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Abstract

Let A denote the class of functions f which are analytic in the open unit disk U. The subclass of A4 consisting of univalent functions
is denoted by M. In this paper, we also consider a subclass of M which is denoted by /7, consisting of functions with negative
coefficients. In addition, this paper also studies the q-derivative operator. By combining the ideas, this paper introduced three
subclasses of . with negative coefficients involving g-derivative. Furthermore, the coefficient estimates, growth results and extreme

points were obtained for all of these classes.
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1. INTRODUCTION

We denote A as the class of functions which has a Maclaurin
series expansion of the form

1(5) =6+Za767. (1)
=2

The function f is analytic in the open unit disk U = {6 € C:
|6]<1}.

While we use M to represent the subclass of A and it is con-
sisting of univalent functions. In recent times, there are quite a
number of researchers have studied different subclasses of A
which associated with g-derivative (see Breaz and Cotirla, 2021;
Ibrahim, 2020; Jabeen et al., 2022; Janteng et al., 2020; Khan
et al., 2022; Karahuseyin et al., 2017; Murugusundaramoor-
thy et al., 2015; Najafzadeh, 2021; Oshah and Darus, 2015;
Rashid and Juma, 2022; Shilpa, 2022).

From (Jackson, 1909; Aral et al., 2013), we have the g-
derivative of a function f € A which given by (1) with 0 < ¢ <
1as

1 (g6) = [(9)
(g=1)6

D,(f(0)) = £7(0). From (2), we can get

Dl](f((s)): ;Q¢1,5¢0, (2)

Dy(f(8) = 1+ ) [rlyar6™ ",

=2
—q7 .
where [7], = 11qu Asq — 1, [r], = 7. For a function

Jj(6) =267,

1-g7
D,(j(8)) = Dy(267) =2 (I—_qq) (6771 =2[r], 67"

lim (D, (j(6))) = lim (2[T]q(sf”) = 97671 = j(5)
q—)l q—>1

where j’ is the ordinary derivative.

Furthermore, we denote /' as a class with negative coefli-
cients and a subclass of M, consisting of the following functions

[e9)

(6)=6~ ) ac ®)

=2
where a; > 0.

For f € V', there are some significant researchers for ex-
ample in (Halim et al., 2005), the authors studied the class
MgV (n, 9) consisting of starlike functions with respect to (w.r.t)
symmetric points. Besides, there are various studies for ex-
ample in (Al-Abbadi and Darus, 2010; Al Shaqgsi and Darus,
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2007; Atshan and Ghawi, 2012; Bucur and Breaz, 2020; Choo
and Janteng, 2018; Halim et al., 2006; Janteng and Halim,
20009; Vrlirl[‘/(ld( -h and Salleh, 2022; Oluwayemi et al., 2022;
Porwal et al., 2022).

In this paper, by considering functions / € / and q-deriva-
tive operator we introduce the classes M* V(n, 9), M. V(r],
#) and Mg, y
and extreme points are obtained for these classes.

First, we give the definitions for the 3 classes. We note

that as ¢ — 1, we obtain the classes which were introduced by
(Halim et al., 2005).

V (n, ). The coeflicient estlmates growth results,

Definition 1. A function f € Mg qV(n, ) if and only if it

satisfies
5D,/ (5) ) 16D,/ (5)
<9 — 4
1(6) = f(=0) 1(6) = f(=0)
for0<n<1,0<9<1,0<3 - <landseU.

Definition 2. A function [ €
satisfies

M(";’qV(r], ) if and only if it

0D,/ (8) _1i< o 1904/ (6) li
/(8)+7(3) /(8)+7(3)

for0<p<1,0<9<1,0<3 = <landseU.

Definition 3. A function f € M. J ) if and only if it

satisfies

1(6) = f(=9) /() = f(=9)

for0<n<1,0<9<1,0< 20 <TandseU.

’wq_m_1'<ﬁm+l‘

2. RESULT'S

Now, we give the properties for the 3 classes. First, we proceed
with the coefficient estimates for f € M qV(n, 9).

