnO (c), Ni/Al-TiO2 (d), and Ni/Al-ZnO (e)

FTIR spectra of Ni/Al-TiO2 and Ni/Al-ZnO absorption
band at 3398, 1639, 1339, 832, 731, and 682 cm−1 (see Fig-
ures 3d and 3e). An absorption band at 3398 cm−1 was the
O-H stretching vibrations in the hydroxyl layer (Normah et al.,
2021; Palapa et al., 2021). 1639 and 1339 cm−1 as H-O-H
and NO3

− stretching from Ni/Al-LDH (Lv et al., 2022) . The
peaks at 832, 731, and 682 cm−1 can be assigned metal oxide
in Ni/Al-LDH, TiO2, and ZnO (Intachai et al., 2021) .

Table 1. EDS of Catalysts

Element
Ni/Al-LDH

(%wt)
Ni/Al-TiO2
(%wt)

Ni/Al-ZnO
(%wt)

Ni 33.9 20.7 15.6
Al 5.2 3.1 13.9
Ti - 29.3 -
Zn - - 18.2
O 43.2 34.8 27.2

Figure 4 shows the SEM Image and EDS of Ni/Al-LDH,
Ni/Al-TiO2, and Ni/Al-ZnO. SEM image investigated the
morphology of catalysts at 2500 times magnication. The
catalysts have an irregular structure, TiO2 and ZnO adhere

Figure 3. FTIR spectrum of Ni/Al LDH (a), TiO2 (b), ZnO (c),
Ni/Al-TiO2 (d), and Ni/Al-ZnO (e)

to the surface of Ni/Al-LDH. EDS analysis in Table 1 shows
the Ni, Al, Ti, Zn, and O atom percentages. Ti and Zn atoms
appear after composited into Ni/Al-TiO2 and Ni/Al-ZnO. The
percent mass of Ti and Zn at 29.3% and 18.2%, respectively.
Thus, preparation of Ni/Al-TiO2 and Ni/Al-ZnO has been a
success.

Figure 4. SEM Image and EDS of Ni/Al-LDH (a), Ni/Al-
TiO2 (b), and Ni/Al-ZnO (c)

The acidity test was carried out using the gravimetric met-
hod with pyridine as the adsorbate base. Pyridine has a large
size causing bonding to occur only on the surface. The results
of the determination of the acid site for each catalyst are shown
in Table 2. Ni/Al-LDH increased after being composited with
TiO2 and ZnO. the acidity of Ni/Al-LDH, TiO2, ZnO, Ni/Al-
TiO2, and Ni/Al-ZnO were 0.148, 0.298, 0.782, 0.714, 0.184
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mmol/gram, respectively. The increase in the acidity of Ni/Al-
LDH, because it has been reduced, will lack electrons so that it
has a higher ability to absorb pyridine. Acid sites of catalysts
are polyacid to convert DBT into DBT-sulfone (Trisunaryanti
et al., 2021) .

Table 2. Acidity of Catalyst

Catalyst
Acidity
(mmol/g)

Ni/Al-LDH 0.148
TiO2 0.298
ZnO 0.782

Ni/Al-TiO2 0.714
Ni/Al-ZnO 0.184

Figure 5. Prole of Desulfurization by Time Over Composite
Catalysts

The catalytic oxidative desulfurization of DBT is strongly
inuenced by time. The eect of the desulfurization time of
DBT is displayed in Figure 5. The catalytic data showed a long
reaction time was directly proportional to the high %conversion
of DBT (Muhammad et al., 2018) . The optimum reaction
time was 30 min and the percentage conversion of DBT on
Ni/Al-LDH, TiO2, ZnO, Ni/Al-TiO2, and Ni/Al-ZnO were
99.44%, 91.92%, 95.36%, 99.88%, and 99.90%, respectively.
The composite increases the ability of the catalyst in the desul-
furization of DBT. In this study, Ni/Al-ZnO is better than
Ni/Al-TiO2 in conversion of DBT. The DBT that appeared
in the acetonitrile phase was rapidly oxidized and converted to
DBT-sulfone after extraction.

UV-Vis spectrum of oxidative desulfurization dibenzoth-
iophene by composite catalysts is shown in Figure 6. UV-vis
spectrum used wavelength 220-250 nm. The Absorbance of
DBT at 235 nm decreased with increasing desulfurization time.
The decrease in absorbance gradually indicates the concentra-
tion of DBT is decreasing. At 30 min, %conversion of DBT

Figure 6. UV-Vis Spectrum of Oxidative Desulfurization Di-
benzothiophene by Composite Catalysts

>90% with the most signicant reduction indicated by Ni/Al-
ZnO catalyst.