Theorem 1. Let f € /. A function [ € Mg ql/(n, ) if and
only if

i A+l
H2+n)— 1

T=

9= -(=(DI) _,
H2+n)-1 T

)

forO<np <1, 0<0<1and0<2{ing)<l.

proof. Initially, we may prove the ’if” part first. We apply the
method in (Clunie and Keogh, 1960). So, we write

© 2022 The Authors.
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|6D4f(8) = (f(8) = f(=6))| = & 6Dy f (8) + (f(6) = f(=6))|

Ty = (1= (=1)")) ar 67| - (2 +7)5-

|
s

[oe]

Z (1= (=D)7) arr”

s

([rlgn + 1= (=1)7) arz"

2

T

+r—0(2+n)r+Zﬁ
T=2

g+ 1= (=1)7) arr”

[Z g= (= (=D ar +1-0(2+n)

+Z

Z((l +n)lrlg+0 (1= (=1)7)

7=2

lgn+1-(-1)7 )ar}r

(1= (=D"ar - (#2+n) - 1)}r

By considering inequality (4), we get

T (49 [r]+9(1 - (D7) = (1= (-1)7)) ar =
(@#(2+n)-1) <0,

and by applying this inequality, we obtain

|6D,f (6) = (f(8) = f(=6))| = #[n6D,f (8) + (f(6) = f(=9))]

e8]

DA+ el + (1= (-D)) = (1= (-1)7)) ar

T=2

— (2 +7) - l)lr <0

Thus,
DS@) 4
775
D@ <?
T@-(=5)

and hence f € Mg qV(r], ). Conversely, let

0D,/ (8) - )

W‘l _ -1- TZQ([T]q_(l_(_l)r))aﬂsf 1 Y
16D,/ (8) 9 vy, (<" — .
7o + 1 2+m) - X7 ([tlgn +1 = (=1)7) arz

Since we know that the function f is analytic, continuous and
non constant in U, then we apply the maximum modulus
principle, so we can get
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—1—2 ([rh—(l—(—l)ﬂ)aréf‘l
2+n) -2y ([rlgn +1-(=D)7) a; 677!
~ |1+zT:2([r],,—(1—( 1)7)) a; 6™
|2+ a) -3, ([r]gn + 1 = (=1)7) az67

1+ 3%, ([7], = (1= (=1))) la |6
T @24+ - X ([rlgn + 1= (=1)7) |a[|6]7!
1+32, ([t] - (1= (=1)7)) arr™!

T2+ - Ey ([t + 1= (=1)7) arr™! =/
Since [ € M;,,V(U, ¥) and 0 < r < 1, we obtain
oo _ _(_1\T -1
1+Y 7, ([r], - (1= (=1)7)) arr <9 ©)

C2+n) =3 ([t]gn + 1 = (=1)7) arr7!

Then, we let r — 1 in (5), we gain

1+i _(1—(—1)7))a,sﬁ((2+n)

—Z g +1-(-1)")a )

and hence 5, ((;gfn))[jq + ﬁ(l—(—ﬂl()gfi;)(:(—ly)) 4, < 1as

required. This completes the proof of the theorem.

Corollary 1. If / € Mg qV(n, ) then

o 9 (2+7) -1
T+t +9 (1= (-D)7) - (1-(- 1))

Proof. From Theorem 1, if f € Mg qV(n, ) then

i((lﬂ?n)[ Tl +3(1 - (D7) -0 - (= 1))) <1

4 9(2+n) -1

forO<n <1, 0<0<land0<2{ig)<l.

Since

((1+1977)[T] g+ -(=D)-d - D7 ))

P 2+n) -1
Si((lﬂﬁ‘n)[ﬂ gt - (=17 - (1-(=DT ))
= H2+n)-1
<1,
© 2022 The Authors.
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. 9 (2+n)-1
we obtain that a, < T, 79— D) (1D -
is completed.

The proof

Next, by applying similar way of methods, we may get
the coeflicient properties for the functions which belongs to
M* V(n ?) and M, V(n, ). The results are shown in The-

orem 2 and Theorem 6

Theorem 2. Let f € V. A function f € M. qV(n, ) if and
only if

i (1+9n)[7], N
“~ P2+n)-1

for0<n<1,0<®<land0< -0 <1.

2(0-1)
H2+n)-1

Corollary 2. If / € M. qV(n, ) then

< P 2+n)-1
T v o[l +20@ 1)

Theorem 3. Let f € /. A function f € M. qV(r] ) if and
only if

i ((1 +onp)ltl, (A -(=D)-1-(=D7)

+ ar <1
Zi\9@+n -1 92+ -1
for0<n<1,0<d<land0< 30 < 1.