The eect of the dosage of catalyst is presented in Fig-
ure 7. Generally, a higher catalyst dosage will provide more
opportunities for interaction between the active site of the cat-
alyst and the DBT (Ye et al., 2020) . However, in contrast to
this study, the optimum dosage for all catalysts was 0.25 g. A
higher catalyst dosage will increase the active site of the catalyst
while competing with oxidant molecules (Subhan et al., 2019) .
Therefore, increasing the catalyst dosage can reduce the %con-
version of DBT. Percentage of Desulfurization order of DBT:
Ni/Al-ZnO > Ni/Al-TiO2 > Ni/Al-LDH > ZnO > TiO2.

Figure 7. Eect of Catalyst Dosage on Desulfurization of Di-
benzothiophene

Figure 8 shows the eect of temperature catalytic oxidative
desulfurization of DBT. The catalytic data shows that high
temperature is directly proportional to the high %conversion
of DBT. Desulfurization of DBT using H2O2 is better at high
temperatures by converting DBT to DBT-sulfone (Fraile et al.,
2016; Lesbani et al., 2015). Desulfurization of DBT at 50°C
is better than at 30°C and 40°C. Percentage of Desulfurization
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order of DBT: Ni/Al-ZnO >Ni/Al-TiO2 > Ni/Al-LDH > ZnO
> TiO2. The fuel oil is operated at 60-70°C to overcome
dierent oxidant dissociation energies. Therefore, this study
is superior because the temperature is lower with the same
eciency.

The eect of solvent was carried out to determine the best
solvent in the oxidative desulfurization of DBT. n-pentane,
n-hexane, and n-heptane were used as DBT solvents. The
solvent eect shows that n-hexane is better at desulfurizing
DBT than n-pentane and n-heptane. The results are compiled
in Figure 9 showing the desulfurization of DBT on Ni/Al-ZnO
> Ni/Al-TiO2 > Ni/Al-LDH > ZnO > TiO2.

Figure 8. Eect of Various Temperatures on Desulfurization of
Dibenzothiophene Using Composite Catalysts

Figure 9. Eect of Solvent on Desulfurization of Dibenzothio-
phene by Composite Catalysts

Figure 10 shows the heterogeneous test of catalyst. Het-
erogeneous test the catalyst to determine whether the catalyst
is homogeneous or heterogeneous. Homogeneous catalysts
are soluble in the reactants/products of the reaction, while het-
erogeneous catalysts are insoluble. The Heterogeneous test
was carried out by desulfurization of DBT at 50°C for 10 min,

the catalyst and DBT solution were separated. DBT solution
continued with desulfurization process for 20-30 min. The un-
changed DBT concentration indicates that Ni/Al-LDH, TiO2,
ZnO, Ni/Al-TiO2, and Ni/Al-ZnO are truly heterogeneous
system. The advantage of heterogeneous catalysts is that can
be used for reusability (Vallés-García et al., 2020) .

Figure 10.Heterogeneous Test of Catalyst

Reusability of catalysts is very inuential for the industry to
save operating costs (Song et al., 2021) . Reusability is suitable
for Ni/Al-LDH, TiO2, ZnO, Ni/Al-TiO2, and Ni/Al-ZnO
catalysts because they are heterogeneous. Figure 11 shows the
good reusability of catalyst. After 3 times catalytic reactions,
the conversion of DBT still retains more than 80%, even Ni/Al-
TiO2 and Ni/Al-ZnO composites still 97.79% and 98.99%, re-
spectively. FTIR analysis was carried out to investigate changes
in the structure of the catalyst after the reusability process. The
new peak appearing at 1200 cm−1 is sulfone. Figure 12 shows
that the FTIR Ni/Al-TiO2 has undergone structural changes,
while Ni/Al-ZnO is stable in reusability process.

Figure 11. Reusability of Catalyst
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Figure 12. FTIR Spectrum of Composites Ni/Al-TiO2 (a),
Ni/Al-ZnO (b) Before and After Desulfurization of Third
Cycle

4. CONCLUSIONS

In the present study, composite layer double hydroxide-metal
oxide (Ni/Al-TiO2 and Ni/Al-ZnO) was successfully prepared
and used as catalyst of oxidative desulfurization of dibenzoth-
iophene. The acidity of Ni/Al-LDH increased after being
composited with TiO2 and ZnO. The optimum reaction time,
dosage catalyst, and temperature were 30 min, 0.25 g, and
50°C, respectively, and n-hexane as a solvent. The percentage
conversion of dibenzothiophene on Ni/Al-LDH, TiO2, ZnO,
Ni/Al-TiO2, and Ni/Al-ZnO were 99.44%, 91.92%, 95.36%,
99.88%, and 99.90%, respectively. The catalysts are heteroge-
neous system and the advantage is that can be used for reusabil-
ity. After 3 times catalytic reactions, the conversion of diben-
zothiophene still retains more than 80%, even Ni/Al-TiO2 and
Ni/Al-ZnO composites still 97.79% and 98.99%, respectively.
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