Corollary 3. If / € MS*’qV(n, ) then
H2+n) -1 59,

ar <
(I+9n)[rlg+d (1= (-D7) - (1 - (- D"

After that, we may get the growth property for functions in the
class M§ qV(r], ¥) in the next part.

Theorem 4. Given that a function f be defined by (4) and
belongs to the class M;)qV(n, ). Then for
{6:0<6|=r <1},

9@ -1
[2]4(1 +9n)

9 (2+7n) -

2<fO) <r+ m

proof. First, it is obvious that
J(1+97) < (I +9n)[7],
19(2+r])—1Z T_Z(ﬁ(2+n)—l

LU= (D) - (= (1) >)a
P2+7n) -1 !

and as f € Mg qV(n, ), we use the inequality in Theorem 1
and it gives
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- 19(2+77)—1
Z=: 1,(1+9n)° ©)

From (4) with [6| =7 (r < 1), we can gain

(o) (o]
N <r+ ) arr™ <r+ Y ar?
I (
=2 =2

and
@l zr=) ar™ 2r=3 ar’.
=2 =2

Lastly, by considering the inequalities (6), we may gain the
result of Theorem 4.

In the next part, we shall gain the growth results for func-
tions that belongs to M. V(n, @) and Mg, qV(n, ) by using

a similar method. The results are shown in Theorem 5 and

Theorem 6.

Theorem 5. Given that a function { be defined by (4) and
belongs to the class M. qV(n, ?). Then for {z: 0 < |6]=
r <1},

P2 -1

- <1£ (5

"L, -+ o (2 +2) <1/ )l
9(2+p) -1 \

+ r
(121, = 1) + 9 ([2]4m +2)
Theorem 6. Given that a function f be defined by (4) and

belongs to the class M:,. V' (n, ). Then for
{z:0<|6]=r <1},

SC,q

9@+ -1
[2],(1 +In)

Finally, we consider extreme points for these 3 classes.

19(2+r])—1r2

2
<VOT=r o, Tam)

Theorem 7. Let f1(5) = 6 and f;(5)

B H2+n) -1
(L+dn) 7]+ -(-D7) - (1-(= 1))
>2. Then [feMg V(n, @) ifandonlyil /()

ZZ/leT((S) where A; >0 and Z/lle.

=1 7=1

proof. We adopt the technique by (Silverman, 1975), we
assume that
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f6) =D Acf(6)

=1
sl 9(2+7m) -1 .
=0 ;”’(amn)[] Yo (D7) - (1= (-1 ))
Next since
iﬁ ( H2+n) -1 )
47T\ A+ [r], + 91 = (-D)7) = (1 = (=1)7)

T=

((1 +dn)lrly+9(1 - (D7) - - (—1)7))

H2+7) -1
=Za,=1—m <1.
=2

C

Therefore by Theorem 1, f € M qV(r}, ). Conversely,
suppose [ € Mg qV(r], ). Since

9 2+n) -1
ar; < > 2,
(I+9n) [l +9 (1= (=D)7) = (1 - (- D7) "
wemayset
I+ [r]g+2(1-(=1D)7) - (1-(=D7)
A’:{ d2rn -1 } w2
and
oy :1—2/17.
=2
Then
DAk (6)
=1
= LLAS) + ) £ (6)
=2
—ZAT(HZA,(S—ZWST
=2 =2 =2
= f(9).

Hence, we complete the proof.

By using a similar method, we obtain the extreme points
for the other 2 classes.
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Theorem 8. Let f1(6) = 6 and

e #2+7n) -1
fr(8) =8 (1+9n)[r]y+2(9 - 1)
fe f\/[;j’qV(r], ¥) if and only if

67,7 >2. Then

f(9) =Z/L,f7(5) where A > OandZ/IT =1.
=1 =1
Theorem 9. Let f1(5) = ¢ and
H2+n) -1

(8) =5 —
J @) = = A e, 791 = (DD — (1= (=1))
>2. Then fe€ Z\/Isc,qV(n, ) if and only if

6T, T

f(6) =) Acf(6) where Ar>0 and > ar=1.

=1 =1

3. CONCLUSIONS

In this paper, we introduced 8 new subclasses of 4 with negative
coeflicients involving g-derivative and obtained their results for
the coeflicient estimates, growth results and extreme points.
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